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Too much consistency is as bad for

the mind as it is for the body. Con-

sistency is contrary to nature, con-

trary to life. The only completely

consistent people are the dead.
— Aldous Huxley





Resumo

Juliano Garcia de Oliveira. Um Estudo sobre Classi�cadores de Gradient Boosting: Uma
análise experimental em larga escala do efeito de hiperparâmetros em modelos de clas-
si�cação binária. Monogra�a (Bacharelado). Instituto de Matemática e Estatística, Univer-

sidade de São Paulo, São Paulo, 2019.

O Gradient Boosting Machines (GBMs) é um algoritmo supervisionado de aprendizado de

máquina que vem obtendo excelente resultados em uma ampla gama de problemas e vencendo

diversas competições de aprendizado de máquina. Ao construir um modelo de aprendizado de

máquina, a otimização de hiperparâmetros pode se tornar uma tarefa dispendiosa e demorada,

dependendo do número e do espaço de busca do procedimento de otimização. Usuários de

aprendizado de máquina que não são pesquisadores experientes ou pro�ssionais de ciência

de dados podem ter di�culdade para de�nir quais hiperparâmetros e valores escolher ao

iniciar o ajuste do modelo, especialmente com implementações mais recentes de GBMs como

a biblioteca XGBoost e LightGBM. Neste trabalho, um experimento em larga escala com 70

conjuntos de dados é realizado usando a plataforma OpenML, medindo a sensibilidade das

métricas de avaliação de classi�cadores binários a alterações em três hiperparâmetros da

biblioteca LightGBM. Um arcabouço estatístico sólido é aplicado aos resultados do estudo,

analisando o comportamento através de três pontos de vista diferentes: resultados por hiper-

parâmetros, resultados por características do conjunto de dados e resultados por métrica de

desempenho. Os experimentos realizados indicam relações interessantes dos hiperparâmetros

nos classi�cadores de gradient boosting, descobrindo quais combinações de hiperparâmetros

resultaram em modelos com a maior alteração nas métricas, quais delas são mais sensíveis e

quais características dos conjuntos de dados estudados se destacaram. Estes resultados são

apresentados aqui para facilitar a criação de modelos de classi�cação baseados em GBMs em

aprendizado de máquina.

Palavras-chave: Importância de Hiperparâmetros. Gradient Boosting. Aprendizado de

Máquina Supervisionado. Análise Experimental. Classi�cação. Seleção de Modelos. Estudo

Empírico.





Abstract

Juliano Garcia de Oliveira. A Study on Gradient Boosting Classi�ers: A large-scale ex-
perimental analysis of hyperparameter e�ect on binary classi�cation models. Under-

graduate Thesis (Bachelor). Institute of Mathematics and Statistics, University of São Paulo,

São Paulo, 2019.

Gradient Boosting Machines (GBMs) is a supervised machine learning algorithm that has

been achieving state-of-the-art results in a wide range of di�erent problems and winning

machine learning competitions. When building any machine learning model, the hyper-

parameter optimization can become a costly and time-consuming task depending on the

number and the hyperparameter space of the tuning procedure. Machine learning users that

are not experienced researchers or data science professionals can struggle to de�ne which

hyperparameters and values to choose when starting the model tuning, especially with newer

GBMs implementations like the XGBoost and LightGBM library. In this work, a large-scale

experiment with 70 datasets is conducted using the OpenML platform, measuring the sensi-

tivity of binary classi�ers evaluation metrics to changes in three LightGBM hyperparameters.

A solid statistical framework is applied to the study results, analyzing the behavior from three

di�erent viewpoints: results by hyperparameters, results by characteristics of the dataset and

results by performance metric. The carried out experiments indicate insightful relationships

of the hyperparameters in gradient boosting classi�ers, uncovering which combinations of

hyperparameters resulted in models with the highest change in the metrics from the baseline,

what metrics are most sensitive and which characteristics of the studied datasets stood out.

These results are hereby here presented to facilitate the model building of gradient boosting

classi�ers for machine learning users.

Keywords: Hyperparameter Importance. Gradient Boosting. Supervised Machine Learning.

Experimental Analysis. Classi�cation. Model Selection. Empirical Study.





