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Abstract

Théo Borém Fabris. Undirected connectivity and its space complexity. Capstone
Project Report (Bachelor). Institute of Mathematics and Statistics, University of São
Paulo, São Paulo, 2023.

This work aims to investigate two logspace algorithms for the undirected connectivity problem. One of
them is a randomized algorithm based on the cover time for random walks on graphs, while the other is a
deterministic algorithm based on properties of expander graphs and the zig-zag product. Additionally, this
work analyzes a probabilistic construction of universal traversal sequences for graphs using an upper bound
on the cover time of random walks on graphs. This work provides most of the theoretical background needed
to analyze those algorithms and pseudocode implementations for them. In addition, this work addresses
several details omitted in the papers that proposed those algorithms.

Keywords: The undirected 𝑠𝑡-connectivity problem. Space complexity. Random walks on graphs. Spectral
graph theory. The zig-zag product of graphs.





Resumo

Théo Borém Fabris. Conexidade não dirigida e sua complexidade de espaço. Mo-
nografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo,
São Paulo, 2023.

O objetivo deste trabalho é analisar dois algoritmos com uso de memória logarítmica que resolvem o
problema da conexidade em grafos não dirigidos. Um deles é um algoritmo aleatorizado baseado no estudo do
tempo de cobertura para passeios aleatórios em grafos, já o outro é um algoritmo determinístico baseado em
propriedades de grafos expansores e do produto zig-zag. Além disso, este trabalho examina uma construção
probabilística de sequências transversais universais para grafos utilizando uma cota superior para o tempo
de cobertura para passeios aleatórios em grafos. Este trabalho provê a maioria dos prerequisitos e resultados
básicos necessários para analisar esses algoritmos e implementações em pseudocódigo deles. Além disso,
este trabalho considera vários detalhes omitidos nos artigos que propuseram esses algoritmos.

Palavras-chave: O problema da 𝑠𝑡-conexidade não dirigida. Complexidade de espaço. Passeios aleatórios
em grafos. Teoria espectral dos grafos. O produto zig-zag para grafos.
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Introduction

A classical result in computational complexity states that the (directed) 𝑠𝑡-connectivity
problem, i.e., the problem of deciding whether two distinct vertices of a digraph are
connected by a directed walk, is a complete problem for the complexity class NL, the
class of all languages accepted by nondeterministic logspace Turing machines. Hence, any
superlogarithmic space lower bound or deterministic logspace algorithm for that problem
is sufficient to answer the L versus NL question. A natural first step to understand the
space complexity of the 𝑠𝑡-connectivity problem is to study the space complexity of its
restricted version for graphs, called the undirected 𝑠𝑡-connectivity problem (USTCON). In
this problem, we want to decide whether two distinct vertices of a graph are connected by
a walk.

One of the first results concerning the space complexity of USTCON was obtained by
Aleliunas, Karp, Lipton, Lovász, and Rackoff [Ale+79]. They analyzed the cover time of
random walks on graphs and used it to design randomized algorithms to solve USTCON,
decide whether a graph is bipartite, and construct universal traversal sequences. After
this paper, USTCON received much attention, aiming to understand how this problem
is related to other combinatorial problems [LP82] and if it is possible to derandomize
those algorithms via space-bounded pseudorandom generators [Nis92; SZ99; Arm+00].
However, the question of whether USTCON ∈ L remained open until the early 2000s
when Reingold [Rei08] proposed the first deterministic logspace algorithm for USTCON.
His algorithm converts the input graph into an expander graph and exploits the fact that
USTCON is easy to solve in logspace for expanders.

The main tool used by Reingold’s algorithm is the zig-zag product of graphs, which is
a way to combine two graphs 𝐺 and 𝐻 into a graph 𝐺 z⃝𝐻 such that 𝐺 z⃝𝐻 has expansion
similar to the expansion of 𝐺 and 𝐻 . This product first appeared in Reingold, Vadhan, and
Wigderson [RVW02] as a tool to explicitly construct expander graphs, and since then, the
zig-zag product has appeared in the solution of many other problems [Cap+02; Din07;
TaS17].

This work focuses on the randomized algorithms proposed by Aleliunas, Karp, Lipton,
Lovász, and Rackoff [Ale+79] to solve USTCON and construct universal traversal sequences,
as well as the deterministic algorithm proposed by Reingold [Rei08] to solve USTCON.
In particular, we are interested in understanding the probabilistic and combinatorial
techniques used by those algorithms, which range from random walks on graphs and their
cover time to spectral graph theory and the zig-zag product.

The main contributions of this work are our presentations and detailing of the main
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arguments given in those papers, providing the background and details needed to under-
stand the algorithms and their analyses, and our implementations in pseudocode of the
studied algorithms.

This work is organized as follows. In Chapter 1, we present the general notation
and definitions from linear algebra, computational complexity, and graph theory used
throughout this work. In Chapter 2, we define Markov chains, state some of their properties,
provide a proof of an upper bound for the cover time of random walks on graphs, and
then apply this upper bound to establish the correctness of the randomized algorithms
in [Ale+79]. In Chapter 3, we first define concepts and prove two classical results from
spectral graph theory. Then, we introduce the zig-zag product and its properties, and use
them to analyze the multigraph transformations utilized by Reingold’s algorithm [Rei08].
Finally, in Chapter 4, we present some conclusions and open problems related to this
work.
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Chapter 1

Preliminaries

The goal of this chapter is to introduce the basic notations and definitions used in this
work.

1.1 Linear algebra

We denote by ℕ the set {1, 2, …} and by [𝑛] the set {1, 2, … , 𝑛} for each 𝑛 ∈ ℕ. For
𝑥 ∈ ℝ, we denote by lg(𝑥) the base 2 logarithm function of 𝑥 and by ln(𝑥) the natural
logarithm function of 𝑥 . We denote by [0, 1] the set { 𝑥 ∈ ℝ | 0 ≤ 𝑥 ≤ 1} and by [0, 1) the
set { 𝑥 ∈ ℝ | 0 ≤ 𝑥 < 1}. For a logical predicate 𝑃 , we denote

[𝑃] ∶=

{
1 if 𝑃 is true,
0 if 𝑃 is false.

Let 𝑅 and 𝑆 be two sets. We denote by 𝑆𝑅 the set of all functions from 𝑅 to 𝑆, by (𝑅2) the
set { {𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑅, 𝑢 ≠ 𝑣}, by 𝑅𝑘 ∶= { (𝑟1, … , 𝑟𝑘) | 𝑟𝑖 ∈ 𝑅 ∀𝑖 ∈ [𝑘]} for all 𝑘 ∈ ℕ, and by
𝑅∗ ∶= ∪𝑘∈ℕ𝑅𝑘 . We denote by ℝ𝑛 the set ℝ[𝑛] and by ℝ𝑛×𝑛 the set ℝ[𝑛]×[𝑛].

Let 𝑈 and 𝑉 be finite sets. We say that an element 𝑀 of ℝ𝑈×𝑉 is a 𝑈 × 𝑉 matrix, and
denote 𝑀𝑖,𝑗 ∶= 𝑀(𝑖, 𝑗) for each (𝑖, 𝑗) ∈ 𝑈 × 𝑉 . Similarly, an element 𝑣 of ℝ𝑈 is a (column)
vector, and 𝑣𝑖 ∶= 𝑣(𝑖) for each 𝑖 ∈ 𝑈 . A matrix 𝑀 ∈ ℝ𝑈×𝑉 is a square matrix if 𝑈 = 𝑉 , and
𝑀 is symmetric if it is square and 𝑀𝑢,𝑣 = 𝑀𝑣,𝑢 for each (𝑢, 𝑣) ∈ 𝑈 ×𝑉 . We denote by 0 ∈ ℝ𝑈

the vector such 0𝑢 ∶= 0 for all 𝑢 ∈ 𝑈 . For 𝑊 ⊆ 𝑈 , we denote by 1𝑊 the vector defined as
follows: (1𝑊 )𝑢 = [𝑢 ∈ 𝑊] for each 𝑢 ∈ 𝑈 .

For a matrix 𝑀 ∈ ℝ𝑈×𝑉 and a vector 𝑣 ∈ ℝ𝑉 , the product 𝑀𝑣 ∈ ℝ𝑈 of 𝑀 and 𝑣 is the
vector defined as follows: for each 𝑖 ∈ 𝑈 ,

(𝑀𝑣)𝑖 = ∑
𝑘∈𝑈

𝑀𝑖,𝑘𝑣𝑘 .

For 𝑊 a finite set, 𝑀 ∈ ℝ𝑈×𝑉 and 𝑁 ∈ ℝ𝑉×𝑊 , the product 𝑀𝑁 ∈ ℝ𝑈×𝑊 of 𝑀 and 𝑁 is the
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matrix defined as follows: for each (𝑖, 𝑗) ∈ 𝑈 × 𝑊 ,

(𝑀𝑁 )𝑖,𝑗 = ∑
𝑘∈𝑈

𝑀𝑖,𝑘𝑁𝑘,𝑗 .

For a square matrix 𝑀 ∈ ℝ𝑈×𝑈 and 𝑙 ∈ ℕ, we define 𝑀 𝑙 ∶= 𝑀 if 𝑙 = 1 and, 𝑀 𝑙 ∶= (𝑀 𝑙−1)𝑀
if 𝑙 > 1. For each 𝑢, 𝑣 ∈ ℝ𝑈 , we denote by 𝑢⊤ the transpose vector of 𝑢, by ⟨𝑢, 𝑣⟩ the inner
product ∑𝑖∈𝑈 𝑢𝑖𝑣𝑖 of 𝑢 and 𝑣, and by ‖𝑢‖ the norm

√
⟨𝑢, 𝑢⟩ of 𝑢. The following theorem is

a basic result from linear algebra.

Theorem 1.1 (Cauchy-Schwarz inequality). Let 𝑈 be a finite set. Let 𝑢, 𝑣 ∈ ℝ𝑈 . Then
(⟨𝑢, 𝑣⟩)2 ≤ ⟨𝑢, 𝑢⟩ ⋅ ⟨𝑣, 𝑣⟩. In other words, the following inequality holds

(
∑
𝑖∈𝑈

𝑢𝑖𝑣𝑖)

2

≤
(
∑
𝑖∈𝑈

𝑢𝑖𝑢𝑖)(
∑
𝑖∈𝑈

𝑣𝑖𝑣𝑖)
.

Let 𝑀 ∈ ℝ𝑈×𝑈 be a square matrix. If 𝜆 ∈ ℝ and 𝑥 ∈ ℝ𝑈 satisfy 𝑥 ≠ 0 and 𝑀𝑥 = 𝜆𝑥 , we
call 𝜆 an eigenvalue of 𝑀 and 𝑥 a 𝜆-eigenvector of 𝑀 . The following three theorems are
basic result from linear algebra.

Theorem 1.2. Let 𝑈 be a finite set and 𝑛 ∶= |𝑈 |. If 𝐴 ∈ ℝ𝑈×𝑈 is a symmetric matrix, then 𝐴
has exactly 𝑛 eigenvalues and they are all real numbers. In this case, we denote the eigenvalues
of 𝐴 by 𝜆1(𝐴), … , 𝜆𝑛(𝐴) satisfying that

𝜆1(𝐴) ≥ … ≥ 𝜆𝑛(𝐴).

Theorem 1.3 (Spectral Theorem for symmetric matrices). Let 𝑀 ∈ ℝ𝑈×𝑈 be a symmetric
matrix. Let 𝑛 ∶= |𝑈 | and 𝑙 ∈ {0, … , 𝑛}. For every orthonormal set 𝐵0 ∶= {𝑣1, … , 𝑣𝑙} of
eigenvectors of 𝑀 , we can extend 𝐵0 to an orthonormal basis {𝑣1, … , 𝑣𝑛} of eigenvectors of 𝑀 .

Theorem 1.4. Let 𝑀 ∈ ℝ𝑈×𝑈 be a symmetric matrix and 𝑙 ∈ ℕ. Then, 𝑀 𝑙 is a symmetric
matrix and, for each 𝑖 ∈ [𝑛],

𝜆𝑖(𝑀 𝑙) = 𝜆𝑖(𝑀)𝑙 .

1.2 Computational complexity
In this section, we will define the basic concepts from computational complexity used

in this work. We used the book Arora and Barak [AB09] as our basic reference.

Let us start by defining the basic terminology.

Definition 1.5. Let Ω ∶= {𝜖} ∪ {0, 1}∗ be the set of all strings, where 𝜖 is the empty string.
We say that the size (or length) of a string 𝑥 ∈ Ω, denoted by |𝑥|, is the length of 𝑥 (that is,
the number of bits required to represent 𝑥). A language 𝐿 ⊆ Ω is a subset of strings. We
also call such sets decision problems.

We say that an algorithm  solves (or decides) a decision problem 𝐿 if, for any 𝑥 ∈ Ω,
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the output of the algorithm on input 𝑥 , denoted by (𝑥), is equal to

(𝑥) =

{
1 if 𝑥 ∈ 𝐿, and
0 if 𝑥 ∉ 𝐿.

For a function 𝑆 ∶ ℕ → ℝ, we say that an algorithm  uses space 𝑆(𝑛) for solving a
decision problem 𝐿 if  solves 𝐿 and, for every 𝑥 ∈ Ω, the sum of the number of bits (or
the size of the variables) that are used by  in its execution on input 𝑥 is at most 𝑆(|𝑥|). If
an algorithm  uses space 𝑆(𝑛) for solving 𝐿, we say that  is an 𝑆(𝑛)-space algorithm for
solving 𝐿. ■

We will not give formal definitions for mathematical descriptions of algorithms and
their space usage, because that would require to introduce the terminology of Turing
machines and their tape usage (which is very useful but also very technical). However, once
you know those definitions, it is straightforward (and technical) to convert the informal
space complexity analyses presented in this work to the framework of Turing machines.
In this work, we will only consider algorithms that, on any input, execute a finite number
of steps (i.e., our algorithms always halt).

Most of the questions in computational complexity are related to understanding the
amount of resources needed to solve a certain problem. In this work, we are interested
in understanding the amount of space required to solve the undirected 𝑠𝑡-connectivity
problem, and, in particular, we want to know whether there is an 𝑂(lg 𝑛)-space algorithm
to solve this problem. Note that an 𝑂(lg 𝑛)-space algorithm is essentially optimal (up to
the constant hidden in the big-Oh notation) since any algorithm needs to use at least lg 𝑛
bits to store the index (that ranges from 1 to 𝑛) of an element of a string of length 𝑛.

Definition 1.6. We say that an algorithm  is a logspace algorithm for a decision problem
𝐿 if there is a constant 𝑐 ∈ ℝ such that  is a (𝑐 lg 𝑛)-space algorithm for solving 𝐿.

Let 𝑓 ∶ Ω → Ω be a function from strings to strings. We say that an algorithm  is a
logspace oracle for 𝑓 if  has a special variable 𝑣 such that, for every 𝑥 ∈ Ω and when 
receives 𝑥 as input, the variable 𝑣 has value equal to 𝑓 (𝑥) at the end of the execution of
, and the sum of the number of bits (or the size of the variables) that are used by  in its
execution on input 𝑥 is at most 𝑐 lg |𝑥| for some constant 𝑐 that does not depend on 𝑥 . ■

We can extend the definition of algorithms to the probabilistic setting, that is, we
now allow algorithms to sample independent random bits in their execution, and we only
require that their output is the correct answer with probability at least 2/3.

Definition 1.7. A randomized algorithm is an algorithm  that uses random bits during
its execution, so, for every 𝑥 ∈ Ω, its output (𝑥) on input 𝑥 is a random variable over the
probabilistic space that consider all possibilities of values for the random bits used.

We say that a randomized algorithm  solves (or decides) a decision problem 𝐿 if,
for any 𝑥 ∈ Ω, their output (𝑥) is the correct answer with probability (over all possible
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results for the random bits used) at least 2/3, that is,
{
Pr[(𝑥) = 1] ≥ 2

3 if 𝑥 ∈ 𝐿, and
Pr[(𝑥) = 0] ≥ 2

3 if 𝑥 ∉ 𝐿.

For a function 𝑆 ∶ ℕ → ℝ, we say that a randomized algorithm  uses space 𝑆(𝑛) for
solving a decision problem 𝐿 if  solves 𝐿 and, for every 𝑥 ∈ Ω, the sum of the number
of bits (or size of the variables) that are used by  in its execution on input 𝑥 is at most
𝑆(|𝑥|) for all possible results of the random bits used.

If a randomized algorithm uses space 𝑆(𝑛) for solving 𝐿, we say that is a randomized
𝑆(𝑛)-space algorithm for solving 𝐿. We say that an algorithm  is a randomized logspace
algorithm for a decision problem 𝐿 if there is a constant 𝑐 ∈ ℝ such that  is a randomized
(𝑐 lg 𝑛)-space algorithm for solving 𝐿. ■

In our pseudocodes for algorithms, for any 𝑥 ∈ ℕ, we use the function Uniform(𝑥)
to uniformly sample an element of the set [𝑥], that is, for each 𝑖 ∈ [𝑥], the probability of
Uniform(𝑥) returns 𝑖 is equal to 1/𝑥 (if 𝑥 = 0, then the probability of Uniform(𝑥) returns 0
is one). The return value of each call for that function is stochastically independent from
the return value of previous calls.

Another type of algorithm that we will consider are randomized logspace algorithms
that construct certain objects. As we do not want to require the objects to have logarithmic
length, we need to relax the definition of space usage for those algorithms.

Definition 1.8. An algorithm with output tape is an algorithm  that has a write-once
output tape (𝑜1, 𝑜2, … ) indexed by ℕ such that the algorithm can only set a value to an
element 𝑜𝑖 , for 𝑖 ∈ ℕ, of the output tape if 𝑜𝑖 was not already set, and 𝑜𝑖−1 was set (assume
that 𝑎0 is always set). In other words, once a variable is written on the output tape, it
cannot be changed, and we can only use the output tape sequentially.

A randomized algorithm with output tape is an algorithm  that has an output tape
and uses random bits during its execution. For each 𝑥 ∈ Ω, denote by (𝑥) the (random)
string (𝑜1, … , 𝑜𝑖) where 𝑜𝑖 is the last bit of the output tape set when  receives 𝑥 as input.
Note that (𝑥) is a random vector over the probabilistic space that consider all possibilities
of values for the random bits used.

Let 𝑓 ∶ Ω → Ω be a function from strings to strings. We say that a randomized
algorithm  with output tape constructs 𝑓 if, for every 𝑥 ∈ Ω and when  receives 𝑥
as input, the string of bits set on the output tape of  is equal to the string 𝑓 (𝑥) with
probability (over all possible results of the random bits used) at least 2/3, that is,

Pr[(𝑥) = 𝑓 (𝑥)] ≥
2
3
.

For a function 𝑆 ∶ ℕ → ℝ, we say that a randomized algorithm  uses space 𝑆(𝑛) to
construct a function 𝑓 if  constructs 𝑓 and, for every 𝑥 ∈ Ω, the sum of the number of bits
(or size of the variables) that are used by  in its execution on input 𝑥 (without considering
variable in the output tape) is at most 𝑆(|𝑥|) for all possible results of the random bits used.
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If a randomized algorithm  uses space 𝑆(𝑛) to construct a function 𝑓 , we say that
 is a randomized 𝑆(𝑛)-space algorithm to construct 𝑓 . We say that a algorithm  is a
randomized logspace algorithm to construct a function 𝑓 if there is a constant 𝑐 ∈ ℝ such
that  is a randomized (𝑐 lg 𝑛)-space algorithm to construct 𝑓 . ■

In our pseudocodes for algorithms, we use the primitive output to set a value in the
output tape.

1.3 Graph theory
In this section, we will define the basic concepts from graph theory that are important

for the rest of this work. Let us start by defining graphs and multigraphs.

Definition 1.9. A graph 𝐺 is a pair (𝑉 (𝐺), 𝐸(𝐺)) such that 𝑉 (𝐺) is a finite set and 𝐸(𝐺) ⊆
(𝑉 (𝐺)2 ). We call 𝑉 (𝐺) the set of vertices of 𝐺 and 𝐸(𝐺) the set of edges of 𝐺. We usually
denote an edge {𝑢, 𝑣} ∈ 𝐸(𝐺) by 𝑢𝑣. For a vertex 𝑢 ∈ 𝑉 (𝐺), we denote by 𝑁𝐺(𝑢) the set
{ 𝑣 ∈ 𝑉 (𝐺) | 𝑢𝑣 ∈ 𝐸(𝐺)}, and we say that an element of 𝑁𝐺(𝑢) is a neighbor of 𝑣 in 𝐺.

A multigraph 𝐺 is a triple (𝑉 (𝐺), 𝐸(𝐺), 𝜑) such that 𝑉 (𝐺) and 𝐸(𝐺) are finite sets and
𝜑 is a function from 𝐸(𝐺) to 𝑉 (𝐺) ∪ (𝑉 (𝐺)2 ). We call 𝑉 (𝐺) the set of vertices of 𝐺, 𝐸(𝐺) the
set of edges of 𝐺, and 𝜑 the incidence function of 𝐺. We say that an edge 𝑒 ∈ 𝐸(𝐺) is a
loop if 𝜑(𝑒) ∈ 𝑉 (𝐺), and we say that 𝑒 is a parallel edge if there is some 𝑓 ∈ 𝐸(𝐺) such that
𝑓 ≠ 𝑒 and 𝜑(𝑓 ) = 𝜑(𝑒). For an edge 𝑒 ∈ 𝐸(𝐺) that is not a loop, we say that the elements of
𝜑(𝑒) ∈ (𝑉 (𝐺)2 ) are the ends of 𝑒; for a loop 𝑒 ∈ 𝐸(𝐺), we say that 𝑒 has two ends and both
are equal to the vertex 𝜑(𝑒). We say that an edge 𝑒 is incident to a vertex 𝑣 if 𝑣 is an end
of 𝑒. We say that two vertices 𝑢 and 𝑣 are adjacent if there is an edge 𝑒 ∈ 𝐸(𝐺) such that 𝑢
and 𝑣 are the ends of 𝑒.