Contents

Symbols and Notations ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Fundamentals of Supervised Learning 3
2.1 Function Approximation and Optimization . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Validation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Classification Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.1 AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Brier Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.3 Logloss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Model Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Gradient Boosting Machines 11
3.1 Additive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Boosting and AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 GBMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 XGBoost and LightGBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Study Structure 19
4.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 OpenML Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Descriptive Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Hyperparameter Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



vi CONTENTS

4.4.1 Hyperparameters Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.2 Maximum Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.3 Learning Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.4 Number of Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.5 Final Experiment Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5.1 Label Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Experimental Analysis 31
5.1 Single Dataset Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Individual Hyperparameter Impact . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.2 Hyperparameter Pairs Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.3 Hyperparameter Triples Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Dataset Aggregation and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.1 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 Clustering Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Experiment Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 δmetric Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.2 Ordering and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Statistical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4.1 Experimental Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.2 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4.3 ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.4 Testing of Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.5 Kruskal–Wallis: A Nonparametric Approach . . . . . . . . . . . . . . . . . . . 51

6 Results and Discussion 53
6.1 Statistical Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Treatment Effect and Single-Factor Plots . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Result by Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 ηNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3.2 ηMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.3 ηLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3.4 ηMD,LR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.5 ηMD,NE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.6 ηLR,NE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.7 ηNE,MD,LR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Results by Hyperparameter Combination Effect . . . . . . . . . . . . . . . . . . . . . 67
6.5 Results by Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6 Results by Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Conclusion 73
7.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Cluster Ridgelines Plots 75



CONTENTS vii

B Statistical Tests Results 81

Bibliography 85



viii CONTENTS



Symbols and Notations

Some of the symbols and notations are based on Goodfellow et al. [2016], with slight modifica-
tions.

x(i) The i-th example from a dataset, vector or scalar
y(i) The target associated with x(i)
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Chapter 1

Introduction

1.1 Motivation

Machine Learning techniques are widely used in the modern industry to leverage useful insights
and applications from data. In a range of very different areas, from medical labs to financial insti-
tutions, machine learning models are already a fundamental part of the business. There is a rising
trend of academic research on the theory and applications of machine learning techniques, which
is evidence of the growing importance of robust machine learning models for modern scientific and
industrial applications.

Gradient Boosting Machines (GBMs) is one of the techniques which has been achieving state-of-
the-art results, especially with problems in structured datasets. State of Data Science and Machine
Learning 2019 from Kaggle [2019], an industry-wide survey that presents a comprehensive view
of the state of data science and machine learning, reports that GBMs is the third most used
algorithm chosen by the respondents. The XGBoost and LightGBM libraries are the commonly
used implementations nowadays, using decision trees as the base learners in the algorithm.

In the applied research and industry a considerable amount of a data scientist’s time is reserved
to experimentation and improvements to new or existing machine learning models. An important
component of this process is the experimentation with parameters that the algorithm does not learn
directly from the data, the hyperparameters. Despite the increase in the development of automated
tuning techniques and the currently available hyperparameter optimization methods, XGBoost and
LightGBM libraries have several hyperparameters to be optimized, which depending on the amount
of data and the desired number of hyperparameters renders these tuning techniques infeasible.

Recent research has been tackling this problem with different solutions and perspectives. In
Probst et al. [2018], the concept of hyperparameter tunability is formalized and new default values
of hyperparameters are calculated for some algorithms. In another paper, van Rijn and Hutter
[2018] attempts to measure the relative importance of each hyperparameter over different datasets,
including the gradient boosting algorithm AdaBoost.

To expand on the knowledge of how hyperparameters alter the machine learning model per-
formance, this study proposes a large-scale experiment relating dataset’s characteristics, gradient
boosting classification models, a set of hyperparameters and selected evaluation metrics for classi-
fication tasks.

1



2 INTRODUCTION 1.3

1.2 Objective

The main objective of this work is to study and obtain insights about the main hyperparameters
of gradient boosting binary classification models, using a statistically robust framework in the
analysis. The research objective of the studies can be summarized in the following viewpoints:

1. How each type of hyperparameter (or combinations of them) affects the performance of the
model, overall. Is there a hyperparameter which does not affect much the performance? What
is the combination of hyperparameter that impacts the most? How sensitive is the gradient
boosting algorithm to the studied hyperparameters?

2. How different characteristics of a dataset affect the hyperparameters impact, if there is a
difference in them. Datasets with high number of features will have a different impact on
hyperparameter? How the datasets are sensitive to hyperparameter changes in the algorithm?

3. How the performance metrics of classification models relate, obtain insights about the relative
behavior of the performance metrics and the hyperparameters. Is there a pattern in the metrics
behavior? Which combination of hyperparameter causes the highest change in a performance
metric?