We define 𝑣(𝐺) ∶= |𝑉 (𝐺)| and 𝑒(𝐺) ∶= |𝐸(𝐺)|. For a vertex 𝑣 ∈ 𝑉 (𝐺), we denote by
𝐸(𝐺, 𝑣) the set { 𝑒 ∈ 𝐸(𝐺) | 𝑣 ∈ 𝜑(𝑒)} of edges incident to 𝑣, and by 𝑑𝐺(𝑣) ∶= |𝐸(𝐺, 𝑣)|.
We call 𝑑𝐺(𝑣) the degree of 𝑣 in 𝐺. For 𝑑 ∈ ℕ, we say that 𝐺 is a 𝑑-regular multigraph if
𝑑𝐺(𝑣) = 𝑑 for all 𝑣 ∈ 𝑉 (𝐺),

A multigraph 𝐻 ∶= (𝑉 (𝐻), 𝐸(𝐻), 𝜓 ) is a subgraph of 𝐺, denoted by 𝐻 ⊆ 𝐺, if 𝑉 (𝐻) ⊆
𝑉 (𝐺) and 𝐸(𝐻) ⊆ 𝐸(𝐺), and 𝜓(𝑒) = 𝜑(𝑒) for all 𝑒 ∈ 𝐸(𝐻).

For a given subset 𝑆 ⊆ 𝑉 (𝐺) of vertices of 𝐺, the multigraph induced by 𝑆 in 𝐺 is the
multigraph 𝐺[𝑆] ∶= (𝑆, 𝐹 , 𝜑↾𝐹 ), where 𝐹 ∶= { 𝑒 ∈ 𝐸(𝐺) | 𝜑(𝑒) ⊆ 𝑆} and 𝜑↾𝐹 is the function
restriction of 𝜑 to the set 𝐹 .

We sometimes assume that the vertex set of graphs and multigraphs are equal to the set
[𝑛] for some 𝑛 ∈ ℕ. Note that any graph 𝐺 is equivalent to the multigraph (𝑉 (𝐺), 𝐸(𝐺), 𝜑)
with 𝜑∶ 𝐸(𝐺) → 𝑉(𝐺) ∪ (𝑉 (𝐺)2 ) and 𝜑(𝑒) = 𝑒. Thus, all definitions and theorems for
multigraphs also hold for graphs.

Let 𝑛, 𝑑 ∈ ℕ. A multigraph 𝐺 is an (𝑛, 𝑑)-multigraph if 𝐺 has vertex set [𝑛] and is
𝑑-regular. Similarly, a graph 𝐺 is an (𝑛, 𝑑)-graph if 𝐺 has vertex set [𝑛] and is 𝑑-regular. ■

The following definition specifies a representation of graphs that will be useful to
represent the input graph of our graph algorithms.
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Definition 1.10. Let 𝐺 ∶= (𝑉 , 𝐸) be a graph. The adjacency matrix of 𝐺 is the matrix
𝐴𝐺 ∈ ℝ𝑉×𝑉 defined as follows: for each 𝑢, 𝑣 ∈ 𝑉 ,

𝐴𝐺(𝑢, 𝑣) ∶= [𝑢𝑣 ∈ 𝐸(𝐺)].

All graph algorithms analyzed in this work receive the adjacency matrix of the input
graph 𝐺 as the computational representation of 𝐺. It is not hard to prove that, given the
adjacency matrix of the input graph, one can compute the graph parameters 𝑣(𝐺), 𝑒(𝐺),
𝑑𝐺(𝑣), and 𝐺(𝑣, 𝑖) for each 𝑣 ∈ 𝑉 (𝐺) and 𝑖 ∈ [𝑑𝐺(𝑣)] using 𝑂(log 𝑛) slot of memory (that
is, there is a logspace oracle for those functions).

It is important to note that some multigraph algorithms will use an implicit represen-
tation of multigraph via rotational maps, but it will only be important in Chapter 3. ■

Let us now define some special classes of multigraph and subgraphs.

Definition 1.11. Let 𝐺 ∶= (𝑉 , 𝐸, 𝜑) be a multigraph. We say that 𝐺 is bipartite if there
are two nonempty sets 𝐴, 𝐵 ⊆ 𝑉 such that 𝐴 ∪ 𝐵 = 𝑉 and 𝐴 ∩ 𝐵 = ∅, and, for each 𝑒 ∈ 𝐸,
we have 𝜑(𝑒) ⊈ 𝐴 and 𝜑(𝑒) ⊈ 𝐵 (that is, one end of 𝑒 is in 𝐴 and the other is in 𝐵 for all
edges 𝑒 ∈ 𝐸). If 𝐺 is not bipartite, we say that it is nonbipartite.

Let 𝑙 ∈ {0, 1, …}. A sequence 𝑤 ∶= (𝑤0, … , 𝑤𝑙) is a walk on 𝐺 if 𝑤𝑖 ∈ 𝑉 for all
𝑖 ∈ {0, … , 𝑙}, and 𝑤𝑖−1 and 𝑤𝑖 are adjacent for each 𝑖 ∈ [𝑙]. In this case, we say that 𝑤 is a
(𝑤0, 𝑤𝑙)-walk and 𝑤 has length 𝑙 . We denote by 𝑉 (𝑤) the set {𝑤𝑖 | 𝑖 ∈ {0, … , 𝑙}} of vertices
visited by 𝑤 .

For two vertices 𝑢 and 𝑣 of 𝐺, denote by 𝑑𝐺(𝑢, 𝑣) the smallest length of a 𝑢𝑣-walk
on 𝐺; if there is no 𝑢𝑣-walk on 𝐺, we define 𝑑𝐺(𝑢, 𝑣) ∶= ∞. We call 𝑑𝐺(𝑢, 𝑣) the distance
between 𝑢 and 𝑣. The diameter of 𝐺 is

diam(𝐺) ∶= max
𝑢,𝑣∈𝑉

𝑑𝐺(𝑢, 𝑣).

We say that 𝐺 is connected if diam(𝐺) < ∞. A connected component of 𝐺 is a maximal
subgraph of 𝐺 (with respect to the subgraph ⊆ relation) that is connected. We denote by
(𝑛, 𝑑) the set of all connected (𝑛, 𝑑)-graphs. ■

The following definition will be important for our algorithms and analyses.

Definition 1.12. Let 𝑙, 𝑛, 𝑑 ∈ ℕ. Let 𝐺 ∶= (𝑉 , 𝐸) be an (𝑛, 𝑑)-multigraph. We say that a
function 𝐿∶ 𝑉 × [𝑑] → 𝐸 is a label of 𝐺 if, for each 𝑣 ∈ 𝑉 , the map 𝐿𝑣 ∶ [𝑑] → 𝐸(𝐺, 𝑣)
with 𝐿𝑣(𝑖) ∶= 𝐿(𝑣, 𝑖) is a bijection. For each 𝑣 ∈ 𝑉 and 𝑖 ∈ [𝑑], we call 𝐿(𝑣, 𝑖) the 𝑖-th edge
incident to 𝑣 in 𝐺 with respect to 𝐿, and we say that the other end (that can be equal to 𝑣
in the case of loops) of 𝐿(𝑣, 𝑖) is the 𝑖-th neighbor of 𝑣 in 𝐺 with respect to 𝐿. We denote
by (𝐺) the set of all labels of 𝐺.

Let 𝐺 be a graph with vertex set [𝑛]. For each 𝑣 ∈ [𝑛] and 𝑖 ∈ [𝑑𝐺(𝑣)], we denote by
𝐺(𝑣, 𝑖) the 𝑖-th smallest (using the usual < relation for ℕ) neighbor of 𝑣. We also define
𝐺(𝑣, 𝑑𝐺(𝑣) + 1) ∶= 𝑣. ■
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1.4 The undirected 𝑠𝑡-connectivity problem and
universal traversal sequences

Let us now define the two main objects of study of this work: the undirected 𝑠𝑡-
connectivity problem and universal traversal sequences.

Definition 1.13. We define the undirected 𝑠𝑡-connectivity problem (USTCON) as the
following language:

USTCON ∶= { ⟨𝐺, 𝑠, 𝑡⟩|𝐺 is a graph and 𝑠, 𝑡 ∈ 𝑉 (𝐺) such that 𝑠 ≠ 𝑡 and there is an 𝑠𝑡-walk on 𝐺},

where ⟨𝑥⟩ denotes the computational representation of 𝑥 . We will computationally repre-
sent a graph 𝐺 using its adjacency matrix, and vertices of 𝐺 using a sequence of ⌈lg 𝑣(𝐺)⌉
bits. ■

Definition 1.14. Let 𝑙, 𝑛, 𝑑 ∈ ℕ. Let 𝐺 be an (𝑛, 𝑑)-graph, and 𝐿 be a label of 𝐺. Let
𝑠 ∈ [𝑑 + 1]𝑙 be a sequence of length 𝑙, and 𝑣 ∈ [𝑛] be a vertex of 𝐺. We denote by
𝑤𝐺,𝐿(𝑠, 𝑣) ∶= (𝑤0, … , 𝑤𝑙) the walk on 𝐺 with 𝑤0 ∶= 𝑣 and, for each 𝑖 ∈ [𝑙],

𝑤𝑖 ∶=

{
the 𝑠𝑖-th neighbor of 𝑤𝑖−1 in 𝐺 with respect to 𝐿 if 𝑠𝑖 ∈ [𝑑],
𝑤𝑖−1 if 𝑖 = 𝑑 + 1.

We say that a sequence 𝑠 ∈ [𝑑]𝑙 is an (𝑛, 𝑑)-universal traversal sequence if, for every
𝐺 ∈ (𝑛, 𝑑), every 𝐿 ∈ (𝐺), and every 𝑣 ∈ [𝑛], we have 𝑉 (𝑤𝐺,𝐿(𝑠, 𝑣)) = 𝑉 (𝐺). We say that
𝑙 is the length of the universal traversal sequence 𝑠. ■
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Chapter 2

Randomized logspace
algorithms

This chapter presents two randomized logspace algorithms proposed by Aleliunas, Karp,
Lipton, Lovász, and Rackoff [Ale+79]. One of them (Algorithm 2.1) solves the undirected
𝑠𝑡-connectivity problem, while the other (Algorithm 2.2) receives two natural numbers 𝑛
and 𝑑 as input and constructs an (𝑛, 𝑑)-universal traversal sequence of length polynomial
in 𝑛 and 𝑑 . Our presentation differs from that of Aleliunas, Karp, Lipton, Lovász, and
Rackoff [Ale+79] in the sense that we analyse their algorithms without assuming that the
input graph is bipartite. This requires more technical arguments, but they closely follow
the basic ideas in [Ale+79].

2.1 Markov chains preliminaries

The goals of this section are to define the basic notation used in this chapter and to
state some results on probability theory that are relevant to the following sections. We
used the book Mitzenmacher and Upfal [MU17] as our basic reference for definitions and
standard results on probability theory.

Let us first define finite Markov chains and introduce some notation that we will use
throughout this chapter.

Definition 2.1. Let 𝑈 be a finite set. Let 𝑋 ∶= (𝑋0, 𝑋1, … ) be a sequence of random
variables defined over a probabilistic space (Ω, , Pr). The sequence 𝑋 is a Markov chain
on the set 𝑈 if the following properties hold:

• for all 𝜔 ∈ Ω and for all 𝑡 ∈ ℕ, we have 𝑋𝑡(𝜔) ∈ 𝑈 ;

• (Memoryless property) for all 𝑡 ∈ ℕ and for all 𝑥0, … , 𝑥𝑡 ∈ 𝑈 ,

Pr[𝑋𝑡 = 𝑥𝑡 |𝑋𝑡−1 = 𝑥𝑡−1, … , 𝑋0 = 𝑥0] = Pr[𝑋𝑡 = 𝑥𝑡 |𝑋𝑡−1 = 𝑥𝑡−1];



12

2 | RANDOMIZED LOGSPACE ALGORITHMS

• (Time independent property) for all 𝑡 ∈ ℕ and for all 𝑥𝑡 , 𝑥𝑡−1 ∈ 𝑈 ,

Pr[𝑋𝑡 = 𝑥𝑡 |𝑋𝑡−1 = 𝑥𝑡−1] = Pr[𝑋1 = 𝑥𝑡 |𝑋0 = 𝑥𝑡−1].

Throughout this chapter, we usually assume that the probabilistic space (Ω, , Pr) is implicit
and 𝜔 is always an element of Ω. We denote by (𝑋 ) the set 𝑈 of states of 𝑋 . For 𝑢, 𝑣 ∈ 𝑈 ,
we define 𝑝𝑢,𝑣 ∶= Pr[𝑋1 = 𝑣|𝑋0 = 𝑢] and 𝑝𝑡𝑢,𝑣 ∶= Pr[𝑋𝑡 = 𝑣|𝑋0 = 𝑢] for all 𝑡 ∈ ℕ. We say
that a vector 𝜋 ∈ [0, 1]𝑈 is a stationary distribution for 𝑋 if ∑𝑢∈𝑈 𝜋(𝑢) = 1 and, for each
𝑢 ∈ 𝑈 ,

𝜋(𝑢) = ∑
𝑣∈𝑈

𝜋(𝑣)𝑝𝑣,𝑢.

We define the digraph representation (𝑋 ) ∶= (𝑉 , 𝐴) of 𝑋 as follows: 𝑉 ∶= (𝑋 ) and

𝐴 ∶= { (𝑢, 𝑣) ∈ (𝑋 ) × (𝑋 ) | 𝑝𝑢,𝑣 > 0}.

■

Let us now define the hitting time and commute time for state of Markov chains, which
are quantities that will play an important role in our analysis.

Definition 2.2. Let 𝑋 ∶= (𝑋0, 𝑋1, … ) be a Markov chain. Let 𝑢 and 𝑣 be two states of 𝑋 .
We define the random variable 𝐻𝑢,𝑣 as follows:

𝐻𝑢,𝑣(𝜔) ∶= inf{ 𝑡 ∈ ℕ | 𝑋0(𝜔) = 𝑢, 𝑋𝑡(𝜔) = 𝑣}.

Let ℎ𝑢,𝑣 ∶= E [𝐻𝑢,𝑣 |𝑋0 = 𝑢]. We call the number ℎ𝑢,𝑣 the hitting time from 𝑢 to 𝑣 and the
number ℎ𝑢,𝑣 + ℎ𝑣,𝑢 the commute time between 𝑢 and 𝑣. ■

The following three theorems provide us sufficient conditions to the existence and
uniqueness of a stationary distribution for a Markov chain. We will not give a definition
for irreducible or ergodic Markov chain as they are not relevant for our analysis. However,
we need to use Theorem 2.5 in Section 2.2. Thus, we give combinatorial conditions for
irreducibility (Theorem 2.3) and ergodicity (Theorem 2.4).

Theorem 2.3 (Lemma 7.4 from Mitzenmacher and Upfal [MU17]). Let 𝑋 ∶= (𝑋0, 𝑋1, … )
be a finite Markov chain. Then, 𝑋 is irreducible if and only if (𝑋 ) is a strongly connected
digraph.

Theorem 2.4 (Corollary 7.6 from Mitzenmacher and Upfal [MU17]). Let 𝑋 ∶= (𝑋0, 𝑋1, … )
be a finite Markov chain. If (𝑋 ) is a strongly connected digraph and has a loop, then 𝑋 is
an ergodic Markov chain.

Theorem 2.5 (Theorem 7.7 from Mitzenmacher and Upfal [MU17]). Any finite, irreducible,
and ergodic Markov chain𝑋 ∶= (𝑋0, 𝑋1, … ) has a unique stationary distribution 𝜋 ∈ [0, 1](𝑋 ),
and 𝜋 satisfies

𝜋(𝑢) = lim
𝑡→∞

𝑝𝑡𝑣,𝑢 =
1
ℎ𝑢,𝑢

for each 𝑢, 𝑣 ∈ (𝑋 ).
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Let us now define random walks on graphs.

Definition 2.6. Let 𝐺 be a graph. The (lazy) random walk on 𝐺 is the Markov chain 𝑋
with the following transition probabilities: for each 𝑢, 𝑣 ∈ 𝑉 (𝐺),

𝑝𝑢,𝑣 ∶= [𝑣 ∈ 𝑁𝐺(𝑢) ∪ {𝑢}]
1

|𝑁𝐺(𝑢) ∪ {𝑢}|
.

■

2.2 Random walks on graphs and their cover time
The goals of this section are to prove Theorem 2.11 and some lemmas used in its proof.

Let us start by obtaining an upper bound for the commute time of adjacent vertices of a
connected graph.

Lemma 2.7. Let 𝐺 be a connected graph and let 𝑋 ∶= (𝑋0, 𝑋1, … ) be a random walk on 𝐺.
For each 𝑢𝑣 ∈ 𝐸(𝐺), we have that ℎ𝑢,𝑣 + ℎ𝑣,𝑢 ≤ 8𝑣(𝐺)𝑒(𝐺).

Proof. For every 𝑖 ∈ {0, 1, 2, … }, let 𝑌𝑖 be a random vector defined as follows:

𝑌𝑖 ∶= (𝑋𝑖 , 𝑋𝑖+1).

Note that, for all 𝑤1𝑧1, 𝑤0𝑧0 ∈ 𝑉 (𝐺) × 𝑉 (𝐺), we have

𝑝𝑤0𝑧0,𝑤1𝑧1 ∶= Pr[𝑌1 = 𝑤1𝑧1|𝑌0 = 𝑤0𝑧0] = Pr[𝑋2 = 𝑧1, 𝑋1 = 𝑤1|𝑋1 = 𝑧0, 𝑋0 = 𝑤0]
= [𝑤1 = 𝑧0] Pr[𝑋2 = 𝑧1|𝑋1 = 𝑤1, 𝑋0 = 𝑤0]
= [𝑤1 = 𝑧0] Pr[𝑋2 = 𝑧1|𝑋1 = 𝑤1]
= [𝑤1 = 𝑧0]𝑝𝑤1,𝑧1 .

Hence, 𝑌 ∶= (𝑌0, 𝑌1, 𝑌2, … ) is a Markov chain on the set

{ (𝑤, 𝑧) ∈ 𝑉 (𝐺) × 𝑉 (𝐺) | 𝑤𝑧 ∈ 𝐸(𝐺)} ∪ { (𝑤, 𝑤) | 𝑤 ∈ 𝑉 (𝐺)} =∶ 𝑈 ,

since it satisfies all properties stated in Definition 2.1:

• Memoryless property: for all 𝑡 ∈ ℕ and for all 𝑦0, … , 𝑦𝑡 ∈ 𝑈 such that (𝑤0, 𝑧0) ∶= 𝑦0,
(𝑤𝑖 , 𝑧𝑖) ∶= 𝑦𝑖 and 𝑧𝑖−1 = 𝑤𝑖 for each 𝑖 ∈ [𝑡] (so the event {𝑌𝑡−1 = 𝑦𝑡−1, … , 𝑌0 = 𝑦0} is
not empty),

Pr[𝑌𝑡 = 𝑦𝑡 |𝑌𝑡−1 = 𝑦𝑡−1, … , 𝑌0 = 𝑦0]
= Pr[𝑋𝑡+1 = 𝑧𝑡 , 𝑋𝑡 = 𝑤𝑡 |𝑋𝑡 = 𝑧𝑡−1, 𝑋𝑡−1 = 𝑤𝑡−1, (𝑋𝑖+1, 𝑋𝑖) = (𝑧𝑖 , 𝑤𝑖) ∀𝑖 ∈ {0, … , 𝑡 − 2}]

=
Pr[𝑋𝑡+1 = 𝑧𝑡 , 𝑋𝑡 = 𝑤𝑡 |𝑋𝑡−1 = 𝑤𝑡−1]

Pr[𝑋𝑡 = 𝑧𝑡−1|𝑋𝑡−1 = 𝑤𝑡−1]
= Pr[𝑋𝑡+1 = 𝑧𝑡 , 𝑋𝑡 = 𝑤𝑡 |𝑋𝑡 = 𝑧𝑡−1, 𝑋𝑖−1 = 𝑤𝑡−1]

= Pr[𝑌𝑡 = 𝑦𝑡 |𝑌𝑡−1 = 𝑦𝑡−1].

• Time independent property: for all 𝑡 ∈ ℕ and for all (𝑤𝑡 , 𝑧𝑡) ∶= 𝑦𝑡 ∈ 𝑈 and
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(𝑤𝑡−1, 𝑧𝑡−1) ∶= 𝑦𝑡−1 ∈ 𝑈 ,

Pr[𝑌𝑡 = 𝑦𝑡 |𝑌𝑡−1 = 𝑦𝑡−1] = Pr[𝑋𝑡+1 = 𝑧𝑡 , 𝑋𝑡 = 𝑤𝑡 |𝑋𝑡 = 𝑧𝑡−1, 𝑋𝑡−1 = 𝑤𝑡−1]

= [𝑤𝑡 = 𝑧𝑡−1]
Pr[𝑋𝑡+1 = 𝑧𝑡 , 𝑋𝑡 = 𝑤𝑡 |𝑋𝑡−1 = 𝑤𝑡−1]

Pr[𝑋𝑡 = 𝑧𝑡−1|𝑋𝑡−1 = 𝑤𝑡−1]

= [𝑤𝑡 = 𝑧𝑡−1]
Pr[𝑋2 = 𝑧𝑡 , 𝑋1 = 𝑤𝑡 |𝑋0 = 𝑤𝑡−1]

Pr[𝑋1 = 𝑧𝑡−1|𝑋0 = 𝑤𝑡−1]
= Pr[𝑋2 = 𝑧𝑡 , 𝑋1 = 𝑤𝑡 |𝑋1 = 𝑧𝑡−1, 𝑋0 = 𝑤𝑡−1]
= Pr[𝑌1 = 𝑦𝑡 |𝑌0 = 𝑦𝑡−1].

Furthermore, the Markov chain 𝑌 is irreducible and ergodic. The first fact follows from
Theorem 2.3, since 𝐺 is connected and 𝑋 is a random walk on 𝐺 (note that, for every
(𝑤0, 𝑧0) ∶= 𝑦0, (𝑤1, 𝑧1) ∶= 𝑦1 ∈ (𝑌 ), there is a walk on 𝐺 between 𝑧0 and 𝑤1, so (𝑌 ) is
strongly connected). While the second follows from Theorem 2.4, since (𝑌 ) is a strongly
connected digraph with loops (as 𝑋 is a lazy random walk on 𝐺).

By Theorem 2.5, we obtain that 𝑌 has a unique stationary distribution 𝜋 and it satisfies
𝜋(𝑤𝑧) = 1/ℎ𝑤𝑧,𝑤𝑧 for each 𝑤𝑧 ∈ 𝑈 . Let us prove that the distribution 𝜋𝑈 defined as follows
is a stationary distribution of 𝑌 :

𝜋𝑈 (𝑤𝑧) =
1
|𝑈 |

for each 𝑤𝑧 ∈ 𝑈 .

It follows from the following calculations: for each 𝑤𝑧 ∈ 𝑈 ,

∑
𝑎𝑏∈𝑈

𝜋𝑈 (𝑎𝑏)𝑝𝑎𝑏,𝑤𝑧 =
1
|𝑈 |

∑
𝑎𝑏∈𝑈

[𝑤 = 𝑏]𝑝𝑤,𝑧 =
1
|𝑈 |

𝑝𝑤,𝑧 ∑
𝑎∈𝑁𝐺 (𝑤)∪{𝑤}

1

=
1
|𝑈 |

𝑝𝑤,𝑧 |𝑁𝐺(𝑤) ∪ {𝑤}| =
1
|𝑈 |

|𝑁𝐺(𝑤) ∪ {𝑤}|
|𝑁𝐺(𝑤) ∪ {𝑤}|

=
1
|𝑈 |

= 𝜋𝑈 (𝑤𝑧).

Hence, 𝜋 = 𝜋𝑈 and
ℎ𝑤𝑧,𝑤𝑧 = 1/𝜋(𝑤𝑧) = |𝑈 | = 2𝑒(𝐺) + 𝑣(𝐺).

For each 𝑢𝑣 ∈ 𝐸(𝐺), let us now find a lower bound for the value of ℎ𝑢𝑣,𝑢𝑣 . By the
definition of 𝐻𝑢𝑣,𝑢𝑣 , we get that, for each 𝑡 ∈ ℕ with 𝑡 > 1,

Pr[𝐻𝑢𝑣,𝑢𝑣 = 𝑡|𝑌0 = 𝑢𝑣] = Pr[𝑌𝑡 = 𝑢𝑣, 𝑌𝑗 ≠ 𝑢𝑣 ∀𝑗 ∈ [𝑡 − 1]|𝑌0 = 𝑢𝑣]
= Pr[𝑋𝑡+1 = 𝑣, 𝑋𝑡 = 𝑢, ({𝑋𝑗+1 ≠ 𝑣} ∪ {𝑋𝑗 ≠ 𝑢}) ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑢, 𝑋1 = 𝑣]
≥ Pr[𝑋𝑡+1 = 𝑣, 𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑢, 𝑋1 = 𝑣]
= 𝑝𝑢,𝑣 Pr[𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑢, 𝑋1 = 𝑣].
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By the memoryless and time independent properties of 𝑋 ,

Pr[𝐻𝑢𝑣,𝑢𝑣 = 𝑡|𝑌0 = 𝑢𝑣] ≥ 𝑝𝑢,𝑣 Pr[𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑢, 𝑋1 = 𝑣]
= 𝑝𝑢,𝑣 Pr[𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋1 = 𝑣]
= 𝑝𝑢,𝑣 Pr[𝑋𝑡−1 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ {0, … , 𝑡 − 2}|𝑋0 = 𝑣].

As 𝑢𝑣 ∈ 𝐸(𝐺), we get that 𝑢 ≠ 𝑣 and then

Pr[𝐻𝑢𝑣,𝑢𝑣 = 𝑡|𝑌0 = 𝑢𝑣] ≥ 𝑝𝑢,𝑣 Pr[𝑋𝑡−1 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 2]|𝑋0 = 𝑣].

Note that 𝐻𝑢𝑣,𝑢𝑣(𝜔) ≥ 2 for all 𝜔 ∈ Ω, since if 𝑌0 = 𝑢𝑣 and 𝑢 ≠ 𝑣, it is needed at least one
step to reach 𝑢 and then at least one more step to reach 𝑣 from 𝑢. Thus,

ℎ𝑢𝑣,𝑢𝑣 = E [𝐻𝑢𝑣,𝑢𝑣 |𝑌0 = 𝑢𝑣]

= ∑
𝑡≥2

𝑡 Pr[𝐻𝑢𝑣,𝑢𝑣 = 𝑡|𝑌0 = 𝑢𝑣]

≥ 𝑝𝑢,𝑣 ∑
𝑡≥2

𝑡 Pr[𝑋𝑡−1 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 2]|𝑋0 = 𝑣]

= 𝑝𝑢,𝑣 ∑
𝑡≥1

(𝑡 + 1) Pr[𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑣]

≥ 𝑝𝑢,𝑣 ∑
𝑡≥1

𝑡 Pr[𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑣].

As {𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑣} = {𝐻𝑣,𝑢 = 𝑡|𝑋0 = 𝑣}, we get that

∑
𝑡≥1

𝑡 Pr[𝑋𝑡 = 𝑢, 𝑋𝑗 ≠ 𝑢 ∀𝑗 ∈ [𝑡 − 1]|𝑋0 = 𝑣] = ℎ𝑣,𝑢.

Hence, ℎ𝑢𝑣,𝑢𝑣 ≥ 𝑝𝑢,𝑣ℎ𝑣,𝑢 and

ℎ𝑣,𝑢 ≤ ℎ𝑢𝑣,𝑢𝑣/𝑝𝑢,𝑣 = (𝑑𝐺(𝑢) + 1)/𝜋(𝑢𝑣) = |𝑈 |(𝑑𝐺(𝑢) + 1) ≤ (𝑣(𝐺) + 2𝑒(𝐺))𝑣(𝐺).

As 𝐺 is connected, we have 𝑣(𝐺) ≤ 𝑒(𝐺) + 1, so ℎ𝑣,𝑢 ≤ 4𝑒(𝐺)𝑣(𝐺). Using an analogous
argument, we get that ℎ𝑢,𝑣 ≤ ℎ𝑣𝑢,𝑣𝑢/𝑝𝑣,𝑢 ≤ 4𝑒(𝐺)𝑣(𝐺), and, consequently,

ℎ𝑢,𝑣 + ℎ𝑣,𝑢 ≤ 8𝑒(𝐺)𝑣(𝐺).

■

Let us now define a generalization of the hitting time of pair of vertices for walks.

Definition 2.8. Let 𝐺 be a graph and let 𝑋 ∶= (𝑋0, 𝑋1, … ) be a random walk on 𝐺. For
every 𝜏 ∈ ℕ and every 𝑢, 𝑣 ∈ 𝑉 (𝐺), define the random variable 𝐻 𝜏

𝑢,𝑣 as follows:

𝐻 𝜏
𝑢,𝑣(𝜔) ∶= inf{ 𝑡 ∈ ℕ | 𝑡 > 𝜏 , 𝑋𝑡(𝜔) = 𝑣, 𝑋𝜏 (𝜔) = 𝑢}.

Note that 𝐻 0
𝑢,𝑣 = 𝐻𝑢,𝑣 .

Let 𝑙 ∈ ℕ, and let 𝑠 ∶= (𝑠0, … , 𝑠𝑙) be a walk of length 𝑙 on 𝐺. We define the random
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variable 𝐻𝑠 as follows:
𝐻𝑠(𝜔) ∶= 𝐻 𝑡

𝑠𝑙−1,𝑠𝑙 (𝜔),

where we use 𝑡 ∶= 0 if 𝑙 = 1, and 𝑡 ∶= 𝐻(𝑠0,…,𝑠𝑙−1)(𝜔) if 𝑙 > 1. Let ℎ𝑠 ∶= E [𝐻𝑠 |𝑋0 = 𝑠0]. ■

The next lemma states a relationship between the hitting time of walks and of edges. In
fact, the inequality could be replaced by an equality if we use a more technical proof.

Lemma 2.9. Let 𝐺 be a connected graph and let 𝑋 ∶= (𝑋0, 𝑋1, … ) be a random walk on 𝐺.
Let 𝑙 ∈ ℕ, and let 𝑠 ∶= (𝑠0, … , 𝑠𝑙) be a walk of length 𝑙 on 𝐺. Then ℎ𝑠 ≤ ∑𝑖∈[𝑙] ℎ𝑠𝑖−1,𝑠𝑖 .

Proof. We will prove this lemma by induction on 𝑙 ∈ ℕ.

If 𝑙 = 1, then, by Definition 2.8,

ℎ𝑠 = E [𝐻(𝑠0,𝑠1)|𝑋0 = 𝑠0] = E [𝐻 0
(𝑠0,𝑠1)|𝑋0 = 𝑠0] = E [𝐻𝑠0,𝑠1 |𝑋0 = 𝑠0] = ℎ𝑠0,𝑠1 .

Now suppose that 𝑙 > 1. Let 𝑡 ∈ ℕ and let 𝑟 ∶= (𝑠0, … , 𝑠𝑙−1). By the definition of 𝐻𝑠 , we
have

Pr[𝐻𝑠 = 𝑡|𝑋0 = 𝑠0] = Pr[∃𝑡1 s.t. 𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡, 𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0].

By the disjointness of the events {𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡, 𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0} for distinct values of 𝑡1, we

get

Pr[∃𝑡1 s.t. 𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡, 𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0] = ∑

𝑡1∈ℕ,𝑡1<𝑡
Pr[𝐻 𝑡1

𝑠𝑙−1,𝑠𝑙 = 𝑡, 𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0].

Note that

Pr[𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡, 𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0] = Pr[𝐻 𝑡1

𝑠𝑙−1,𝑠𝑙 = 𝑡|𝑋𝑡1 = 𝑠𝑙−1, 𝐻𝑟 = 𝑡1, 𝑋0 = 𝑠0]
⋅ Pr[𝑋𝑡1 = 𝑠𝑙−1, 𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0]

= Pr[𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡|𝑋𝑡1 = 𝑠𝑙−1] Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0],

where the first equality follows from {𝑋𝑡1 = 𝑠𝑙−1} ⊇ {𝐻𝑟 = 𝑡1}, and the second follows from
Pr[𝐻 𝑡1

𝑠𝑙−1,𝑠𝑙 = 𝑡|𝑋𝑡1 = 𝑠𝑙−1, 𝐻𝑟 = 𝑡1, 𝑋0 = 𝑠0] = Pr[𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡|𝑋𝑡1 = 𝑠𝑙−1], since 𝑋 is memoryless

and the event {𝐻𝑟 = 𝑡1, 𝑋0 = 𝑠0} does not depend any 𝑋𝜏 with 𝜏 > 𝑡1. By Definition 2.8, we
get

Pr[𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡|𝑋𝑡1 = 𝑠𝑙−1] = Pr[inf{ 𝑞 ∈ ℕ | 𝑞 > 𝑡1, 𝑋𝑡1 = 𝑠𝑙−1, 𝑋𝑞 = 𝑠𝑙} = 𝑡|𝑋𝑡1 = 𝑠𝑙−1]

= Pr[𝑋𝑡1 = 𝑠𝑙−1, 𝑋𝑡 = 𝑠𝑙 , 𝑋𝑞 ≠ 𝑠𝑙 ∀𝑞 ∈ ℕ, 𝑡1 < 𝑞 < 𝑡|𝑋𝑡1 = 𝑠𝑙−1],

and, using that 𝑋 is time independent,

Pr[𝐻 𝑡1
𝑠𝑙−1,𝑠𝑙 = 𝑡|𝑋𝑡1 = 𝑠𝑙−1] = Pr[𝑋𝑡1 = 𝑠𝑙−1, 𝑋𝑡 = 𝑠𝑙 , 𝑋𝑞 ≠ 𝑠𝑙 ∀𝑞 ∈ ℕ, 𝑡1 < 𝑞 < 𝑡|𝑋𝑡1 = 𝑠𝑙−1]

= Pr[𝑋0 = 𝑠𝑙−1, 𝑋𝑡−𝑡1 = 𝑠𝑙 , 𝑋𝑞 ≠ 𝑠𝑙 ∀𝑞 ∈ ℕ, 0 < 𝑞 < 𝑡 − 𝑡1|𝑋0 = 𝑠𝑙−1]
= Pr[inf{ 𝑞 ∈ ℕ | 𝑞 > 0, 𝑋0 = 𝑠𝑙−1, 𝑋𝑞 = 𝑠𝑙} = 𝑡 − 𝑡1|𝑋0 = 𝑠𝑙−1]
= Pr[𝐻 0

𝑠𝑙−1,𝑠𝑙 = 𝑡 − 𝑡1|𝑋0 = 𝑠𝑙−1].
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Hence,

Pr[𝐻𝑠 = 𝑡|𝑋0 = 𝑠0] = ∑
𝑡1∈ℕ,𝑡1<𝑡

Pr[𝐻 0
𝑠𝑙−1,𝑠𝑙 = 𝑡 − 𝑡1|𝑋0 = 𝑠𝑙−1] Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0].

As a consequence, we obtain that

E [𝐻𝑠 |𝑋0 = 𝑠0] = ∑
𝑡∈ℕ

𝑡 Pr[𝐻𝑠 = 𝑡|𝑋0 = 𝑠0]

= ∑
𝑡∈ℕ

∑
𝑡1∈ℕ,𝑡1<𝑡

𝑡 Pr[𝐻 0
𝑠𝑙−1,𝑠𝑙 = 𝑡 − 𝑡1|𝑋0 = 𝑠𝑙−1] Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0]

= ∑
𝑡1∈ℕ

∑
𝑡∈ℕ,𝑡>𝑡1

(𝑡1 + (𝑡 − 𝑡1)) Pr[𝐻 0
𝑠𝑙−1,𝑠𝑙 = 𝑡 − 𝑡1|𝑋0 = 𝑠𝑙−1] Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0]

= ∑
𝑡1∈ℕ

∑
𝑡2∈ℕ

(𝑡1 + 𝑡2) Pr[𝐻 0
𝑠𝑙−1,𝑠𝑙 = 𝑡2|𝑋0 = 𝑠𝑙−1] Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0]

= ∑
𝑡1∈ℕ

𝑡1 Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0] ∑
𝑡2∈ℕ

Pr[𝐻 0
𝑠𝑙−1,𝑠𝑙 = 𝑡2|𝑋0 = 𝑠𝑙−1]

+ ∑
𝑡2∈ℕ

𝑡2 Pr[𝐻 0
𝑠𝑙−1,𝑠𝑙 = 𝑡2|𝑋0 = 𝑠𝑙−1] ∑

𝑡1∈ℕ
Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0]

≤ ∑
𝑡1∈ℕ

𝑡1 Pr[𝐻𝑟 = 𝑡1|𝑋0 = 𝑠0] ⋅ 1 + ∑
𝑡2∈ℕ

𝑡2 Pr[𝐻 0
𝑠𝑙−1,𝑠𝑙 = 𝑡2|𝑋0 = 𝑠𝑙−1] ⋅ 1

= ℎ𝑟 + ℎ𝑠𝑙−1,𝑠𝑙 .

Therefore, by applying induction on 𝑟 , we obtain that

ℎ𝑠 = E [𝐻𝑠 |𝑋0 = 𝑠0] ≤ (

𝑙−1

∑
𝑖=1

ℎ𝑠𝑖−1,𝑠𝑖)
+ ℎ𝑠𝑙−1,𝑠𝑙 =

𝑙

∑
𝑖=1

ℎ𝑠𝑖−1,𝑠𝑖 .

■

Before proving the main theorem of this section, we need to define some notations
and concepts.

Definition 2.10. Let 𝐺 be a graph and let 𝑋 ∶= (𝑋0, 𝑋1, … ) be a random walk on 𝐺. For
every 𝜏 ∈ ℕ, let 𝑉𝜏 (𝜔) ∶= {𝑋𝑡(𝜔) | 𝑡 ∈ {0, … , 𝜏}}. Define the random variable 𝐶𝐺 as
follows:

𝐶𝐺(𝜔) ∶= inf{ 𝑡 ∈ ℕ | 𝑉𝑡(𝜔) = 𝑉 (𝐺)}.

For every 𝑢 ∈ 𝑉 (𝐺), let 𝑐𝐺,𝑢 ∶= E [𝐶𝐺 |𝑋0 = 𝑢]. Let 𝑐𝐺 ∶= max𝑢∈𝑉 (𝐺) 𝐶𝐺,𝑢 . We call the number
𝑐𝐺 the cover time of 𝐺. ■

The next theorem gives us an upper bound for the cover time for any connected
graph.

Theorem 2.11. Let 𝐺 be a connected graph and let 𝑋 ∶= (𝑋0, 𝑋1, … ) be a random walk on
𝐺. Then 𝑐𝐺 ≤ 8𝑣(𝐺)2𝑒(𝐺).

Proof. Let 𝑛 ∶= 𝑣(𝐺) and 𝑚 ∶= 𝑒(𝐺). Let 𝑢 ∈ 𝑉 (𝐺) and let 𝑇 be a spanning tree of 𝐺
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rooted at 𝑢. Let 𝑠 ∶= (𝑠0, 𝑠1, … , 𝑠2𝑛−2) be a walk on 𝑇 with the following properties:

(1) 𝑠0 = 𝑢 and, ∀𝑣 ∈ 𝑉 (𝐺), ∃𝑖 ∈ [2𝑛 − 2] such that 𝑠𝑖 = 𝑣; and
(2) ∀𝑣𝑤 ∈ 𝐸(𝑇 ), there are exactly two indices 𝑖, 𝑗 ∈ [2𝑛 − 2] such that

(𝑠𝑖−1, 𝑠𝑖) = (𝑣, 𝑤) and (𝑠𝑗−1, 𝑠𝑗) = (𝑤, 𝑣).

Such a walk can be found using the sequence of vertices visited by the depth first search
algorithm applied to the spanning tree 𝑇 and starting at the vertex 𝑢; Alternatively, one
can use an Eulerian trail on the symmetric digraph corresponding to 𝑇 .

Let 𝐻𝑠 be the random variable defined in Definition 2.8. Note that, whenever 𝐻𝑠(𝜔) < ∞,
we have 𝐶𝐺(𝜔) ≤ 𝐻𝑠(𝜔), since, by Property (1), every vertex of 𝑉 (𝐺) appears in 𝑠, so
𝑉𝐻𝑠 (𝜔)(𝜔) = 𝑉 (𝐺). Thus, we obtain that

𝑐𝐺,𝑢 = E [𝐶𝐺 |𝑋0 = 𝑢] ≤ E [𝐻𝑠 |𝑋0 = 𝑢] = E [𝐻𝑠 |𝑋0 = 𝑠0] .

By Lemma 2.9, we obtain that

E [𝐻𝑠 |𝑋0 = 𝑠0] ≤ ∑
𝑖∈[2𝑛−1]

ℎ𝑠𝑖−1,𝑠𝑖 ,

and, by Property (2) and using that 𝑠 is a walk on 𝑇 , we obtain that

∑
𝑖∈[2𝑛−1]

ℎ𝑠𝑖−1,𝑠𝑖 = ∑
𝑢𝑣∈𝐸(𝑇 )

(ℎ𝑢,𝑣 + ℎ𝑣,𝑢).

By Lemma 2.7, we get that

∑
𝑢𝑣∈𝐸(𝑇 )

(ℎ𝑢,𝑣 + ℎ𝑣,𝑢) ≤ ∑
𝑢𝑣∈𝐸(𝑇 )

8𝑣(𝐺)𝑒(𝐺) = (𝑣(𝐺) − 1)8𝑣(𝐺)𝑒(𝐺) ≤ 8𝑣(𝐺)2𝑒(𝐺).

■

2.3 An algorithm for the undirected st-connectivity
problem

Algorithm 2.1 is a slight modification of the algorithm analysed in [Ale+79]. Note that
it is a logspace algorithm, since it only uses variables 𝑛 and 𝑚 to store respectively 𝑣(𝐺)
and 𝑒(𝐺), a variable 𝑖 to count from 0 to 3 ⋅ 8𝑛2𝑚, which requires at most lg(24𝑛2𝑚) ≤
lg(24) + lg(𝑛4) = lg(24) + 4 lg(𝑛) bits, a variable 𝑗 to store at most lg(𝑛) random bits, and a
variable 𝑣 to store an index for a vertex of 𝐺, which requires lg(𝑛) bits.