1.3 Structure

The next two chapters of this work, Chapter 2 and Chapter 3 introduce the required theoretical
background for supervised machine learning and gradient boosting machines, including an expla-
nation of the studied hyperparameters. Chapter 4 describe the structure of the experiment, which
datasets were used, how the hyperparameters values were created and the experiment pipeline. In
Chapter 5 the experimental analysis is outlined, with the description of the aggregation method
used, definitions of concepts for the final analysis and a complete characterization of the statistical
framework used in the results. The main results are presented in 6, with the outcomes observed from
the analysis along with discussions of what was observed. Finally, Chapter 7 present the conclusions
from the overall study and a discussion about some of its limitations that could be addressed in
future work.

There are two complementary materials for this work: the first ones are the appendices A and
B at the end of this dissertation, which contain all the ridgeline plots and statistical results of the
experiment. The second complementary material is a Jupyter Notebook with the code and complete
list of plots, results and analysis performed on the data.



Chapter 2

Fundamentals of Supervised Learning

InMachine Learning one of the main objectives is to discover patterns from data, obtain insights
and solve a multitude of problems in different fields. Tasks that deal with data in the form of
(x(i), y(i)), with x(i) ∈ Rd, where the true outcome y(i) ∈ R is available for at least some instances
of the dataset, is part of the supervised learning area of machine learning.

In Russell and Norvig [2010] the task of supervised learning is defined as:

“Given a training set of N example input-output pairs

(x(1), y(1)), (x(2), y(2)), ..., (x(N), y(N))

where each y(i) was generated by an unknown function y = f(x), discover a function h
which approximates the true function f .

The x and y can be any value(...). The function h is a hypothesis. Learning is a search
through the space of possible hypothesis for one that will perform well, even on new
examples beyond the training set.”

Some classical examples of supervised learning tasks include: Email Spam detection, where x(i)

is the text (or a representation of it) of an email, and the label y(i) is a Boolean indicator of whether
the i-th email is a spam or not; Classification of handwritten digits, where x(i) is an image or the
representation of a handwritten number and y(i) the corresponding number; Predicting house prices,
where x(i) is a set of different characteristics of a house and y(i) is its price.

2.1 Function Approximation and Optimization

A supervised learning task can be understood as an optimization problem. As explained in
Hastie et al. [2009], this function-fitting paradigm basically

“attempts to learn f by example through a teacher. One observes the system under
study, both the inputs and outputs, and assembles a training set (x(i), y(i)). The ob-
served input values to the system x(i) are also fed into an artificial system, known as a
learning algorithm (usually a computer program), which also produces outputs f̂(x(i))

in response to the inputs. The learning algorithm has the property that it can mod-
ify its input/output relationship f̂ in response to differences y(i) − f̂(x(i)) between the

3
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original and generated outputs. This process is known as learning by example. Upon
completion of the learning process the hope is that the artificial and real outputs will
be close enough to be useful for all sets of inputs likely to be encountered in practice
(generalization).”

The functions can be estimated using a range of differentmodels, i.e. specific hypotheses chosen
to approximate the true underlying function f . Examples of commonly used approximators are
linear basis expansions, the sigmoid transformation, maximum likelihood estimation, etc., and they
are described in details in Hastie et al. [2009]. To estimate the parameters of these approximations
that best fit the data, learning algorithms usually perform an optimization over a specific loss
function (Kuhn and Johnson [2013]) which depends on the chosen approximator.

2.2 Validation and Evaluation

The basic supervised learning problem usually consists of two sets of data: training set and
the test set. A model is trained using data from the training set, resulting in a model f̂ . This
model then predicts the data in the test set, and with the predicted ŷ(i) the model generalization
error (prediction error) can be estimated.

The Bias-Variance Tradeoff (Hastie et al. [2009]) in predictive modeling impacts the ability
of a learning method to generalize. High variance indicates that the model fits random noise in
the training set, which usually results in low generalization power (overfitting). On the other hand,
a model with high bias has a very low difference in prediction error between the training set and
test set, but usually has poor performance (underfitting). In the model training and evaluation,
its important to assess generalization performance, and this is usually done using the test set. In
this assessment process overfitting and underfitting can be detected by comparing the model’s
prediction error on training versus test set. For more information on this topic consult Chapter 7
of Hastie et al. [2009].