Let us now prove that it is a valid randomized logspace algorithm, according to Defini-
tion 1.7 in Chapter 1.

Theorem 2.12. Algorithm 2.1 is a randomized logspace algorithm for solving the undirected
𝑠𝑡-connectivity problem.

Proof. Let 𝐺 be an input graph. Let 𝑛 ∶= 𝑣(𝐺) and 𝑚 ∶= 𝑒(𝐺). Let 𝑠 and 𝑡 be two distinct
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Algorithm 2.1 Logspace randomized algorithm for undirected st-connectivity
Input: a graph 𝐺 and two distinct vertices 𝑠 and 𝑡 .
Output: True if there is an 𝑠𝑡-walk on 𝐺, and False otherwise.

1: 𝑖 ← 1, 𝑣 ← 𝑠, 𝑛 ← 𝑣(𝐺), 𝑚 ← 𝑒(𝐺)
2: while 𝑖 ≤ 3 ⋅ 8𝑛2𝑚 do
3: 𝑗 ← Uniform(|𝑁 (𝑣)| + 1)
4: 𝑣 ← 𝐺(𝑣, 𝑗)
5: if 𝑣 = 𝑡 then
6: return True
7: 𝑖 ← 𝑖 + 1
8: return False

vertices of 𝐺. Let 𝑋 ∶= (𝑋0, 𝑋1, 𝑋2, … ) be a random walk on 𝐺 as in Definition 2.6. Consider
that Algorithm 2.1 receives 𝐺, 𝑠 and 𝑡 as input, and uses the same source of randomness
of 𝑋 . Hence, conditioned on the event {𝑋0 = 𝑠}, we get that 𝑋𝑖 corresponds to the value
of the variable 𝑣 at the end of the 𝑖-th iteration of the while loop in the algorithm. Let
𝐴 be the random variable corresponding to the output of the algorithm, and let 𝑇 be the
random variable corresponding to the value of the variable 𝑖 in the end of the execution of
the algorithm. Hence, for any 𝑗 ∈ ℕ and conditioned on {𝑋0 = 𝑠}, it holds that if 𝑇 (𝜔) > 𝑗,
then 𝐶𝐻 (𝜔) > 𝑗 where 𝐻 is the connected component of 𝑠 in 𝐺.

Suppose that there is no walk on 𝐺 between the vertices 𝑠 and 𝑡 , so the correct output
for the algorithm is False. In this case, 𝐴 will never be equal to True, since the variable 𝑣
will never be equal to 𝑡 . As a consequence, we get that Pr[𝐴 = False] = 1 ≥ 2/3.

Now suppose that there is a walk on 𝐺 between 𝑠 and 𝑡 . Hence, the correct output
for the algorithm is True and 𝑠 and 𝑡 are in the same connected component 𝐻 of 𝐺. By
Theorem 2.11, we get that a random walk on𝐻 take on average at most 8𝑣(𝐻)2𝑒(𝐻 ) ≤ 8𝑛2𝑚
steps to visit all vertices of 𝐻 starting from an arbitrary vertex of 𝐻 . Hence,

Pr[𝐴 = False] = Pr[𝑇 > 3 ⋅ 8𝑛2𝑚] ≤ Pr[𝐶𝐻 > 3 ⋅ 8𝑛2𝑚|𝑋0 = 𝑠]
≤ Pr[𝐶𝐻 > 3𝑐𝐻 |𝑋0 = 𝑠] ≤ Pr[𝐶𝐻 > 3𝑐𝐻,𝑠 |𝑋0 = 𝑠],

where 𝐶𝐻 , 𝑐𝐻 , and 𝑐𝐻,𝑠 are defined in Definition 2.10. By Markov’s inequality, we obtain
that

Pr[𝐴 = False] ≤ Pr[𝐶𝐻 > 3𝑐𝐻,𝑠 |𝑋0 = 𝑠] <
1
3
.

Thus, Pr[𝐴 = True] ≥ 2
3 .

Therefore, Algorithm 2.1 is a valid randomized logspace algorithm for solving the
undirected 𝑠𝑡-connectivity problem. ■
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2.4 An algorithm to construct universal traversal
sequences

As defined in Chapter 1, a graph 𝐺 is an (𝑛, 𝑑)-graph if it has vertex set [𝑛] and is
𝑑-regular. We denote by (𝑛, 𝑑) the set of all connected (𝑛, 𝑑)-graphs and by (𝐺) the set
of all labels of a given (𝑛, 𝑑)-graph 𝐺. Consider the following theorem.

Theorem 2.13. Let 𝑛, 𝑑 ∈ ℕ with 𝑑 < 𝑛. Let 𝜎 ∶= (𝜎1, 𝜎2, … ) be a sequence of independent
random variables such that, for each 𝑖 ∈ ℕ, 𝜎𝑖 is a uniformly chosen element of the set [𝑑 + 1].
For each 𝑙 ∈ ℕ, let 𝜎 𝑙 ∶= (𝜎1, … , 𝜎𝑙). Let 𝑓 (𝑛, 𝑑) ∶= 4𝑛3𝑑 ⋅2 and 𝑔(𝑛, 𝑑) ∶= (𝑛𝑑 +𝑑 +1) lg 𝑛+2.
Let 𝑙 ∶= 𝑓 (𝑛, 𝑑)𝑔(𝑛, 𝑑). Then

Pr[∀𝐺 ∈ (𝑛, 𝑑), ∀𝐿 ∈ (𝐺), ∀𝑣 ∈ [𝑛], 𝑉 (𝑤𝐺,𝐿(𝜎 𝑙 , 𝑣)) = [𝑛]] ≥ 2/3,

where 𝑤𝐺,𝐿 is the walk defined in Definition 1.14.

Proof. Consider the following lemma.

Lemma 2.14. Consider the context of Theorem 2.13. Let 𝐺 ∈ (𝑛, 𝑑) be an (𝑛, 𝑑)-graph,
𝐿 ∈ (𝐺) be a label of 𝐺 and 𝑣 ∈ [𝑛]. For each 𝑗 ∈ [𝑔(𝑛, 𝑑)] and for 𝑘 ∶= 𝑓 (𝑛, 𝑑) ⋅ 𝑗, we have

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑘 , 𝑣)) ≠ [𝑛]] < 2−𝑗 .

Let us first use Lemma 2.14 to prove Theorem 2.13. By Lemma 2.14, we know that, for
each graph 𝐺 ∈ (𝑛, 𝑑), for each 𝐿 ∈ (𝐺), and for each 𝑣 ∈ [𝑛],

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑙 , 𝑣)) ≠ [𝑛]] < 2−𝑔(𝑛,𝑑).

As every (𝑛, 𝑑)-regular graph is a graph with exactly 𝑑𝑛/2 edges, we obtain that

|(𝑛, 𝑑)| ≤ (
(𝑛2)
𝑛𝑑/2)

≤ (𝑛2)𝑛𝑑/2 = 𝑛𝑛𝑑 .

By the definition of label of 𝐺, we get that

|(𝐺)| = 𝑛𝑑! ≤ 𝑛1+𝑑 .
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Thus, by the union bound,

Pr[∃𝐺 ∈ (𝑛, 𝑑), ∃𝐿 ∈ (𝐺), ∃𝑣 ∈ [𝑛] s.t. 𝑉 (𝑤𝐺,𝐿(𝜎 𝑙 , 𝑣)) ≠ [𝑛]]

≤ ∑
𝐺∈(𝑛,𝑑)

∑
𝐿∈(𝐺)

∑
𝑣∈[𝑛]

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑙 , 𝑣)) ≠ [𝑛]]

≤ ∑
𝐺∈(𝑛,𝑑)

∑
𝐿∈(𝐺)

∑
𝑣∈[𝑛]

2−𝑔(𝑛,𝑑)

≤ 𝑛𝑛𝑑𝑛𝑑+1𝑛2−𝑔(𝑛,𝑑)

= 2(𝑛𝑑+𝑑+2) lg 𝑛−𝑔(𝑛,𝑑)

= 2−2 < 1/3,

and Pr[∀𝐺 ∈ (𝑛, 𝑑), ∀𝐿 ∈ (𝐺), ∀𝑣 ∈ [𝑛], 𝑉 (𝑤𝐺,𝐿(𝜎 𝑙 , 𝑣)) = [𝑛]] ≥ 2/3. ■

Let us now prove Lemma 2.14.

Proof of Lemma 2.14. By Theorem 2.11, we have that 2𝑐𝐺 ≤ 2 ⋅ 8𝑣(𝐺)2𝑒(𝐺) = 2 ⋅ 8𝑛2𝑑𝑛/2 =
8𝑛3𝑑 = 𝑓 (𝑛, 𝑑).

Let 𝑊 ∶= (𝑊0,𝑊1, … ) be a sequence of random variables over the probability space of
𝜎 such that 𝑊0(𝜎) = 𝑣 and, for each 𝑖 ∈ ℕ, we have

𝑊𝑖(𝜎) =

{
the 𝜎𝑖-th neighbour of 𝑊𝑖−1(𝜎) in 𝐺 with respect to 𝐿 if 𝜎𝑖 ∈ [𝑑],
𝑊𝑖−1(𝜎) if 𝑖 = 𝑑 + 1.

Note that the 𝑤𝐺,𝐿(𝜎 𝑖 , 𝑣) = (𝑊0,𝑊1, … ,𝑊𝑖) for each 𝑖 ∈ ℕ. It is a technical argument to
prove that, for each 𝑡 ∈ {0, 1, 2, … } and for each 𝑢 ∈ [𝑛], the sequence (𝑊𝑡 ,𝑊𝑡+1,𝑊𝑡+2, … )
conditioned on the event {𝑊𝑡 = 𝑢} is equivalent (in some formal sense) to the lazy random
walk (𝑋0, 𝑋1, … ) on 𝐺 (defined with respect to 𝜔) conditioned on the event {𝑋0 = 𝑢}. This
fact will play an important role in the proof of this lemma.

We will now prove this lemma by induction on 𝑗. Suppose 𝑗 = 1. Using that (𝑊0,𝑊1, … )
conditioned on {𝑊0 = 𝑣} is equivalent to a random walk 𝑋 on 𝐺 conditioned on {𝑋0 = 𝑣}
(third equality of the following equation), we get that

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑘 , 𝑣)) ≠ [𝑛]] = Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑘 , 𝑣)) ≠ [𝑛]|𝑊0 = 𝑣]
= Pr[{𝑊𝑖 | 𝑖 ∈ {0, … , 𝑘}} ≠ [𝑛]|𝑊0 = 𝑣]
= Pr[{ 𝑋𝑖 | 𝑖 ∈ {0, … , 𝑘}} ≠ [𝑛]|𝑋0 = 𝑣]
= Pr[𝑉𝑘(𝜔) ≠ [𝑛]|𝑋0 = 𝑣]
= Pr[𝐶𝐺(𝜔) > 𝑘|𝑋0 = 𝑣]
≤ Pr[𝐶𝐺(𝜔) > 2𝑐𝐺 |𝑋0 = 𝑣]
≤ Pr[𝐶𝐺(𝜔) > 2𝑐𝐺,𝑣 |𝑋0 = 𝑣],

where 𝑉𝑘 , 𝐶𝐺 , 𝑐𝐺 , and 𝑐𝐺,𝑢 are defined in Definition 2.10. By Markov’s inequality, we obtain
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that

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑘 , 𝑣)) ≠ [𝑛]] ≤ Pr[𝐶𝐺(𝜔) > 2𝑐𝐺,𝑣 |𝑋0 = 𝑣] < 1/2.

Now suppose that 𝑗 > 1. Let ℎ ∶= (𝑗 − 1)𝑓 (𝑛, 𝑑) (so 𝑘 = ℎ + 𝑓 (𝑛, 𝑑)) and let 𝜎 ∗ ∶=
(𝜎ℎ+1, 𝜎ℎ+2, … , 𝜎𝑘). Then

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑘 , 𝑣)) ≠ [𝑛]] ≤ Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛], 𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛]|𝑊0 = 𝑣].

For each 𝑢 ∈ 𝑉 (𝐺), we know that

Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛], 𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛],𝑊ℎ = 𝑢|𝑊0 = 𝑣]
= Pr[𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛]|𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛],𝑊ℎ = 𝑢,𝑊0 = 𝑣]
⋅ Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛],𝑊ℎ = 𝑢|𝑊0 = 𝑣]

= Pr[𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛]|𝑊ℎ = 𝑢]
⋅ Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛],𝑊ℎ = 𝑢|𝑊0 = 𝑣],

where the last equality follows from the fact that the event {𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛]} only
depends on the value of 𝑊ℎ and the event {𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛],𝑊0 = 𝑣} does not depend
on any variable 𝑊𝑖 for 𝑖 > ℎ. Hence,

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑘 , 𝑣)) ≠ [𝑛]]
≤ Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛], 𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛]|𝑊0 = 𝑣]

= ∑
𝑢∈[𝑛]

Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛], 𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛],𝑊ℎ = 𝑢|𝑊0 = 𝑣]

= ∑
𝑢∈[𝑛]

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 ∗,𝑊ℎ)) ≠ [𝑛]|𝑊ℎ = 𝑢] ⋅ Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛],𝑊ℎ = 𝑢|𝑊0 = 𝑣].

Using that, for each 𝑢 ∈ [𝑛], the sequence (𝑊ℎ,𝑊ℎ+1, … ) conditioned on {𝑊ℎ = 𝑢} is
equivalent to a random walk 𝑋 on 𝐺 conditioned on {𝑋0 = 𝑢} (third equality of the
following equation), we get that

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 ∗, 𝑢)) ≠ [𝑛]|𝑊ℎ = 𝑢] = Pr[𝑉 (𝑤𝐺,𝐿(𝜎 ∗, 𝑢)) ≠ [𝑛]|𝑊ℎ = 𝑢]
= Pr[{𝑊𝑖 | 𝑖 ∈ {ℎ, … , 𝑘}} ≠ [𝑛]|𝑊ℎ = 𝑢]
= Pr[{ 𝑋𝑖 | 𝑖 ∈ {0, … , 𝑘 − ℎ}} ≠ [𝑛]|𝑋0 = 𝑢]
= Pr[𝑉𝑘−ℎ(𝜔) ≠ [𝑛]|𝑋0 = 𝑢]
= Pr[𝐶𝐺(𝜔) > 𝑘 − ℎ|𝑋0 = 𝑢]
= Pr[𝐶𝐺(𝜔) > 𝑓 (𝑛, 𝑑)|𝑋0 = 𝑢]
≤ Pr[𝐶𝐺(𝜔) > 2𝑐𝐺 |𝑋0 = 𝑢]
≤ Pr[𝐶𝐺(𝜔) > 2𝑐𝐺,𝑢 |𝑋0 = 𝑢],
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and, by Markov’s inequality, we obtain that

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 ∗, 𝑢)) ≠ [𝑛]] ≤ Pr[𝐶𝐺(𝜔) > 2𝑐𝐺,𝑢 |𝑋0 = 𝑢] < 1/2.

Therefore,

Pr[𝑉 (𝑤𝐺,𝐿(𝜎 𝑘 , 𝑣)) ≠ [𝑛]] < ∑
𝑢∈[𝑛]

(1/2) Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛],𝑊ℎ = 𝑢|𝑊0 = 𝑣]

≤ (1/2) ⋅ ∑
𝑢∈[𝑛]

Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛],𝑊ℎ = 𝑢|𝑊0 = 𝑣]

≤ (1/2) ⋅ Pr[𝑉 (𝑤𝐺,𝐿(𝜎ℎ, 𝑣)) ≠ [𝑛]|𝑊0 = 𝑣] ≤ 2−1−(𝑗−1) = 2−𝑗 ,

where the last inequality follows by induction on 𝑗 − 1. ■

Note that, if we change the function 𝑔(𝑛, 𝑑) appropriately, we can obtain that, with
high probability, a random sequence satisfies the property stated in the conclusion of
Theorem 2.13.

Using Theorem 2.13, it is straightforward to prove that Algorithm 2.2 is a valid logspace
randomized algorithm that constructs (𝑛, 𝑑)-universal traversal sequences, because this
algorithm is essentially a generator of a random sequence 𝑠 ∈ [𝑑 + 1]𝑙 of size 𝑙 ∶=
𝑓 (𝑛, 𝑑)𝑔(𝑛, 𝑑), and ignore elements of 𝑠 that are equal to 𝑑 + 1, which does not change the
property of Theorem 2.13 since those edges with label 𝑑 + 1 correspond to artificial loops
on the graph, required for our lazy random walk analysis.

Algorithm 2.2 Logspace randomized algorithm to construct universal traversal sequences
Input: two strings 1𝑛 and 1𝑑 , where 𝑛, 𝑑 ∈ ℕ and 𝑑 < 𝑛.
Output: An (𝑛, 𝑑)-universal traversal sequence.

1: 𝑖 ← 1, 𝑙 ← 8𝑛3𝑑((𝑛𝑑 + 𝑑 + 1) lg 𝑛 + 2)
2: while 𝑖 ≤ 𝑙 do
3: 𝑗 ← Uniform(𝑑 + 1)
4: if 𝑗 ≤ 𝑑 then
5: output 𝑗
6: 𝑖 ← 𝑖 + 1
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Chapter 3

A deterministic logspace
algorithm

This chapter presents the deterministic logspace algorithm for the undirected 𝑠𝑡-
connectivity problem proposed by Reingold [Rei08]. This algorithm utilizes the zig-zag
product, introduced by Reingold, Vadhan, and Wigderson [RVW02], to transform the
input graph into an expander multigraph that, in some sense, preserves the connected
components of the input graph, and then solves the undirected 𝑠𝑡-connectivity problem
on this expander. Our presentation is based on the results in Reingold [Rei08], but it differs
in that we provide complete proofs for some basic results from spectral graph theory
and expand on certain arguments of the main transformation (Section 3.3). In particular,
we present self-contained proofs for both the Expander Mixing Lemma for multigraphs
and how to use it to establish that expanders have logarithmic diameter. These proof are
inspired by proofs presented in Hoory, Linial, and Wigderson [HLW06] in the case of
graphs.

3.1 Spectral graph theory preliminaries
The goals of this section are to define the basic notation used in this chapter and to

prove some results on spectral graph theory that are relevant to the following sections.
Let us start by defining some notation.

Definition 3.1. Let 𝑛, 𝑑 ∈ ℕ. Let 𝐺 be an (𝑛, 𝑑)-multigraph and let 𝐿 be a label of 𝐺. We
define the rotational map Rot𝐺,𝐿 of 𝐺 with respect to 𝐿 as the function Rot𝐺,𝐿∶ [𝑛] × [𝑑] →
[𝑛] × [𝑑] such that, for each 𝑢 ∈ [𝑛] and 𝑖 ∈ [𝑑], Rot𝐺,𝐿(𝑢, 𝑖) ∶= (𝑣, 𝑗), where 𝑣 is the
𝑖-neighbour of 𝑢 and 𝑢 is the 𝑗-neighbour of 𝑣, both with respect to 𝐿. Thus, we have that,
for each 𝑢 ∈ [𝑛] and 𝑖 ∈ [𝑑], if Rot𝐺,𝐿(𝑢, 𝑖) = (𝑣, 𝑗), then Rot𝐺,𝐿(𝑣, 𝑗) = (𝑢, 𝑖). We say that a
function Rot is a rotational map of 𝐺 if there is a label 𝐿 of 𝐺 such that Rot = Rot𝐺,𝐿. By
Definition 1.12, we can conclude that this label 𝐿 is unique if it exists for a given function
Rot.

Let Rot be a rotational map of 𝐺, and let 𝑠 ∈ [𝑑]𝑙 be a sequence of length 𝑙 ∈ ℕ and
𝑣 ∈ [𝑛] be a vertex of 𝐺. We denote by 𝑤𝐺,Rot(𝑠, 𝑣) the walk (𝑤0, … , 𝑤𝑙) with 𝑤0 ∶= 𝑣 and,
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for each 𝑖 ∈ [𝑙],

𝑤𝑖 ∶= 𝑧, where (𝑧, 𝑗) = Rot(𝑤𝑖−1, 𝑠𝑖) for some 𝑗 ∈ [𝑑].

We sometimes call 𝑤𝐺,Rot(𝑠, 𝑣) the walk determined by 𝑠 and 𝑣 with respect to 𝐺 and
Rot. ■

Recall that all algorithms receive the adjacency matrix of the input graph 𝐺 as repre-
sentation of 𝐺. Hence, the following fact will be important for Algorithm 3.4.

Fact 3.2. Let 𝐺 be an (𝑛, 𝑑)-graph. Let 𝐿∶ [𝑛] × [𝑑] → 𝐸(𝐺) be a function defined as
follows: for each 𝑢 ∈ [𝑛] and 𝑖 ∈ [𝑑],

𝐿(𝑢, 𝑖) ∶= 𝑢𝑣,

where 𝑣 is the 𝑖-th smallest (using the usual < relation for ℕ) neighbor of 𝑢; the vertex 𝑣
is well defined because 𝐺 has no loops or multiple edges. Thus, the function 𝐿 is a label of
𝐺, since the map 𝐿𝑢 ∶ [𝑑] → 𝐸(𝐺, 𝑢) with 𝐿𝑢(𝑖) ∶= 𝐿(𝑢, 𝑖) is bijective for every 𝑢 ∈ [𝑛].