2.3 Classification Task

When the codomain of f is finite, i.e. y can assume a finite set of values, the learning problem
is called classification. Specifically, when the cardinality of the codomain can assume only two
values the problem is called binary classification. An example of the decision boundary of a
binary classifier can be seen in Figure 2.1.
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Figure 2.1: Example of decision boundary for a binary classifier, from Hastie et al. [2009]

The Email Spam detection problem described in the last section is a binary classification problem
since the output is binary: the email is either spam, or it is not. In this work, the focus will be on
binary classification problems and their specific metrics.

2.4 Classification Metrics

There are many metrics for model performance and evaluation of classification models. In this
study, the metrics evaluated are the AUC (or AUROC), which stands for Area Under the Receiver
Operating Characteristic Curve; The logarithmic loss or Logloss, which is a commonly used loss
function for classification problems; Brier Score, a score function which measures the accuracy of
probabilistic predictions. A good overview of these metrics is found in Kuhn and Johnson [2013].

In a binary classifier, each prediction of the model ouputs a number between 0 and 1. For
simplicity, assuming that the binary labels are 0 and 1, the ouput can be interpreted as the predicted
probability of a given instance being of class 1. In applications where the expected usage is the class
itself instead of a probability, a threshold needs to be set, i.e by setting a threshold τ , the predicted
labels will be equal to 1 if the outputed value is ≥ τ , and 0 otherwise.

The intuition behind choosing these specific metrics are:

• AUC is widely used in research, and it is a good metric insensitive to class imbalance, having
a bounded value between 0 and 1;

• Logloss is the direct function optimized in the experiments, i.e. the gradient boosting steps
are trying to reduce the logarithmic loss in each step. The logloss takes into account the
uncertainty of the prediction and how much the actual label differ from it;

• Brier Score has good statistical properties, according to Rufibach [2010] it also addresses
simultaneously probability calibration, consistency between predicted probabilities and the
observation as well as sharpness, which is related to the concentration of the predictive dis-
tribution;
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Below an overview about each metric is given. For more information on specific characteristics
and mathematical formulation of each evaluation metric one can refer to Brown and Davis [2006],
Rufibach [2010], Kuhn and Johnson [2013] and Hastie et al. [2009].

2.4.1 AUC

The Receiver Operating Characteristic curve is a probability curve that measures the power of
prediction of a binary classifier given a threshold. The outcomes of a binary classification can be
summarized in a confusion matrix, illustrated in Table 2.1. The TP, FP, TN and FN stands for
True Positives, False Positives, True Negatives and False Negatives. They are calculated by simply
distributing all the data into each part of the matrix depending on the predicted and actual class
of each data point.

Actual Class
True False

Predicted Class
True TP FP

False FN TN

Table 2.1: The confusion matrix for binary classification tasks

The ROC curve is calculated by plotting the True Positive Rate (TPR) against the False Positive
Rate, as seen in Figure 2.2. In the figure, two points of the ROC curve are highlighted to illustrate
a difference in the metrics of the ROC curve. The definition of a ROC curve is

Rocx(τ) = TPRτ =
TPτ

TPτ + FNτ

Rocy(τ) = FPRτ =
FPτ

FPτ + TNτ
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Figure 2.2: ROC curve of a logistic regression classifier, from Kuhn and Johnson [2013]. Two points of the
ROC curve are highlighted, showing different values of Specificity and Sensitivity.

All of these metrics depend on the threshold τ . The AUC is defined as the area under this curve
and provides an aggregate measure of the classifier performance against all possible thresholds. It
ranges from 0 (worst performance) to 1 (perfect classifier).

2.4.2 Brier Score

The Brier Score is the mean squared difference between the predicted probabilities and the
actual labels.

Similar to the AUC, the Brier Score is a bounded measure from 0 to 1, but its interpretation is
different: 0 is the best possible Brier Score, while 1 is the worst. The actual equation is demonstrated
in 2.1.

Brier =
1

n

n∑
i=1

(ŷ(i) − y(i))2 (2.1)

Brier Score can sum up different components related to forecasting, especially taking into account
the calibration of the predicted probabilities. In Murphy [1973] there is an insightful partition of the
Brier Score in three components, according to the article: “a measure of the uncertainty inherent in
the events, or states, on the occasions of concern (...); a measure of the reliability of the forecasts;
and a new measure of the resolution of the forecasts”. The mathematical formulation of this partition
is omitted here as it is out of the scope of this study, but can be found in the works of Rufibach
[2010] and Murphy [1973].