Note that, for each 𝑢 ∈ [𝑛] and 𝑖 ∈ [𝑑], one can compute Rot𝐺,𝐿(𝑢, 𝑖) =∶ (𝑣, 𝑗) in the
following way: first compute the index 𝑣 of 𝑖-th smallest nonzero element of the 𝑢-th row
𝑟 of 𝐴𝐺 ; then compute the number 𝑗 of nonzero elements of the 𝑣-th column 𝑐 with index
smaller than or equal to 𝑢. This computation of Rot𝐺,𝐿(𝑢, 𝑖) from the adjacency matrix
of 𝐺 only requires 𝑂(log 𝑛) memory slots, since we only need to count the number of
nonzero elements in 𝑟 and 𝑐 (each has exactly 𝑑 elements) and store the bits of the entry
corresponding entries of 𝑟 and 𝑐 (each has exactly 𝑛 entries). ■

Another important aspect of rotational maps is that they can be used to define regular
multigraphs.

Definition 3.3. Let 𝑛, 𝑑 ∈ ℕ. Let Rot∶ [𝑛] × [𝑑] → [𝑛] × [𝑑] be a bijective function such
that, for each 𝑢 ∈ [𝑛] and 𝑖 ∈ [𝑑], if Rot(𝑢, 𝑖) = (𝑣, 𝑗), then Rot(𝑣, 𝑗) = (𝑢, 𝑖). We denote by
(Rot) the multigraph 𝐺 ∶= (𝑉 , 𝐸, 𝜑) with 𝑉 ∶= [𝑛],

𝐸 ∶= { ({𝑢, 𝑣}, {𝑖, 𝑗}) | 𝑢, 𝑣 ∈ [𝑛], 𝑖, 𝑗 ∈ [𝑑] s.t. Rot(𝑢, 𝑖) = (𝑣, 𝑗)},

and 𝜑(𝑒) ∶= 𝑤 for each (𝑤, 𝑘) ∶= 𝑒 ∈ 𝐸. Hence, 𝐺 is an (𝑛, 𝑑)-multigraph. ■

We will now define the adjacency matrix of multigraphs.

Definition 3.4. Let 𝑛, 𝑑 ∈ ℕ and let 𝐺 be an (𝑛, 𝑑)-multigraph. Let 𝐿 be a label of 𝐺 and
Rot𝐺,𝐿 be its corresponding rotational map. The (normalized) adjacency matrix of 𝐺 is the
matrix 𝐴𝐺 ∈ ℝ𝑛×𝑛 defined as follows: for each 𝑢, 𝑣 ∈ [𝑛],

𝐴𝐺(𝑢, 𝑣) ∶=
1
𝑑
|{ (𝑖, 𝑗) ∈ [𝑑] × [𝑑] ∶ Rot𝐺,𝐿(𝑢, 𝑖) = (𝑣, 𝑗)}|.

Note that 𝐴𝐺 is independent of the choice of 𝐿, since, for each label 𝐿 of 𝐺 and 𝑢, 𝑣 ∈ [𝑛],
the number |{ (𝑖, 𝑗) ∈ [𝑑] × [𝑑] ∶ Rot𝐺,𝐿(𝑢, 𝑖) = (𝑣, 𝑗)}| is equal to the number of edges with
extremities equals {𝑢, 𝑣}, which only depends on the multigraph 𝐺 and its incidence
function.
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As 𝐴𝐺 is a symmetric matrix, we obtain, by Theorem 1.2, that all its eigenvalues
𝜆1(𝐴𝐺), … , 𝜆𝑛(𝐴𝐺) are real numbers. Recall that 𝜆1(𝐴𝐺) ≥ … ≥ 𝜆𝑛(𝐴𝐺). We define

𝜆𝑖(𝐺) ∶= 𝜆𝑖(𝐴𝐺)

for each 𝑖 ∈ [𝑛], and we denote by 𝜆(𝐺) the second largest eigenvalue of 𝐴𝐺 in absolute
value, that is,

𝜆(𝐺) ∶= max{|𝜆2(𝐺)|, |𝜆𝑛(𝐺)|}.

The number 1 − 𝜆(𝐺) is usually called the spectral gap of 𝐺.

For sets 𝑆, 𝑇 ⊆ 𝑉 (𝐺), we denote by 𝑒(𝑆, 𝑇 ) ∶= 𝑒𝐺(𝑆, 𝑇 ) the number of edges of 𝐺 with
one extremity in 𝑆 and the other in 𝑇 , that is,

𝑒(𝑆, 𝑇 ) ∶= |{ (𝑢, 𝑣, 𝑖, 𝑗) ∈ 𝑆 × 𝑇 × [𝑑] × [𝑑] ∶ Rot𝐺,𝐿(𝑢, 𝑖) = (𝑣, 𝑗)}|

= ∑
𝑢∈𝑆

∑
𝑣∈𝑇

|{ (𝑖, 𝑗) ∈ [𝑑] × [𝑑] ∶ Rot𝐺,𝐿(𝑢, 𝑖) = (𝑣, 𝑗)}|

= 𝑑∑
𝑢∈𝑆

∑
𝑣∈𝑇

(𝐴𝐺)𝑢,𝑣 .

As 𝐴𝐺 is independent of 𝐿, the value of 𝑒(𝑆, 𝑇 ) is also independent of the choice of 𝐿.

Furthermore, we have, for each 𝑢 ∈ [𝑛],

(𝐴𝐺1𝑇 )𝑢 = ∑
𝑣∈[𝑛]

(𝐴𝐺)𝑢,𝑣(1𝑇 )𝑣 = ∑
𝑣∈𝑇

(𝐴𝐺)𝑢,𝑣 ,

which is the number of edges between the vertex 𝑢 and the set 𝑇 (counting loops if 𝑢 ∈ 𝑇 ),
and

𝑑 (1⊤𝑆𝐴𝐺1𝑇) = 𝑑 ∑
𝑢∈[𝑛]

(1𝑆)𝑢(𝐴𝐺1𝑇 )𝑢

= 𝑑∑
𝑢∈𝑆

(𝐴𝐺1𝑇 )𝑢

= 𝑑∑
𝑢∈𝑆

∑
𝑣∈𝑇

(𝐴𝐺)𝑢,𝑣

= 𝑒(𝑆, 𝑇 ).

■

The following theorem collects some properties of the adjacency matrix of multigraphs
that will be used in this chapter.

Theorem 3.5. Let 𝑛, 𝑑 ∈ ℕ. Let 𝐺 be an (𝑛, 𝑑)-multigraph. Then the following properties
hold:

1. the vector 𝑢𝑛 ∶= 1𝑉 (𝐺)/
√
𝑛 is a normal 1-eigenvector of 𝐴𝐺 ;

2. there is an orthonormal basis 𝐵 ∶= {𝑏1, … , 𝑏𝑛} of ℝ𝑛 such that 𝑏1 = 𝑢𝑛 and, for each
𝑖 ∈ [𝑛], 𝑏𝑖 is a 𝜆𝑖(𝐴𝐺)-eigenvector of 𝐴𝐺 (it is a consequence of Theorem 1.3).

3. for each 𝑖 ∈ [𝑛], we have that |𝜆𝑖(𝐺)| ≤ 1;
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4. if 𝐺 is a bipartite graph, then 𝜆𝑛(𝐺) = −1;

5. the multigraph 𝐺 is a connected, nonbipartite graph if and only if 𝜆(𝐺) < 1;

We will now define some classes of multigraphs that will be the main objects of this
chapter.

Definition 3.6. Let 𝑛, 𝑑 ∈ ℕ and 𝜆 ∈ [0, 1]. We say that an (𝑛, 𝑑)-multigraph 𝐺 is an
(𝑛, 𝑑, 𝜆)-multigraph if 𝜆(𝐺) ≤ 𝜆. We say that an (𝑛, 𝑑)-multigraph 𝐺 is an (𝑛, 𝑑)-expander
if 𝜆(𝐺) ≤ 0.45. ■

The following theorem gives us an approximation (and an upper bound for its error) for
the number of edges between two sets of vertices of 𝐺 when 𝐺 is an (𝑛, 𝑑, 𝜆)-graph.

Lemma 3.7 (Expander Mixing Lemma). Let 𝑛, 𝑑 ∈ ℕ and 𝜆 ∈ [0, 1]. Let 𝐺 be an (𝑛, 𝑑, 𝜆)-
multigraph. Then, for every 𝑆, 𝑇 ⊆ 𝑉 (𝐺), we have

||||
𝑒(𝑆, 𝑇 ) −

𝑑
𝑛
|𝑆||𝑇 |

||||
≤ 𝑑𝜆

√
|𝑆||𝑇 |.

Proof. For each 𝑖 ∈ [𝑛], let 𝜆𝑖 ∶= 𝜆𝑖(𝐴𝐺). By Theorem 3.5, we obtain an orthonormal basis
𝐵 ∶= {𝑏1, … , 𝑏𝑛} of ℝ𝑛 such that 𝑏1 = 𝑢𝑛 and, for each 𝑖 ∈ [𝑛], 𝑏𝑖 is a 𝜆𝑖-eigenvector of 𝐴𝐺 .
Let 𝑠, 𝑡 ∈ ℝ𝑛 be vector of coefficients such that

1𝑆 = ∑
𝑖∈[𝑛]

𝑠𝑖𝑏𝑖 and 1𝑇 = ∑
𝑖∈[𝑛]

𝑡𝑖𝑏𝑖 .

Note that

𝑠1 = ⟨𝑏1, 1𝑆⟩ =
1
√
𝑛
⟨1𝑉 , 1𝑆⟩ =

1
√
𝑛
∑
𝑖∈[𝑛]

(1𝑆)𝑖 =
1
√
𝑛
∑
𝑖∈[𝑛]

[𝑖 ∈ 𝑆] =
|𝑆|
√
𝑛
,

and ⟨1𝑆 , 1𝑆⟩ = ∑𝑖∈𝑆 1 = |𝑆|. Similarly, we have 𝑡1 = |𝑇 |√
𝑛 and ⟨1𝑇 , 1𝑇⟩ = ∑𝑖∈𝑇 1 = |𝑇 |. Using

that 𝐵 is a set of eigenvectors, we get

1⊤𝑆𝐴𝐺1𝑇 =
(
∑
𝑖∈[𝑛]

𝑠𝑖𝑏𝑖)

⊤

(
∑
𝑗∈[𝑛]

𝑡𝑗𝐴𝐺𝑏𝑗)

=
(
∑
𝑖∈[𝑛]

𝑠𝑖𝑏⊤𝑖 )(
∑
𝑗∈[𝑛]

𝑡𝑗𝜆𝑗𝑏𝑗)

= ∑
𝑖∈[𝑛]

∑
𝑗∈[𝑛]

𝑠𝑖𝑡𝑗𝜆𝑗𝑏⊤𝑖 𝑏𝑗

= ∑
𝑖∈[𝑛]

𝑠𝑖𝑡𝑖𝜆𝑖 ,

where the last equality follows from the fact that 𝐵 is an orthonormal set. Hence,

𝑒(𝑆, 𝑇 ) −
𝑑
𝑛
|𝑆||𝑇 | = 𝑑1⊤𝑆𝐴𝐺1𝑇 − 𝑑𝑠1𝑡1𝜆1 = 𝑑 ∑

𝑖∈{2,…,𝑛}
𝑠𝑖𝑡𝑖𝜆𝑖 .
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By applying Theorem 1.1 (Cauchy-Schwarz inequality) to (∑𝑖∈{2,…,𝑛} 𝑠𝑖𝑡𝑖𝜆𝑖)
2, we get that

(
∑

𝑖∈{2,…,𝑛}
𝑠𝑖𝑡𝑖𝜆𝑖)

2

≤
(

∑
𝑖∈{2,…,𝑛}

𝑠2𝑖)(
∑

𝑖∈{2,…,𝑛}
(𝑡𝑖𝜆𝑖)2)

≤ 𝜆(𝐺)2
(

∑
𝑖∈{2,…,𝑛}

𝑠2𝑖)(
∑

𝑖∈{2,…,𝑛}
𝑡2𝑖 )

≤ 𝜆(𝐺)2
(
∑
𝑖∈[𝑛]

𝑠2𝑖)(
∑
𝑖∈[𝑛]

𝑡2𝑖 )

= 𝜆(𝐺)2⟨1𝑆 , 1𝑆⟩⟨1𝑇 , 1𝑇⟩ = 𝜆(𝐺)2|𝑆||𝑇 |.

Therefore, we obtain

||||
𝑒(𝑆, 𝑇 ) −

𝑑
𝑛
|𝑆||𝑇 |

||||
=

√

(
𝑑 ∑
𝑖∈{2,…,𝑛}

𝑠𝑖𝑡𝑖𝜆𝑖)

2

≤ 𝑑𝜆(𝐺)
√
|𝑆||𝑇 | ≤ 𝑑𝜆

√
|𝑆||𝑇 |.

■

As an application of Expander Mixing Lemma, we will prove that all (𝑛, 𝑑)-expander
multigraphs have logarithmic diameter.

Theorem 3.8. Let 𝑛, 𝑑 ∈ ℕ, and let 𝐺 be an (𝑛, 𝑑)-expander. Then diam(𝐺) ≤ 𝑐 lg 𝑛 for
𝑐 ∶= 8/ lg 1.05.

Proof. For each 𝑢 ∈ [𝑛] and 𝑟 ∈ ℝ, let

𝐵𝐺(𝑢, 𝑟) ∶= { 𝑣 ∈ 𝑉 (𝐺) | 𝑑𝐺(𝑢, 𝑣) ≤ 𝑟}.

Consider the following lemma.

Lemma 3.9. Let 𝜆 ∶= 𝜆(𝐺) and 𝜖 ∶= 1/2 − 𝜆 ≥ 0.05. For each 𝑢 ∈ 𝑉 (𝐺) and 𝑟 ∈ [𝑛], if
|𝐵𝐺(𝑢, 𝑟)| ≤ 𝑛/2, then

|𝐵𝐺(𝑢, 𝑟)| ≥ (1 + 𝜖)|𝐵(𝑢, 𝑟 − 1)| ≥ (1 + 𝜖)𝑟 .

Let us first use Lemma 3.9 to prove Theorem 3.8. Let 𝑟 ∶= ⌈2 log1+𝜖(𝑛/2)⌉ and let
𝑢 ∈ 𝑉 (𝐺). If |𝐵𝐺(𝑢, 𝑟)| ≤ 𝑛/2, then, by Lemma 3.9, we get

|𝐵𝐺(𝑢, 𝑟)| ≥ (1 + 𝜖)𝑟 ≥ (1 + 𝜖)2 log1+𝜖 (𝑛/2) ≥ (𝑛/2)2 > 𝑛/2,

a contradiction. Hence, |𝐵𝐺(𝑢, 𝑟)| > 𝑛/2 for all 𝑢 ∈ [𝑛]. Therefore, for every 𝑢, 𝑣 ∈ 𝑉 (𝐺), we
have that 𝐵𝐺(𝑢, 𝑟) ∩ 𝐵𝐺(𝑣, 𝑟) ≠ ∅, and, consequently,

𝑑𝐺(𝑢, 𝑣) ≤ 2𝑟 ≤ 8 log1+𝜖 𝑛 ≤ 𝑐 lg 𝑛,

and diam(𝐺) ≤ 𝑐 lg 𝑛. ■
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We will now prove Lemma 3.9.

Proof of Lemma 3.9. First note that if 𝑆 ⊆ 𝑉 (𝐺) is a subset of 𝑉 (𝐺) with |𝑆| ≤ 𝑛/2, then, by
Theorem 3.7, we have 𝑒(𝑆, 𝑆) ≤ 𝑑|𝑆|2/𝑛 + 𝑑𝜆|𝑆| = 𝑑|𝑆|(|𝑆|/𝑛 + 𝜆) ≤ 𝑑|𝑆|(1/2 + 𝜆). Thus, for
𝑆 ∶= 𝑉 (𝐺) ⧵ 𝑆,

𝑒(𝑆, 𝑆) = 𝑑|𝑆| − 𝑒(𝑆, 𝑆) ≥ 𝑑|𝑆|(1/2 − 𝜆) = 𝑑|𝑆|𝜖.

As 𝑁(𝑆) ∶= { 𝑣 ∈ 𝑆 | 𝑁 (𝑣) ∩ 𝑆 ≠ ∅} has at least 𝑒(𝑆, 𝑆)/𝑑 ≥ |𝑆|𝜖 elements, we get that

|𝑆 ∪ 𝑁 (𝑆)| ≥ |𝑆|(1 + 𝜖).

Let us now prove the lemma by induction on 𝑟 . Let 𝑢 be an arbitrary element of [𝑛]. If
𝑟 = 1, then

|𝐵𝐺(𝑢, 𝑟)| = |𝐵𝐺(𝑢, 1)| = 1 + 𝑑 ≥ 1 + 𝜖 = (1 + 𝜖)|𝐵(𝑢, 0)|.

Now suppose that 𝑟 > 1 and assume that |𝐵𝐺(𝑢, 𝑟)| ≤ 𝑛/2. Let 𝐵𝑖 ∶= 𝐵𝐺(𝑢, 𝑖) for each 𝑖 ∈ [𝑟].
As |𝐵𝑟 | ≤ 𝑛/2 and 𝐵𝑟 ⊇ 𝐵𝑟−1 ∪ 𝑁 (𝐵𝑟−1), we get that |𝐵𝑟−1| ≤ 𝑛/2, then, by the discussion above
for 𝑆 ∶= 𝐵𝑟−1,

|𝐵𝑟 | ≥ |𝐵𝑟−1 ∪ 𝑁 (𝐵𝑟−1)| ≥ |𝐵𝑟−1|(1 + 𝜖).

By applying induction on 𝑟 − 1, we get

|𝐵𝑟 | ≥ (1 + 𝜖)𝑟−1(1 + 𝜖) = (1 + 𝜖)𝑟 .

■

Using Theorem 3.8, we will design a deterministic logspace algorithm that solves the
undirected 𝑠𝑡-connectivity problem when the input multigraph 𝐺 is 𝑑-regular and each
component 𝐶 of 𝐺 is a (𝑣(𝐶), 𝑑)-expander. The correctness of Algorithm 3.1 and its space
usage will be proved in Theorem 3.10.

Algorithm 3.1 Logspace deterministic algorithm for USTCON when the components of
the input multigraph are expanders
Input: two naturals 𝑛, 𝑑 , a logspace oracle Rot for a rotational map of a multigraph 𝐺

and two distinct vertices 𝑠 and 𝑡 of 𝐺. This algorithm assumes that the multigraph 𝐺
is an (𝑛, 𝑑)-multigraph and each component 𝐶 of 𝐺 is a (𝑣(𝐶), 𝑑)-expander.

Output: True if there is an 𝑠𝑡-walk in 𝐺, and False otherwise.
1: USTCONAlgorithmForExpanders(𝑛, 𝑑 , Rot, 𝑠, 𝑡):
2: 𝑟 ← ⌈𝑐 lg 𝑛⌉ (𝑐 is the constant that appears in Theorem 3.8)
3: for all 𝑒 ∈ [𝑑]𝑟 do
4: 𝑣 ← 𝑠, 𝑖 = 1
5: while 𝑖 ≤ 𝑟 do
6: (𝑣, 𝑗) ← Rot(𝑣, 𝑒𝑖)
7: if 𝑣 = 𝑡 then
8: return True
9: 𝑖 ← 𝑖 + 1

10: return False
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Theorem 3.10. Algorithm 3.1 is correct and uses at most 𝑂𝑑 (lg 𝑛) bits of memory.

Proof. Suppose that 𝑑 ∈ ℕ, a graph 𝐺 on 𝑛 vertices, and two distinct vertices 𝑠 and 𝑡 of
𝐺 are given as input for Algorithm 3.1. Let us first argue that the algorithm uses at most
𝑂𝑑 (lg 𝑛) bits of memory. The for loop requires 𝑂(𝑟 lg 𝑑) = 𝑂(lg 𝑑 lg 𝑛) bits to generate and
store each 𝑒 ∈ [𝑑]𝑟 , because 𝑂(𝑟 lg 𝑑) bits are used to store the current sequence, 𝑂(lg 𝑛)
bits are suffice to compute the next (with respect to the lexicographically order of [𝑑]𝑟 )
sequence, and no information used in the current for iteration will be used in the next
for iteration after you computer the next sequence (so the algorithm only remembers
the sequence of the next iteration). The while loop requires 𝑂(lg 𝑛) bits, because it only
remembers the index of the last visited vertex 𝑣, which requires 𝑂(lg 𝑛) bits, and the
counter 𝑖 ∈ [𝑟], which requires 𝑂(lg 𝑟) ≤ 𝑂(lg 𝑛) bits.

Let us now prove that the algorithm is correct. Note that the algorithm outputs True if
and only if there is a sequence 𝑒 ∈ [𝑑]𝑟 such that 𝑡 ∈ 𝑉 (𝑤𝐺,Rot(𝑠, 𝑒)), where 𝑤𝐺,Rot(𝑠, 𝑒) is the
walk determined by the vertex 𝑠 and sequence 𝑒 with respect to 𝐺 and Rot (Definition 3.1).

Suppose that 𝑠 and 𝑡 are not in the same component of 𝐺, so the correct output for the
algorithm is False. If the algorithm outputs True, then there is a sequence 𝑒 ∈ [𝑑]𝑟 such
that 𝑡 ∈ 𝑉 (𝑤𝐺,Rot(𝑠, 𝑒)), which implies that the walk 𝑤𝐺,Rot(𝑠, 𝑒) has a subwalk in 𝐺 from 𝑠
to 𝑡 . This conclusion is a contradiction, because 𝑠 and 𝑡 are not in the same component of
𝐺. Therefore, the algorithm outputs False.

Now suppose that 𝑠 and 𝑡 are in the same component 𝐶 of 𝐺. By the assumptions of
the algorithm, we know that 𝐺 is a 𝑑-regular multigraph such that each component of 𝐺
is an expander. By Theorem 3.8, we know that diam(𝐶) ≤ 𝑐 lg 𝑣(𝐶) ≤ 𝑐 lg 𝑛. Hence, there
is a sequence 𝑒 ∈ [𝑑]𝑟 such that 𝑡 ∈ 𝑉 (𝑤𝑅,Rot(𝑠, 𝑒)); consequently, the algorithm outputs
True. ■

3.2 The zig-zag product of multigraphs
The goals of this section are to define and analyse the spectral properties of the zig-zag

product. Let us start by defining the zig-zag product of multigraphs.

Definition 3.11. Let 𝐺 be an (𝑁 , 𝐷)-multigraph with rotational map Rot𝐺 and 𝐻 be a
(𝐷, 𝑑)-graph with rotational map Rot𝐻 . Let Rot𝐺 z⃝𝐻 ∶ ([𝑁 ] × [𝐷]) × ([𝑑] × [𝑑]) → ([𝑁 ] ×
[𝐷]) × ([𝑑] × [𝑑]) be the function defined as follows (see Figure 3.1 for an illustration): for
each (𝑣, 𝑎) ∈ [𝑁 ] × [𝐷] and for each (𝑖, 𝑗) ∈ [𝑑] × [𝑑],

Rot𝐺 z⃝𝐻 ((𝑣, 𝑎), (𝑖, 𝑗)) ∶= ((𝑤, 𝑏), (𝑗′, 𝑖′)),

where (𝑎′, 𝑖′) ∶= Rot𝐻 (𝑎, 𝑖); (𝑤, 𝑏′) ∶= Rot𝐺(𝑣, 𝑎′); and (𝑏, 𝑗′) ∶= Rot𝐻 (𝑏′, 𝑗). As Rot𝐺 and
Rot𝐻 are rotational maps, we get that

Rot𝐺 z⃝𝐻 ((𝑤, 𝑏), (𝑗′, 𝑖′)) = ((𝑣, 𝑎), (𝑖, 𝑗)).

The zig-zag product 𝐺 z⃝𝐻 of 𝐺 and 𝐻 is the (𝑁𝐷, 𝑑2)-multigraph (Rot𝐺 z⃝𝐻 ) defined
by the rotational map Rot𝐺 z⃝𝐻 (see Definition 3.3), where we implicitly use the bijective
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mapping (𝑥, 𝑦) ∈ [𝐴] × [𝐵] → (𝐵(𝑥 − 1) + 𝑦) ∈ [𝐴𝐵], for each 𝐴, 𝐵 ∈ ℕ, to map the set
[𝑁 ] × [𝐷] to [𝑁𝐷] and the set [𝑑] × [𝑑] to [𝑑2]. In the rest of this chapter, we will use
interchangeably this mapping. ■

Figure 3.1: We have the multigraph 𝐺 on the right and multigraph 𝐺 z⃝𝐻 on the left. We imagine
𝐺 z⃝𝐻 as the graph in which we transform each vertex 𝑣 of 𝐺 into a copy 𝐻𝑣 ∶= { (𝑣, 𝑎) | 𝑎 ∈ 𝑉 (𝐻)} of
the graph𝐻 and define exactly 𝑑2 edges to be incident to a given vertex of𝐻𝑣 . For each (𝑣, 𝑎) ∈ [𝑁 ]×[𝐷]
and 𝑖, 𝑗 ∈ [𝑑], we define the (𝑖, 𝑗)-th edge of a vertex (𝑣, 𝑎) in 𝐺 z⃝𝐻 as follows: start at (𝑣, 𝑎) inside
the cloud 𝐻𝑣 ; go to (𝑣, 𝑎′), where 𝑎′ is the 𝑖-th neighbor of 𝑎 in 𝐻 (this first transition inside 𝐻𝑣 is
sometimes called “zig step” or “small step”); go to (𝑤, 𝑏′), where 𝑤 is the 𝑎′-th neighbor of 𝑣 in 𝐺,
and 𝑣 is the 𝑏′-th neighbor of 𝑤 in 𝐺 (sometimes called “permutation step” or “big step”); go to (𝑤, 𝑏),
where 𝑏 is the 𝑗-th neighbor of 𝑏′ in 𝐻 (sometimes called “zag step” or “small step”); then add an edge
between (𝑣, 𝑎) and (𝑤, 𝑏). Source: Reingold [Rei08]

Note that the computation of any entry of Rot𝐺 z⃝𝐻 requires the value of two entries of
Rot𝐻 and one entry of Rot𝐺 . The fact that the zig-zag product is defined by the rotational
map Rot𝐺 z⃝𝐻 allows us to iterate over the neighborhood of a given vertex using a logspace
oracle for Rot𝐺 z⃝𝐻 , as it is required by Algorithm 3.1. The following theorem states an
upper bound for 𝜆(𝐺 z⃝𝐻) in function of 𝜆(𝐺) and 𝜆(𝐻).

Theorem 3.12 (Theorem 3.2 from Reingold, Vadhan, and Wigderson [RVW02]). Let
𝑁 , 𝐷, 𝑑 ∈ ℕ and 𝜆, 𝛼 ∈ [0, 1]. If 𝐺 is an (𝑁 , 𝐷, 𝜆)-multigraph and 𝐻 is a (𝐷, 𝑑, 𝛼)-multigraph,
then

𝜆(𝐺 z⃝𝐻) ≤ 𝜆 + 𝛼 + 𝛼2.

Furthermore, 𝜆(𝐺 z⃝𝐻) < 1 whenever 𝜆, 𝛼 < 1.

Corollary 3.13. Let 𝑁 , 𝐷, 𝑑 ∈ ℕ and 𝜆, 𝛼 ∈ [0, 1). If 𝐺 is an (𝑁 , 𝐷, 𝜆)-multigraph and 𝐻 is
a (𝐷, 𝑑, 𝛼)-multigraph, then the multigraph 𝐺 z⃝𝐻 is connected.

Proof. By Theorem 3.12, we get that

𝜆(𝐺 z⃝𝐻) < 1

if 𝜆, 𝛼 < 1. Hence, by Theorem 3.5, we obtain that 𝐺 z⃝𝐻 is connected. ■

The following theorem improves the upper bound given by Theorem 3.12.
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Theorem 3.14 (Theorem 4.3 from Reingold, Vadhan, and Wigderson [RVW02]). Let
𝑁 , 𝐷, 𝑑 ∈ ℕ and 𝜆, 𝛼 ∈ [0, 1]. If 𝐺 is an (𝑁 , 𝐷, 𝜆)-multigraph and 𝐻 is a (𝐷, 𝑑, 𝛼)-multigraph,
then

𝜆(𝐺 z⃝𝐻) ≤
1
2
(1 − 𝛼2)𝜆 +

1
2

√
(1 − 𝛼2)2𝜆2 + 4𝛼4.

The proofs of Theorem 3.12 and Theorem 3.14 presented in Reingold, Vadhan, and
Wigderson [RVW02] are based on the intuition of entropy waves on multigraphs and
how the zig-zag product transfers entropy from one cloud of vertices of 𝐻 to another
cloud in each step. They formalize this intuition using algebraic arguments to obtain an
upper bound for 𝜆(𝐺 z⃝𝐻). The papers by Reingold, Trevisan, and Vadhan [RTV06] and by
Rozenman and Vadhan [RV05] present simplified proofs for similar upper bounds.

In Section 3.3, we will use the following lower bound for the spectral gap of 𝐺 z⃝𝐻
rather than Theorem 3.14.

Corollary 3.15 (Theorem 2.9 from Reingold [Rei08]). Let 𝑁 , 𝐷, 𝑑 ∈ ℕ and 𝜆, 𝛼 ∈ [0, 1]. If
𝐺 is an (𝑁 , 𝐷, 𝜆)-multigraph and 𝐻 is a (𝐷, 𝑑, 𝛼)-multigraph, then

1 − 𝜆(𝐺 z⃝𝐻) ≥
1
2
(1 − 𝛼2)(1 − 𝜆).

Proof. As 𝜆, 𝛼 ≤ 1, we get that

1
2

√
(1 − 𝛼2)2𝜆2 + 4𝛼4 ≤

1
2

√
(1 − 𝛼2)2 + 4𝛼2

=
1
2
√
1 − 2𝛼2 + 𝛼4 + 4𝛼2 =

1
2

√
(1 + 𝛼2)2

=
1
2
(1 + 𝛼2) = 1 −

1
2
(1 − 𝛼2).

By Theorem 3.14, we obtain

𝜆(𝐺 z⃝𝐻) ≤
1
2
(1 − 𝛼2)𝜆 +

1
2

√
(1 − 𝛼2)2𝜆2 + 4𝛼4

≤
1
2
(1 − 𝛼2)𝜆 + 1 −

1
2
(1 − 𝛼2)

= 1 −
1
2
(1 − 𝛼2)(1 − 𝜆),

so 1 − 𝜆(𝐺 z⃝𝐻) ≥ 1
2 (1 − 𝛼

2)(1 − 𝜆). ■

3.3 Transforming graphs into expanders
The goals of this section are to state and prove the correctness of Reingold’s algorithm

for generating a multigraph 𝐺𝑒𝑥𝑝 , whose connected components are expander multigraphs,
from the input graph 𝐺. The basic idea of this algorithm (Definition 3.22 and Algorithm 3.3)
is to transform the input graph 𝐺 into a larger multigraph 𝐺𝑒𝑥𝑝 of constant degree via a
logarithmic number of applications of the zig-zag product and powering. This transforma-
tion also bijectively maps the connected components of 𝐺 into the connected components
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of 𝐺𝑒𝑥𝑝 (Lemma 3.23).

Let us start by defining the 𝑙-th power of a multigraph.

Definition 3.16. Let 𝑛, 𝑑, 𝑙 ∈ ℕ. Let 𝐺 be an (𝑛, 𝑑)-multigraph and Rot be a rotational
map of 𝐺. Let Rot𝐺 𝑙 ∶ [𝑛] × [𝑑]𝑙 → [𝑛] × [𝑑]𝑙 be the function defined as follows: for each
𝑢 ∈ [𝑛] and 𝑝 ∈ [𝑑]𝑙 ,

Rot𝐺 𝑙 (𝑢, 𝑝) ∶= (𝑤, 𝑞),

where 𝑤 ∶= 𝑎𝑙 and 𝑏 ∶= (𝑞𝑙 , 𝑞𝑙−1, … , 𝑞1) for 𝑎0 ∶= 𝑢 and (𝑎𝑖 , 𝑞𝑖) ∶= Rot(𝑎𝑖−1, 𝑝𝑖) for each
𝑖 ∈ [𝑙]. As Rot is a rotational map, we get that Rot𝑙(𝑣, 𝑏) = (𝑢, 𝑎).

The 𝑙-power𝐺 𝑙(Rot) of𝐺 with respect to the rotational mapRot is the (𝑛, 𝑑 𝑙)-multigraph
(Rot𝑙) defined by the rotational map Rot𝑙 . It is not hard to prove that the 𝑙-th power of 𝐺
with respect to a rotational map 𝑟1 is isomorphic to the 𝑙-th power of 𝐺 with respect to a
rotational map 𝑟2, but we will not use this fact. In our case, the rotational map Rot will be
fixed, so we will denote by 𝐺 𝑙 the graph 𝐺 𝑙(Rot). ■

The following theorem states the relationship between 𝜆(𝐺) and 𝜆(𝐺 𝑙).

Theorem 3.17. Let 𝑛, 𝑑, 𝑙 ∈ ℕ and 𝐺 be an (𝑛, 𝑑)-multigraph. Let Rot be a rotational map
of 𝐺. Let Rot𝑙 and 𝐺 𝑙 ∶= 𝐺 𝑙(Rot) as in Definition 3.16. Then, for every 𝑢, 𝑣 ∈ [𝑛],

(𝐴𝑙
𝐺)𝑢,𝑣 = (𝐴𝐺 𝑙 )𝑢,𝑣 ,

and 𝜆(𝐺 𝑙) = 𝜆(𝐺)𝑙 .

Proof. We will prove this theorem by induction on 𝑙. If 𝑙 = 1, then, By Definition 3.4,

(𝐴𝐺1)𝑢,𝑣 =
1
𝑑1 |{ (𝑝, 𝑞) ∈ [𝑑]1 × [𝑑]1 ∶ Rot1(𝑢, 𝑝) = (𝑣, 𝑞)}|

=
1
𝑑
|{ (𝑝, 𝑞) ∈ [𝑑] × [𝑑] ∶ 𝑎1 ∶= 𝑣, 𝑎0 ∶= 𝑢, Rot(𝑎0, 𝑝) = (𝑎1, 𝑞)}|

=
1
𝑑
|{ (𝑝, 𝑞) ∈ [𝑑] × [𝑑] ∶ Rot(𝑢, 𝑝) = (𝑣, 𝑞)}| = (𝐴1

𝐺)𝑢,𝑣

for each 𝑢, 𝑣 ∈ [𝑛]. Hence, 𝐴𝐺1 = 𝐴1
𝐺 and 𝜆(𝐺1) = 𝜆(𝐺)1.

Now suppose 𝑙 > 0. Let 𝑢, 𝑣 ∈ [𝑛]. For each 𝑧 ∈ [𝑛], 𝑘 ∈ ℕ, and 𝑝 ∈ [𝑑]𝑘 , let

(𝑧, 𝑝) ∶= 𝑎𝑘 ,

where 𝑎0 ∶= 𝑧 and (𝑎𝑖 , 𝑞𝑖) ∶= Rot(𝑎𝑖−1, 𝑝𝑖) for each 𝑖 ∈ [𝑘]. Thus, for each 𝑝 ∈ [𝑑]𝑘 , we have

∃𝑞 ∈ [𝑑]𝑘 s.t. Rot𝑘(𝑢, 𝑝) = (𝑣, 𝑞) ⟺ (𝑢, 𝑝) = 𝑣,
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by the definition of (𝑢, 𝑝) and Definition 3.16. Hence, we get

𝑑 𝑙 ⋅ (𝐴𝐺 𝑙 )𝑢,𝑣 = |{ (𝑝, 𝑞) ∈ [𝑑]𝑙 × [𝑑]𝑙 ∶ Rot𝑙(𝑢, 𝑝) = (𝑣, 𝑞)}|
= |{ 𝑝 ∈ [𝑑]𝑙 ∶ ∃𝑞 ∈ [𝑑]𝑘 s.t. Rot𝑙(𝑢, 𝑝) = (𝑣, 𝑞)}|
= |{ 𝑝 ∈ [𝑑]𝑙 ∶ (𝑢, 𝑝) = 𝑣}|
= |{ (𝑝, 𝑝𝑙) ∈ [𝑑]𝑙−1 × [𝑑] ∶ ∃𝑤 ∈ [𝑛] s.t. (𝑢, 𝑝) = 𝑤,(𝑤, 𝑝𝑙) = 𝑣}|
= |∪𝑤∈[𝑛]{ (𝑝, 𝑝𝑙) ∈ [𝑑]𝑙−1 × [𝑑] ∶ (𝑢, 𝑝) = 𝑤,(𝑤, 𝑝𝑙) = 𝑣}|

= ∑
𝑤∈[𝑛]

|{ (𝑝, 𝑝𝑙) ∈ [𝑑]𝑙−1 × [𝑑] ∶ (𝑢, 𝑝) = 𝑤,(𝑤, 𝑝𝑙) = 𝑣}|

= ∑
𝑤∈[𝑛]

|{ 𝑝 ∈ [𝑑]𝑙−1 ∶ (𝑢, 𝑝) = 𝑤}| ⋅ |{ 𝑝𝑙 ∈ [𝑑] ∶ (𝑤, 𝑝𝑙) = 𝑣}|

= ∑
𝑤∈[𝑛]

|{ 𝑝 ∈ [𝑑]𝑙−1 ∶ (𝑢, 𝑝) = 𝑤}| ⋅ 𝑑 ⋅ (𝐴𝐺)𝑤,𝑣 ,

where the last equality follows from

𝑑 ⋅ (𝐴𝐺)𝑤,𝑣 = |{ (𝑝, 𝑞) ∈ [𝑑] × [𝑑] ∶ Rot(𝑤, 𝑝) = (𝑣, 𝑞)}| = |{ 𝑝 ∈ [𝑑] ∶ (𝑤, 𝑝) = 𝑣}|.

Similarly, for each 𝑤 ∈ [𝑛], we have

|{ 𝑝 ∈ [𝑑]𝑙−1 ∶ (𝑢, 𝑝) = 𝑤}| = |{ 𝑝 ∈ [𝑑]𝑙−1 ∶ ∃𝑞 ∈ [𝑑]𝑙−1 s.t. Rot𝑙−1(𝑢, 𝑝) = (𝑤, 𝑞)}|
= |{ (𝑝, 𝑞) ∈ [𝑑]𝑙−1 × [𝑑]𝑙−1 ∶ Rot𝑙−1(𝑢, 𝑝) = (𝑤, 𝑞)}|
= 𝑑 𝑙−1 ⋅ (𝐴𝐺 𝑙−1)𝑢,𝑤 .

By induction on 𝑙 − 1, we get that

(𝐴𝐺 𝑙−1)𝑢,𝑤 = (𝐴𝑙−1
𝐺 )𝑢,𝑤 ,

and, consequently,

𝑑 𝑙 ⋅ (𝐴𝐺 𝑙 )𝑢,𝑣 = ∑
𝑤∈[𝑛]

|{ 𝑝 ∈ [𝑑]𝑙−1 ∶ (𝑢, 𝑝) = 𝑤}| ⋅ 𝑑 ⋅ (𝐴𝐺)𝑤,𝑣

= ∑
𝑤∈[𝑛]

𝑑 𝑙−1(𝐴𝑙−1
𝐺 )𝑢,𝑤 ⋅ 𝑑 ⋅ (𝐴𝐺)𝑤,𝑣

= 𝑑 𝑙 ∑
𝑤∈[𝑛]

(𝐴𝑙−1
𝐺 )𝑢,𝑤 ⋅ (𝐴𝐺)𝑤,𝑣

= 𝑑 𝑙(𝐴𝑙−1
𝐺 𝐴𝐺)𝑢,𝑣 = 𝑑 𝑙(𝐴𝑙

𝐺)𝑢,𝑣 .

Therefore, (𝐴𝐺 𝑙 )𝑢,𝑣 = (𝐴𝑙
𝐺)𝑢,𝑣 and 𝐴𝐺 𝑙 = 𝐴𝑙

𝐺 . By Theorem 1.4, we get that 𝜆𝑖(𝐴𝑙
𝐺) = 𝜆𝑖(𝐴𝐺)𝑙

for each 𝑖 ∈ [𝑛]. Consequently,
𝜆(𝐺 𝑙) = 𝜆(𝐺)𝑙 .

■

Corollary 3.18. Let 𝑛, 𝑑, 𝑙 ∈ ℕ. If 𝐺 is an (𝑛, 𝑑)-multigraph with 𝜆(𝐺) < 1, then, for any
rotational map Rot of 𝐺, the multigraph 𝐺 𝑙 ∶= 𝐺 𝑙(Rot) is connected.
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Proof. By Theorem 3.17, we get that

𝜆(𝐺 𝑙) = 𝜆(𝐺)𝑙 < 1,

and, by Theorem 3.5, we obtain that 𝐺 𝑙 is connected, since 𝜆(𝐺 𝑙) < 1. ■

By Theorem 3.17, we obtain that the power of a multigraph is a natural method for
transforming it into a multigraph with large spectral gap. However, powering has the
disadvantage of increasing the degree exponentially with exponent of the power. As we
will see later (Definition 3.22), the role of the zig-zag product in the main transformation
will be to reduce the degree of a multigraph without reducing too much its spectral gap
(Corollary 3.15). Recall that the multigraph 𝐺 z⃝𝐻 has spectral gap lower bound in function
of the spectral gap of the small graph 𝐻 . Thus, for our application of the zig-zag product,
we want a multigraph 𝐻 with large spectral gap. The following theorem states that there
is a graph with a good spectral gap with appropriate parameters.

Lemma 3.19 (Alon and Roichman [AR94]). There is some constant 𝐷𝑒 ∈ ℕ such that there
is a (𝐷16

𝑒 , 𝐷𝑒 , 1/2)-graph.

As 𝐷𝑒 is a universal constant, we can find the adjacency matrix of such a graph using
a brute force algorithm and it only requires constant space. Using this small expander
and the zig-zag product, the transformation will iteratively increase the spectral gap of a
multigraph and obtain an expander multigraph after a logarithmic number of iteration.
Hence, we need to know a lower bound for the spectral gap of the initial multigraph to
estimate the number of steps required to obtain an expander multigraph at the end of the
iteration.

By Theorem 3.5, we know that if 𝐺 is a bipartite graph, then 𝜆𝑛(𝐺) = −1 for 𝑛 ∶= 𝑣(𝐺),
and 1 ≥ 𝜆(𝐺) ≥ |𝜆𝑛(𝐺)| = 1, so the spectral gap of 𝐺 equals 0. Fortunately, the following
theorem gives us a lower bound for the spectral gap of any regular, connected, nonbipartite
multigraph.

Lemma 3.20 (Alon and Sudakov [AS00]). Let 𝑁 , 𝐷 ∈ ℕ. If 𝐺 is a connected, nonbipartite
(𝑁 , 𝐷)-multigraph, then

1 − 𝜆(𝐺) ≥ 1/𝐷𝑁 2.

Thus, we will first transform each component of the input graph into a connected,
nonbipartite, regular multigraph and then start the iterative process using this multigraph.
One possible transformation of this kind is the following.

Definition 3.21. Let 𝐷 ∈ ℕ, 𝐷 > 2, and let 𝐺 be a connected graph. Let 𝑛 ∶= 𝑣(𝐺). Let
Rot𝐺,𝐷 ∶ [𝑛]2 × [𝐷] → [𝑛]2 × [𝐷] be the function defined as follows: for each (𝑢, 𝑣) ∈ [𝑛]2,

Rot𝐺,𝐷((𝑢, 𝑣), 1) ∶= ((𝑢, (𝑣 − 1) mod 𝑛), 2),
Rot𝐺,𝐷((𝑢, 𝑣), 2) ∶= ((𝑢, (𝑣 + 1) mod 𝑛), 1),
Rot𝐺,𝐷((𝑢, 𝑣), 𝑖) ∶= ((𝑢, 𝑣), 𝑖) if 𝑖 > 3, and
Rot𝐺,𝐷((𝑢, 𝑣), 3) ∶= ((𝑤, 𝑧), 3),
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where, if 𝑣 ≤ 𝑑𝐺(𝑢), we define 𝑤 as the 𝑣-th neighbor of 𝑢, and 𝑢 as the 𝑧-th neighbor of 𝑣,
and, if > 𝑑𝐺(𝑢), we define𝑤 ∶= 𝑢 and 𝑧 ∶= 𝑣. It is not hard to show that the function Rot𝐺,𝐷
satisfies the requirements in Definition 3.3. A logspace oracle for Rot𝐺,𝐷 is implemented in
Algorithm 3.2.

We denote by Reg(𝐺, 𝐷) the (𝑛2, 𝐷)-multigraph (Rot) defined by the rotational map
Rot𝐺,𝐷 . This multigraph is essentially 𝐺 where each vertex 𝑢 of 𝐺 is replaced by an 𝑛-cycle
𝐶𝑢 , and all edges labeled with 1 and 2 are edges of an 𝐶𝑢 , all edges labeled with 𝑖 ∈ [𝐷] for
𝑖 > 3 are loops, and each edge labeled with 3 corresponds either to an edge in 𝐺 or to a
loop.

Note that, for every vertices 𝑠 and 𝑡 in 𝐺, there is a walk on 𝐺 between 𝑠 and 𝑡 if and
only if there is a walk on Reg(𝐺, 𝐷) between (𝑠, 1) and (𝑡, 1), since every 𝑠𝑡-walk on 𝐺 can
be transformed into an ((𝑠, 1), (𝑡, 1))-walk on Reg(𝐺, 𝐷) (by mapping an edge 𝑢𝑣 of the
walk on 𝐺 into the walk on the 𝑛-cycle of 𝑢 and moving to the 𝑛-cycle of 𝑣 only at the
edge corresponding to 𝑢𝑣), and every ((𝑠, 1), (𝑡, 1))-walk on Reg(𝐺, 𝐷) can be transformed
into an 𝑠𝑡-walk on 𝐺 (by mapping a walk 𝑤 on the 𝑛-cycle of a vertex 𝑢 to the edge before
entering and the edge after leaving the 𝑛-cycle of 𝑢). ■

Algorithm 3.2 A logspace oracle for Rot𝐺,𝐷
Input: two naturals 𝑛, 𝐷 ∈ ℕ, a logspace oracle for a rotational map Rot of a graph 𝐺,

and a pair (𝑥, 𝑖) ∈ [𝑛]2 × [𝐷16]. This algorithm assumes that the graph 𝐺 has 𝑛 vertices
and 𝐷 > 2.

Output: the pair (𝑦, 𝑗) ∶= Rot𝐺,𝐷(𝑥, 𝑖).
1: LogspaceOracleRegularNonbipMultigraph(𝑛, 𝐷, Rot, (𝑥, 𝑖)):
2: (𝑢, 𝑣) ← 𝑥
3: if 𝑖 = 1 then
4: return ((𝑢, (𝑣 − 1) mod 𝑛), 2)
5: else if 𝑖 = 2 then
6: return ((𝑢, (𝑣 + 1) mod 𝑛), 1)
7: else if 𝑖 > 3 then
8: return ((𝑢, 𝑣), 𝑖)
9: else if 𝑖 = 3 and 𝑣 > 𝑑𝐺(𝑢) then

10: return ((𝑢, 𝑣), 3)
11: else if 𝑖 = 3 and 𝑣 ≤ 𝑑𝐺(𝑢) then
12: return ((𝑤, 𝑧), 3), where 𝑤 is the 𝑣-th neighbor of 𝑢, and 𝑢 is the 𝑧-th neighbor of

𝑣 if 𝑣 ≤ 𝑑𝐺(𝑢), which are computable in logspace using the input logspace oracle for
Rot

We will now define the main transformation of this section.

Definition 3.22. Let 𝑁 , 𝐷 ∈ ℕ and 𝜆, 𝛼 ∈ [0, 1). Let 𝐺 be an (𝑁 , 𝐷16, 𝜆)-multigraph with
rotational map Rot𝐺 and 𝐻 be a (𝐷16, 𝐷, 𝛼)-multigraph with rotational map Rot𝐻 . Let
𝑙 ∶= 2⌈lg(𝐷𝑁 2)⌉. We define 𝐺0 ∶= 𝐺 and, for each 𝑖 ∈ [𝑙],

𝑇𝑖(𝐺, 𝐻 ) ∶= 𝐺𝑖 ∶= (𝐺𝑖−1 z⃝𝐻)8.

We denote by Rot𝐺𝑖 the rotational map of 𝐺𝑖 , which is defined recursively by Rot𝐺𝑖 ∶=
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Rot(𝐺𝑖−1 z⃝𝐻)8 and only depends on 𝑖 and the rotational maps Rot𝐺 and Rot𝐻 . We denote by
 (𝐺, 𝐻 ) the graph 𝐺𝑙 and by Rot (𝐺,𝐻 ) the rotational map Rot𝐺𝑙 . ■

We will first prove that solving USTCON for  (𝐺, 𝐻 ) is sufficient to solve USTCON
for 𝐺 (Property 4 of Lemma 3.23) and that  (𝐺, 𝐻 ) if a valid input for Algorithm 3.1
(Lemma 3.26 and Lemma 3.27). Then we will argue (Lemma 3.28) that Algorithm 3.3 is a
correct implementation of a logspace oracle for Rot (𝐺,𝐻 ).

Lemma 3.23. Consider the context of Definition 3.22. Let 𝐶 be a connected component of 𝐺.
For each 𝑖 ∈ {0, … , 𝑙}, the following properties hold:

1. The graph 𝐺𝑖 is an (𝑁𝐷16𝑖 , 𝐷16)-multigraph.

2. For 𝑆 ∶= 𝑉 (𝐶)× [𝐷16]𝑖 , we have 𝑖(𝐶, 𝐻 ) = 𝐺𝑖[𝑆] and the subgraph 𝐺𝑖[𝑆] is a connected
component of 𝐺𝑖 .

3. For every component 𝐸 of𝐺𝑖 , there is a component 𝐹 of𝐺 such that 𝐸 = 𝐺𝑖[𝑉 (𝐹 )×[𝐷16]𝑖].

4. For all vertices 𝑠 and 𝑡 of 𝐺, the vertices 𝑠 and 𝑡 are in 𝐶 if and only if the vertices
(𝑠, (1, … , 1)) and (𝑡, (1, … , 1)) of 𝑉 (𝐺𝑖) = 𝑉 (𝐺0) × [𝐷16]𝑖 are in 𝐺𝑖[𝑉 (𝐶) × [𝐷16]𝑖].

Proof. Let 𝐶 be a connected component of 𝐺. We will prove this lemma by induction on 𝑖.

If 𝑖 = 0, then the following properties hold:

1. The graph 𝐺0 = 𝐺 is an (𝑁 , 𝐷16)-multigraph.

2. For 𝑆 ∶= 𝑉 (𝐶) × [𝐷16]0 = 𝑉 (𝐶), we have 0(𝐶, 𝐻 ) = 𝐶 = 𝐺[𝑉 (𝐶)] = 𝐺0[𝑆] and the
subgraph 𝐺0[𝑆] = 𝐶 is a connected component of 𝐺0.

3. For every component 𝐸 of 𝐺0, there is a component 𝐹 ∶= 𝐸 of 𝐺 such that 𝐺0[𝑉 (𝐹 ) ×
[𝐷16]0] = 𝐸.

4. For all vertices 𝑠 and 𝑡 of 𝐺, the vertices 𝑠 and 𝑡 are in 𝐶 if and only if the vertices
(𝑠, (1, … , 1)) = (𝑠) and (𝑡, (1, … , 1)) = (𝑡) of 𝑉 (𝐺0) × [𝐷16]0 = 𝑉 (𝐺0) are in 𝐺0[𝑉 (𝐶) ×
[𝐷16]0] = 𝐶 .

Now suppose 𝑖 ≥ 0 and, by induction on 𝑖, assume that 𝐺𝑖 satisfies all properties in
Lemma 3.23. We will now prove that 𝐺𝑖+1 also satisfies that properties for 𝑖 + 1.

First note that, by the definition of the zig-zag product and the powering of multi-
graphs, we get that 𝐺𝑖 z⃝𝐻 is a (𝑣(𝐺𝑖)𝐷16, 𝐷2)-multigraph and (𝐺𝑖 z⃝𝐻)8 is a (𝑣(𝐺𝑖)𝐷16, 𝐷16)-
multigraph, so

𝐺𝑖+1 is an (𝑁𝐷16(𝑖+1), 𝐷16)-multigraph,

and Property 1 holds.

Let us now prove that Property 2 holds. Consider the following lemmas.

Lemma 3.24. Let 𝑁 , 𝐷, 𝑑 ∈ ℕ and 𝜆, 𝛼 ∈ [0, 1). Let 𝐺 be an (𝑁 , 𝐷, 𝜆)-multigraph, 𝐻 be
a (𝐷, 𝑑, 𝛼)-multigraph, and 𝑇 be a connected component of 𝐺. Let 𝑆 ∶= 𝑉 (𝑇 ) × [𝐷]. Then
𝑇 z⃝𝐻 = (𝐺 z⃝𝐻)[𝑆] and 𝑇 z⃝𝐻 is a connected component of 𝐺 z⃝𝐻 .
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Proof. First note that 𝑇 z⃝𝐻 and (𝐺 z⃝𝐻)[𝑆] have the same vertex set. It is not hard to prove
that 𝑇 z⃝𝐻 and (𝐺 z⃝𝐻)[𝑆] have the same edge set and incidence function by a careful
analysis of Definition 3.11. Hence, 𝑇 z⃝𝐻 = (𝐺 z⃝𝐻)[𝑆], and, by Corollary 3.13, we get that
𝑇 z⃝𝐻 is a connected graph. Finally, note that 𝑒𝐺 z⃝𝐻 (𝑆, 𝑉 (𝐺 z⃝𝐻) ⧵ 𝑆) = 0, since if there
is an edge 𝑒 of 𝐺 z⃝𝐻 with one end (𝑣, 𝑎) in 𝑆 and the other end (𝑤, 𝑏) in 𝑉 (𝐺 z⃝𝐻) ⧵ 𝑆,
then, by the definition of the zig-zag product, there is an edge in 𝐺 with ends 𝑣 and
𝑤, which contradicts the fact that 𝑇 is a component of 𝐺 (note that 𝑤 ∉ 𝑉 (𝑇 ) since
(𝑤, 𝑏) ∉ 𝑉 (𝑇 ) × [𝐷]). Therefore, (𝐺 z⃝𝐻)[𝑆] is a connected component of 𝐺 z⃝𝐻 . ■

Lemma 3.25. Let 𝑁 , 𝐷, 𝑙 ∈ ℕ and 𝜆 ∈ [0, 1). Let 𝐺 be an (𝑁 , 𝐷, 𝜆)-multigraph, and 𝑊
be a connected component of 𝐺. Let 𝑆 ∶= 𝑉 (𝑊 ). Then 𝑊 𝑙 = 𝐺 𝑙[𝑆] and 𝑊 𝑙 is a connected
component of 𝐺 𝑙 .

Proof. First note that 𝑊 𝑙 and 𝐺 𝑙[𝑆] have the same vertex set. It is not hard to prove that
𝑊 𝑙 and 𝐺 𝑙[𝑆] have the same edge set and incidence function by a careful analysis of
Definition 3.16. Hence, 𝑊 𝑙 = 𝐺 𝑙[𝑆]. By Corollary 3.18, we get that 𝑊 𝑙 is a connected graph.
Finally, note that 𝑒𝐺 𝑙 (𝑆, 𝑉 (𝐺 𝑙) ⧵ 𝑆) = 0, since if there is an edge 𝑒 of 𝐺 𝑙 with one end 𝑣 in 𝑆
and the other end 𝑤 in 𝑉 (𝐺 𝑙) ⧵ 𝑆, then, by the definition of the power of graphs, there is a
𝑣𝑤-walk on 𝐺, which contradicts the fact that 𝑊 is a component of 𝐺. Therefore, 𝐺 𝑙[𝑆] is
a connected component of 𝐺 𝑙 . ■

Let 𝑆 ∶= 𝑉 (𝐶) × [𝐷16]𝑖+1. We know by induction that 𝑖(𝐶, 𝐻 ) = 𝐺𝑖[𝑉 (𝐶) × [𝐷16]𝑖] =∶ 𝑇
is a connected component of 𝐺𝑖 . By Lemma 3.24, we get that 𝑊 ∶= 𝑇 z⃝𝐻 = (𝐺𝑖 z⃝𝐻)[𝑆]
and𝑊 is a connected component of 𝐺𝑖 z⃝𝐻 . By Lemma 3.25, we get that𝑊 8 = (𝐺𝑖 z⃝𝐻)8[𝑆]
and 𝑊 8 is a connected component of (𝐺𝑖 z⃝𝐻)8. Therefore, we obtain that

𝑖+1(𝐶, 𝐻 ) = (𝑖(𝐶, 𝐻 ) z⃝𝐻)8 = (𝑇 z⃝𝐻)8 = 𝑊 8 = (𝐺𝑖 z⃝𝐻)8[𝑆] = 𝐺𝑖+1[𝑆],

so 𝐺𝑖+1[𝑆] is a component of 𝐺𝑖+1. Consequently, Property 2 holds.

Finally, let us prove that Properties 3 and 4 hold. Let 𝐸 be a connected component of
𝐺𝑖+1 and let (𝑣, (𝑣1, … , 𝑣𝑖+1)) be an element of 𝐸 ⊆ 𝑉 (𝐺0) × [𝐷16]𝑖+1. Let 𝐹 be the connected
component of 𝑣 in 𝐺0. By Property 2, we obtain that 𝐸′ ∶= 𝐺𝑖+1[𝐹 × [𝐷16]𝑖+1] is a connected
component of 𝐺𝑖+1. As 𝐸′ ∩ 𝐸 ⊇ (𝑣, (𝑣1, … , 𝑣𝑖+1)), we get that 𝐸 = 𝐸′ = 𝐺𝑖+1[𝐹 × [𝐷16]𝑖+1].
Thus, Property 3 holds.

Let 𝐶 ′ ∶= 𝐶 × [𝐷16]𝑖+1. If 𝑠 and 𝑡 are vertices of 𝐶 , then, by Property 2, the ver-
tices (𝑠, (1, … , 1)) and (𝑡, (1, … , 1)) are in 𝑖+1(𝐶, 𝐻 ) = 𝐺𝑖+1[𝐶 ′]. Similarly, if the vertices
(𝑠, (1, … , 1)) and (𝑡, (1, … , 1)) are in 𝐺𝑖+1[𝐶 ′], then 𝑠 and 𝑡 are vertices of 𝐶 , because other-
wise we obtain that either 𝑠 or 𝑡 is a vertex of another component 𝐹 of𝐺, so𝐺𝑖+1[𝐹 ×[𝐷16]𝑖+1]
is a component of 𝐺𝑖+1 and (𝐹 × [𝐷16]𝑖+1) ∩ 𝐶 ′ ≠ ∅, hence 𝐶 = 𝐹 , a contradiction. Therefore,
Property 4 holds. ■

Lemma 3.26. Consider the context of Definition 3.22. If 𝜆(𝐻) ≤ 1/2 and 𝐺 is connected and
nonbipartite, then 𝜆( (𝐺, 𝐻 )) ≤ 4/9 < 0.45.
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Proof. Let 𝑖 ∈ [𝑙]. We will first prove that 𝜆(𝐺𝑖) ≤ max{𝜆(𝐺𝑖−1)2, 4/9}. Let 𝜆 ∶= 𝜆(𝐺𝑖−1). By
Corollary 3.15 and Theorem 3.17, we obtain that

𝜆(𝐺𝑖) ≤ (1 −
1
2 (

1 − 𝜆(𝐻)2) (1 − 𝜆(𝐺𝑖−1)))
8
≤ (1 −

3
8
(1 − 𝜆))

8
≤ (1 −

1
3
(1 − 𝜆))

8
.

If 𝜆 ≤ 4/9, then

𝜆(𝐺𝑖) ≤ (1 −
1
3
⋅
4
9)

8
= (

23
27)

8
<
4
9
≤ max{𝜆2, 4/9}.

Now suppose that 𝜆 > 4/9. Let 𝑔(𝑥) = 81𝑥 − (2 + 𝑥)4. Note that 𝑔(4/9) > 0.29 > 0; 𝑔(1) = 0;
𝑔′(𝑥) = 81 − 4(2 + 𝑥)3;

𝑔′(𝑥) ≥ 0 ⟺ 𝑥 ≤ −2 + (81/4)1/3 =∶ 𝑥 ∗ ∈ (0.725, 0.726);

and 𝑔(𝑥 ∗) > 0. By elementary calculus, we get 𝑔(𝑥) ≥ 0 for all 𝑥 ∈ [4/9, 1], because
𝑔(4/9) > 0, 𝑔(𝑥 ∗) > 0, 𝑔(1) = 0, 𝑔(𝑥) is crescent for 𝑥 ∈ [4/9, 𝑥 ∗], and there is no 𝑥 ∈ (𝑥 ∗, 1]
with 𝑔′(𝑥) = 0. Consequently, the inequality

1
81

(2 + 𝑥)4 ≤ 𝑥

holds for every 𝑥 ∈ [4/9, 1]. Thus, we get

𝜆(𝐺𝑖) ≤ (1 −
1
3
(1 − 𝜆))

8
≤ (

1
81

(2 + 𝜆)4)
2
≤ 𝜆2 ≤ max{𝜆2, 4/9}.

Let us now prove that 𝜆(𝐺𝑙) ≤ 4/9. Suppose that, for all 𝑖 ∈ [𝑙], we have 𝜆(𝐺𝑖) > 4/9.
Hence, 𝜆(𝐺𝑖) ≤ 𝜆(𝐺𝑖−1)2, and, consequently,

𝜆(𝐺𝑖) ≤ 𝜆(𝐺0)2
𝑖
.

By Lemma 3.20 and the definition of 𝑙, we get that

𝜆(𝐺𝑙) ≤ 𝜆(𝐺0)2
𝑙
≤ (1 − 1/𝐷𝑁 2)2

2 lg(𝐷𝑁2)

≤ 𝑒−(𝐷𝑁
2)2/(𝐷𝑁 2) = 𝑒−𝐷𝑁

2
< 4/9,

a contradiction. Thus, there is some 𝑖 ∈ [𝑙] such that 𝜆(𝐺𝑖) ≤ 4/9, and, as a consequence,

𝜆(𝐺𝑗) ≤ max{𝜆(𝐺𝑗−1)2, 4/9} = 4/9

for all 𝑗 ∈ [𝑙] and 𝑗 > 𝑖; in particular, 𝜆(𝐺𝑙) ≤ 4/9. Therefore,

𝜆( (𝐺, 𝐻 )) = 𝜆(𝐺𝑙) ≤ 4/9 < 0.45.

■

Lemma 3.27. Consider the context of Definition 3.22. If 𝜆(𝐻) ≤ 1/2 and 𝐺 is nonbipartite,
then 𝐺exp ∶=  (𝐺, 𝐻 ) is an (𝑁 𝑂𝐷 (1), 𝐷16)-multigraph such that each component 𝐷 of 𝐺exp is a
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(𝑣(𝐷), 𝐷16)-expander.

Proof. First note that 𝐺exp has

𝑁𝐷16𝑙 ≤ 𝑁𝐷64 lg(𝐷𝑁 2) = 𝑁𝐷64 log𝐷 (𝑁 2)/ log𝐷 2 = 𝑁 (𝑁 2)64/ log𝐷 2 = 𝑁 1+128/ log𝐷 2 = 𝑁 𝑂𝐷 (1)

vertices and is 𝐷16-regular by Property 1 of Lemma 3.23 (recall that 𝐺exp = 𝐺𝑖 for 𝑖 ∶= 𝑙).
Let 𝐷 be a component of 𝐺exp. By Property 3 of Lemma 3.23, there is a component 𝐸 of 𝐺
such that 𝐺exp[𝑉 (𝐸) × [𝐷16]𝑙] = 𝐷. By Property 2 of Lemma 3.23, we get that

 (𝐸, 𝐻 ) = 𝐺exp[𝑉 (𝐸) × [𝐷16]𝑙] = 𝐷,

and, by Lemma 3.26,
0.45 > 4/9 ≥ 𝜆( (𝐸, 𝐻 )) = 𝜆(𝐷).

Therefore, 𝐷 is a (𝑣(𝐷), 𝐷16)-expander. ■

Lemma 3.28. Algorithm 3.3 is a logspace oracle for Rot (𝐺,𝐻 ).

Proof. Let us first argue that Algorithm 3.3 uses at most 𝑂𝐷(lg 𝑁 ) memory slots. As men-
tioned in Algorithm 3.3, the variables 𝑣, 𝑎0, … , 𝑎𝑙−1, 𝑎𝑙 are shared by all calls for the funtion
LOTIExpanderRec and, for each 𝑖 ∈ {0, … , 𝑙}, the variables 𝑘𝑖,1, … , 𝑘𝑖,16 are just shorthand
notations for the components of 𝑎𝑖 ∈ [𝐷]16. Hence, all those variable requires at most
lg 𝑁 +(𝑙 +1) lg(𝐷)16 = 𝑂(lg 𝑁 ) memory slots. For each 𝑖 ∈ [𝑙] and 𝑗 ∈ [8], the 𝑗-th iteration of
the for loop in the 𝑖-level of recursion of LOTIExpanderRec uses at most 𝑂(lg 𝐷) memory
slots to compute two entries of Rot𝐻 , and make one recursive call to LOTIExpanderRec
for 𝑖 − 1. Note that all relevant information of the recursive call is stored in the variable
𝑣, 𝑎0, … , 𝑎𝑙 . Hence the computation of the 𝑙-level of recursion of LOTIExpanderRec re-
quires at most 𝑂(𝑙 lg 𝐷) = 𝑂𝐷(lg 𝑁 ) memory slots. Therefore the algorithm uses at most
𝑂(lg 𝑁 ) + 𝑂𝐷(lg 𝑁 ) = 𝑂(lg 𝑁 ) memory slots. Appendix A in Reingold [Rei08] has low level
implementation details of Algorithm 3.3.

Let us now prove that the functions LogspaceOracleTransformationIntoExpander
and LOTIExpanderRec are correct. We will prove it by induction on the recursion level
𝑖 ∈ {0, … , 𝑙} of LOTIExpanderRec. If 𝑖 = 0, then LOTIExpanderRec updates (𝑣, 𝑎0) to the
value of Rot𝐺(𝑣, 𝑎0), which is the expected behavior of LOTIExpanderRec (Equation 3.1).

Suppose now that 𝑖 ≥ 0. Assume that the 𝑖-th recursion level of LOTIExpanderRec is
correct, that is, LOTIExpanderRec updates the tuple (𝑣, 𝑎0, … , 𝑎𝑖−1, 𝑎𝑖) with the value of
Rot𝑖 (𝐺,𝐻 )((𝑣, 𝑎0, … , 𝑎𝑖−1), 𝑎𝑖), see Equation 3.1. Let us prove that the (𝑖 + 1)-th recursion level
of LOTIExpanderRec is correct.

We will first prove that, for each 𝑗 ∈ [8], the value of the tuple (((𝑣, 𝑎0, … , 𝑎𝑖−1), 𝑎𝑖), (𝑘𝑖+1,2𝑗 , 𝑘𝑖+1,2𝑗−1))
at the end of the 𝑗-th iteration of the for loop is equal to

Rot(𝐺𝑖 z⃝𝐻)(((𝑣′, 𝑎′0, … , 𝑎′𝑖−1), 𝑎
′
𝑖 ), (𝑘

′
𝑖+1,2𝑗−1, 𝑘

′
𝑖+1,2𝑗)).

where (𝑣′, 𝑎′0, … , 𝑎′𝑖 , 𝑎′𝑖+1) and (𝑘′𝑖+1,2𝑗−1, 𝑘′𝑖+1,2𝑗) are respectively the values of (𝑣, 𝑎0, … , 𝑎𝑖 , 𝑎𝑖+1)
and (𝑘𝑖+1,2𝑗−1, 𝑘𝑖+1,2𝑗) at the beginning of the 𝑗-th iteration.
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Let 𝑢𝑗 ∶= (𝑣′, 𝑎′0, … , 𝑎′𝑖−1) and 𝑏𝑗 ∶= 𝑎′𝑖 . Let 𝑝2𝑗−1 ∶= 𝑘′𝑖+1,2𝑗−1 and 𝑝2𝑗 ∶= 𝑘′𝑖+1,2𝑗 .
Intuitively, we interpret the 𝑗-th iteration of the for loop as computing the tuple
Rot𝐺𝑖 z⃝𝐻 ((𝑢𝑗 , 𝑏𝑗), (𝑝2𝑗−1, 𝑝2𝑗)). Formally, we have the following:

• After the execution of Line 11, the tuple (𝑎𝑖 , 𝑘𝑖+1,2𝑗−1) is equal to

Rot𝐻 (𝑏𝑗 , 𝑝2𝑗−1).

Note that the value of 𝑘𝑖+1,2𝑗−1 will only change again at the end of the algorithm
(Line 14). Denote by 𝑏′𝑗 the value of 𝑎𝑖 and by 𝑞2𝑗−1 the value of 𝑘𝑖+1,2𝑗−1 after the
execution of Line 11.

• After the execution of Line 12, we get, by induction on 𝑖, that the tuple
((𝑣, 𝑎0, … , 𝑎𝑖−1), 𝑎𝑖) is equal to

Rot𝐺𝑖 (𝑢𝑗 , 𝑏
′
𝑗 ).

Denote by 𝑐′𝑗 the value of 𝑎𝑖 and by 𝑤 the value of (𝑣, 𝑎0, … , 𝑎𝑖−1) after the execution
of Line 12.

• After the execution of Line 13, the tuple (𝑎𝑖 , 𝑘𝑖+1,2𝑗) is equal to

Rot𝐻 (𝑐′𝑗 , 𝑝2𝑗).

Denote by 𝑐𝑗 the value of 𝑎𝑖 and by 𝑞𝑖+1,2𝑗 the value of 𝑘𝑖+1,2𝑗 after the execution of
Line 13.

Hence, the following equalities hold:

(𝑏′𝑗 , 𝑞2𝑗−1) = Rot𝐻 (𝑏𝑗 , 𝑝2𝑗−1),
(𝑤𝑗 , 𝑐′𝑗 ) = Rot𝐺𝑖 (𝑢𝑗 , 𝑏

′
𝑗 ), and

(𝑐𝑗 , 𝑞2𝑗) = Rot𝐻 (𝑐′𝑗 , 𝑝2𝑗),

so, by the definition of the zig-zag product, we get that

Rot(𝐺𝑖 z⃝𝐻)((𝑢𝑗 , 𝑏𝑗), (𝑝2𝑗−1, 𝑝2𝑗)) = ((𝑤𝑗 , 𝑐𝑗), (𝑞2𝑗 , 𝑞2𝑗−1)).

Therefore, the value of (((𝑣, 𝑎0, … , 𝑎𝑖−1), 𝑎𝑖), (𝑘𝑖+1,2𝑗 , 𝑘𝑖+1,2𝑗−1)) at the end of the 𝑗-th iteration
of the for loop is equal to

Rot(𝐺𝑖 z⃝𝐻)(((𝑣′, 𝑎′0, … , 𝑎′𝑖−1), 𝑎
′
𝑖 ), (𝑘

′
𝑖+1,2𝑗−1, 𝑘

′
𝑖+1,2𝑗)).

Furthermore, for (𝑤0, 𝑐0) ∶= (𝑢1, 𝑏1), we get that, for each 𝑗 ∈ [8],

((𝑤𝑗 , 𝑐𝑗), (𝑞2𝑗 , 𝑞2𝑗−1)) = Rot(𝐺 z⃝𝐻)((𝑤𝑗−1, 𝑐𝑗−1), (𝑝2𝑗−1, 𝑝2𝑗)).

Thus, by Definition 3.16, we have

Rot(𝐺 z⃝𝐻)8((𝑤0, 𝑏0), ((𝑝1, 𝑝2), … , (𝑝15, 𝑝16))) = ((𝑤8, 𝑏8), ((𝑞16, 𝑞15), … , (𝑞2, 𝑞1))).

As ((𝑣, 𝑎0, … , 𝑎𝑖−1), 𝑎𝑖) and 𝑎𝑖+1 are respectively equal to (𝑤8, 𝑏8) and (𝑞16, 𝑞15, … , 𝑞2, 𝑞1) at
Line 14, we conclude that the (𝑖 + 1)-th recursion level of LOTIExpanderRec updates the
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value of ((𝑣, 𝑎0, … , 𝑎𝑖), 𝑎𝑖+1) to the value of the tuple

Rot𝐺𝑖+1((𝑣, 𝑎0, … , 𝑎𝑖), 𝑎𝑖+1) = Rot𝑖+1(𝐺,𝐻 )((𝑣, 𝑎0, … , 𝑎𝑖), 𝑎𝑖+1).

■

3.4 Reingold’s algorithm for the undirected
st-connectivity problem

Algorithm 3.4 is a slight modification of the algorithm proposed by Reingold [Rei08].
We will prove its correctness in Theorem 3.29.

Theorem 3.29. Algorithm 3.4 is a deterministic logspace algorithm for the undirected 𝑠𝑡-
connectivity problem.

Proof. As argued in Definition 3.21, solving USTCON for the graph 𝐺 and vertices 𝑠 and 𝑡 is
equivalent to solving the USTCON for the multigraph 𝐺reg ∶= Reg(𝐺, 𝐷𝑒) and vertices 𝑠reg
and 𝑡reg. As 𝐺reg is a nonbipartite (𝑁 , 𝐷16

𝑒 )-multigraph and 𝐻 is a (𝐷16
𝑒 , 𝐷𝑒 , 1/2)-multigraph,

we get, by Lemma 3.27, that 𝐺exp ∶=  (𝐺reg, 𝐻 ) is an (𝑁 𝑂(1), 𝐷16
𝑒 )-multigraph such that each

component 𝐶 of  (𝐺, 𝐻 ) is a (𝑣(𝐶), 𝐷16
𝑒 )-expander. Thus, the multigraph 𝐺exp satisfies the

assumptions for the input multigraph of Algorithm 3.1. By Property 4 of Lemma 3.23, we
get that solving USTCON for the multigraph 𝐺reg and vertices 𝑠reg and 𝑡reg is equivalent
to solving the USTCON for the multigraph 𝐺exp and vertices 𝑠exp and 𝑡exp. Therefore, the
output of Algorithm 3.4 is correct, because it is equal to the output of Algorithm 3.1 with
input 𝑣(𝐺exp), 𝐷16

𝑒 , 𝐺exp, 𝑠exp and 𝑡exp, which is correct by Theorem 3.10.

As argued in Theorem 3.10, Definition 3.21, and Lemma 3.28, all functions used in
Algorithm 3.4 requires memory at most logarithm of the size of their input, and their inputs
in Algorithm 3.4 have size at most a polynomial in 𝑛, since 𝐷𝑒 is a constant independent
of 𝑛. Therefore, Algorithm 3.4 uses at most 𝑂(lg 𝑛) memory slots. ■

Reingold [Rei08] also designed deterministic logspace algorithms to construct (𝑛, 𝑑, 𝜋)-
universal traversal sequences and (𝑛, 𝑑)-universal exploration sequences using techniques
similar to those studied in this chapter. These sequences are restricted versions of universal
traversal sequences previously considered in the literature.
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Algorithm 3.3 A logspace oracle for  (𝐺, 𝐻 ).
Input: two naturals 𝑁 , 𝐷 ∈ ℕ, a logspace oracle for a rotational map Rot𝐺 of a multi-

graph 𝐺, a logspace oracle for a rotational map Rot𝐻 of a multigraph 𝐻 , and a pair
(𝑥, 𝑦) ∈ 𝑉 ( (𝐺, 𝐻 )) × [𝐷16], where 𝑉 ( (𝐺, 𝐻 )) = [𝑁 ] × [𝐷16]𝑙 for 𝑙 ∶= 2⌈lg(𝐷𝑁 2)⌉. This
algorithm assumes that the graph 𝐺 is an (𝑁 , 𝐷16)-multigraph and the graph 𝐻 is a
(𝐷16, 𝐷)-multigraph.

Output: the pair Rot (𝐺,𝐻 )(𝑥, 𝑦).
1: LogspaceOracleTransformationIntoExpander(𝑁 , 𝐷, Rot𝐺 , Rot𝐻 , (𝑥, 𝑦)):
2: (𝑣, 𝑎0, … , 𝑎𝑙−1) ← 𝑥 , 𝑎𝑙 ← 𝑦
3: LOTIExpanderRec(𝑁 , 𝐷, Rot𝐺 , Rot𝐻 , (𝑣, 𝑎0, … , 𝑎𝑙), 𝑙)
4: return ((𝑣, 𝑎0, … , 𝑎𝑙−1), 𝑎𝑙), note that the values of 𝑣, 𝑎0, … , 𝑎𝑙 are update by the recur-

sive calls

Input: two naturals 𝑁 , 𝐷 ∈ ℕ, a logspace oracle for a rotational map Rot𝐺 of a multi-
graph 𝐺, a logspace oracle for a rotational map Rot𝐻 of a multigraph 𝐻 , a tuple
((𝑣, 𝑎0, … , 𝑎𝑙−1), 𝑎𝑙) ∈ 𝑉 ( (𝐺, 𝐻 )) × [𝐷16], and the recursion level 𝑖 ∈ {0, … , 𝑙}. This
algorithm assumes that the graph 𝐺 is an (𝑁 , 𝐷16)-multigraph and the graph 𝐻 is a
(𝐷16, 𝐷)-multigraph.

Output: Update the tuple ((𝑣, 𝑎0, … , 𝑎𝑖−1), 𝑎𝑖) with the value of

Rot𝑖 (𝐺,𝐻 )((𝑣′, 𝑎′0, … , 𝑎′𝑖−1), 𝑎
′
𝑖 ), (3.1)

where (𝑣′, 𝑎′0, … , 𝑎′𝑖−1, 𝑎′𝑖 ) corresponds to the values of (𝑣, 𝑎0, … , 𝑎𝑖−1, 𝑎𝑖) at the beginning
of execution of the function.

5: LOTIExpanderRec(𝑁 , 𝐷, Rot𝐺 , Rot𝐻 , (𝑣, 𝑎0, … , 𝑎𝑙), 𝑖):
6: if 𝑖 = 0 then
7: return Rot𝐺(𝑣, 𝑎0)
8: (𝑘𝑖,1, … , 𝑘𝑖,16) ← 𝑎𝑖 , where we use the correspondence between 𝑎𝑖 ∈ [𝐷16] and

(𝑘𝑖,1, … , 𝑘𝑖,16) ∈ [𝐷]16
9: // All the variables 𝑣, 𝑎𝑗 , and 𝑘𝑖,𝑗 defined above are just pointers for the variables they

are attributed, that is, they do not consume aditional space because they use the same
space as the variable they are attributed.

10: for all 𝑗 ∈ [8] do
11: (𝑎𝑖−1, 𝑘𝑖,2𝑗−1) ← Rot𝐻 (𝑎𝑖−1, 𝑘𝑖,2𝑗−1)
12: LOTIExpanderRec(𝑁 , 𝐷, Rot𝐺 , Rot𝐻 , (𝑣, 𝑎0, … , 𝑎𝑙), 𝑖 − 1), which recursively imple-

ments the operation ((𝑣, 𝑎0, … , 𝑎𝑖−2), 𝑎𝑖−1) ← Rot𝐺𝑖−1((𝑣, 𝑎0, … , 𝑎𝑖−2), 𝑎𝑖−1).
13: (𝑎𝑖−1, 𝑘𝑖,2𝑗) ← Rot𝐻 (𝑎𝑖−1, 𝑘𝑖,2𝑗)
14: (𝑘𝑖,1, … , 𝑘𝑖,16) ← (𝑘𝑖,16, … , 𝑘𝑖,1)
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Algorithm 3.4 Reingold’s algorithm for the undirected st-connectivity problem
Input: a graph 𝐺 and two distinct vertices 𝑠 and 𝑡 .
Output: True if there is an 𝑠𝑡-walk in 𝐺, and False otherwise.

1: ReingoldUSTCONAlgorithm(𝐺, 𝑠, 𝑡):
2: Let 𝑛 ∶= 𝑣(𝐺) and 𝑁 ∶= 𝑛2. Let 𝐷𝑒 be the constant in Lemma 3.19 and 𝑙 ∶= 2⌈lg 𝐷𝑒𝑁 2⌉.
3: Let 𝐻 be a (𝐷16

𝑒 , 𝐷𝑒)-expander graph. We need at most constant space to find and store
the adjacency matrix 𝐴𝐻 of 𝐻 .

4: Let Rot𝐺 be a logspace oracle for a rotational map of 𝐺 and Rot𝐻 be a logspace oracle
for a rotational map of 𝐻 . As mentioned in Fact 3.2, we can design a logspace oracle
for a rotational map of a graph using its adjacency matrix.

5: Let Rot𝐺,𝐷𝑒 (𝑥, 𝑖) be the logspace oracle for the (𝑁 , 𝐷16
𝑒 )-multigraph Reg(𝐺, 𝐷𝑒) defined

using the function LogspaceOracleRegularNonbipMultigraph(𝑛, 𝐷𝑒 , Rot𝐺 , (𝑥, 𝑖)) in
Algorithm 3.2, where (𝑥, 𝑖) ∈ [𝑁 ] × [𝐷16

𝑒 ] are the only inputs for this function.
6: Let Rotexp(𝑥, 𝑖) be the logspace oracle for the multigraph  (Reg(𝐺, 𝐷𝑒), 𝐻 ) defined

using the function LogspaceOracleTransformationIntoExpander(𝑁 , 𝐷𝑒 , Rot𝐺,𝐷𝑒 , Rot𝐻 ,
(𝑥, 𝑖)) in Algorithm 3.3, where (𝑥, 𝑖) ∈ 𝑉 ( (Reg(𝐺, 𝐷𝑒), 𝐻 )) × [𝐷16

𝑒 ] are the only inputs
for this function.

7: Let 𝑁exp ∶= 𝑣( (Reg(𝐺, 𝐷𝑒), 𝐻 )) and 𝑢 ∶= (1, … , 1) ∈ [𝐷16]𝑙 .
8: Let 𝑠reg ∶= (𝑠, 1) and 𝑡reg ∶= (𝑡, 1), so 𝑠reg, 𝑡reg ∈ 𝑉 (Reg(𝐺, 𝐷𝑒)).
9: Let 𝑠exp ∶= (𝑠reg, 𝑢) and 𝑡exp ∶= (𝑡reg, 𝑢), so 𝑠exp, 𝑡exp ∈ 𝑉 ( (Reg(𝐺, 𝐷𝑒), 𝐻 )).

10: return USTCONAlgorithmForExpanders(𝑁exp, 𝐷16
𝑒 , Rotexp, 𝑠exp, 𝑡exp)
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Chapter 4

Conclusions

Generally speaking, the goal of this work is to study the techniques utilized to un-
derstand the space complexity of the undirected 𝑠𝑡-connectivity problem. As there is an
extensive literature about this problem, we narrowed our focus to the first randomized
logspace algorithm [Ale+79] and the first deterministic logspace algorithm [Rei08] solving
USTCON. We aimed to provide detailed proofs for the main results and present all the
background needed to understand them. However, we left some technical details about the
algorithms and their implementations without complete proofs, since those proofs would
require more technical mathematical theories (e.g., defining Turing machines and their
tape complexity, or using arguments from measure theory/advanced probability theory)
to properly formalize them.

Although Reingold’s algorithm solved one of the main problems regarding logspace
complexity, there are still many other interesting open questions in this area. The following
list highlights some of those questions and provides a non-exhaustive list of references for
the interested reader:

1. Is there a deterministic logspace algorithm for the directed 𝑠𝑡-connectivity problem?
As mentioned in the introduction, this question is crucial to answer the L versus NL
question. To the best of our knowledge, Savitch’s algorithm [Sav70] is currently the
best upper bound.

2. Is there a deterministic logspace algorithm for the undirected 𝑠𝑡-connectivity prob-
lem that runs in linear time? By a classical result in complexity theory, we know that
every logspace algorithm also runs in polynomial time, so Reingold’s algorithm is a
polynomial time algorithm for USTCON. However, it is not optimal in the sense that
the multiplicative constant for the space usage is extremely high and its running
time may be a large polynomial. To the best of our knowledge, the currently most
efficient deterministic logspace algorithm for USTCON was proposed by Rozenman
and Vadhan [RV05].

3. Are there efficient space-bounded pseudorandom generators? Can we design deter-
ministic logspace algorithms for other problems in RL? There has been some recent
progress on space-bounded pseudorandom generators (see Hoza [Hoz21]) and on
deterministic nearly-logspace algorithms for approximately solving linear systems
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given by the Laplacian of undirected graphs (see Murtagh, Reingold, Sidford, and
Vadhan [Mur+21]).

4. Is there a deterministic logspace algorithm to construct universal traversal se-
quences? By the probabilistic proof of Aleliunas, Karp, Lipton, Lovász, and Rack-
off [Ale+79] (see Section 2.4 of this work), we know that there are universal sequences
of polynomial length and, with high probability, a random sequence of appropriate
length is universal. Besides being interesting combinatorial objects, those sequences
were used by Babai, Nisan, and Szegedy [BNS92] to construct space-bounded pseu-
dorandom generators, which made researchers interested in explicit constructions
for them. To the best of our knowledge, the best construction for those sequences is
the 𝑂((lg 𝑛)2)-space algorithm by Nisan [Nis92] that constructs universal sequences
of length 𝑛𝑂(lg 𝑛).

We recommend reading Section 6.2 of Reingold [Rei08] for more details about those
questions.
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