2.4.3 Logloss

Logarithmic Loss or Logloss measures the accuracy of a classifier by penalizing mistakes de-
pending on how uncertain a prediction is from the actual label. Basically, this encapsulates the
intuition that giving a highly confident prediction (e.g. ŷ = 0.95) but being very far from the actual
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label y = 0 is worse then being uncertain about it (e.g. ŷ = 0.5). The logloss equation for binary
classifiers is shown in Equation 2.2.

Logloss = − 1

N

n∑
i=1

[y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))] (2.2)

2.5 Model Tuning

Many models in supervised learning have parameters that cannot be directly estimated from
the available data. For example, in a decision tree algorithm, the max depth or the criterion to
measure the quality of a split needs to be chosen before the algorithm learning process. According
to Kuhn and Johnson [2013] this type of parameter is called a tuning parameter because there is no
analytical formula available to calculate an appropriate value for it. This parameter is also called a
hyperparameter (Kuhn and Johnson [2013]).

Hyperparameters control the complexity of a model, controlling bias and variance of an algo-
rithm. In the decision tree example, increasing the max depth the learning algorithm can use will
increase the complexity of the model, as the tree can learn more complex patterns in data. In the
logistic regression model, the regularization parameter (usually denoted λ) is a hyperparameter
of the model, and also controls the complexity of the model. For a more complete explanation of
regularization and its importance in predictive modeling refer to Chapter 5 of Hastie et al. [2009].

Since the hyperparameters are not directly estimated from the training data, there are different
methods to optimize and find the appropriate ones for a given model. In applied machine learning
and data science, a common procedure for model tuning (i.e. finding hyperparameters) usually
consists of multiple runs of the same algorithm, but changing the hyperparameter(s) in each run,
and evaluating the classifier (or another type of model) in a validation set. This set is different
than the test set presented in Section 2.2, as the test set is needed to assess the generalization error
of the final model after model tuning.

Besides the traditional separation into train, validation and test set, resampling techniques are
also widely used for estimating model performance. The two main flavors of resampling accord-
ing to Kuhn and Johnson [2013] is the k-Fold Cross-Validation, where the samples are randomly
partitioned into k sets of approximately equal size, and in each iteration k − 1 of these folds are
used for training and the remaining fold is used for model evaluation (see Figure 2.3); And another
resampling method is a bootstrap, a random sample of the data taken with replacement, training a
model on the selected samples and evaluating to predict the out-of-bag samples.

Figure 2.3: Schema of a single 5-fold Cross-Validation iteration, from Hastie et al. [2009]

Model tuning is a critical part of the workflow when building machine learning models, and there
is vast literature exploring different approaches to quantify more sensitive hyperparameters given
an algorithm (in Probst et al. [2018]), automatic tuning approaches using Bayesian Optimization
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(Bergstra et al. [2013]), etc. In this study, the focus is on the hyperparameters of gradient boosting
algorithms, specifically gradient boosting with decision trees, explained in Chapter 3.

2.6 Decision Trees

Most of the current gradient boosting algorithms use decision trees as the base learners. Decision
trees, or specifically classification trees in the case of classification problems, consists of multiple
nested conditional statements in its internal nodes, with the predictions in the leaves.

The actual learning process of a decision tree is called an induction of the decision tree. The
idea of the algorithm is to choose internal tree splits that best explain the data and is a small tree,
as described in Russell and Norvig [2010]. Figure 2.4 contains an example of a classification tree for
deciding whether to wait for a table.

Figure 2.4: Example of a trained decision tree, from Russell and Norvig [2010]

The learning process of classification trees consists of multiple iterations to choose optimal splits
given the training data provided, according to some criteria. Common optimization criteria are
usually derived from Information Theory, like the Gini Index, Cross-Entropy and misclassification
error (Hastie et al. [2009]). In practical usages and because of numeric properties (see Hastie et al.
[2009]), Gini Index and Cross-Entropy are favored over the misclassification error.

Typical hyperparameters of classifications trees refer to the actual structure of the tree. The
maximum depth hyperparameter controls how deep the tree can grow, i.e. how many splits will
it have, minimum leaf samples controls the minimum number of samples each leaf needs to have,
etc. For an extensive empirical study of decision tree hyperparameter tuning, one can refer to
Mantovani et al. [2018].
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Chapter 3

Gradient Boosting Machines

Gradient Boosting Machines(GBM) is a machine learning algorithm, based on the idea of ad-
ditive models from statistics and gradient descent(Hastie et al. [2009]). GBM works by building a
forward stagewise additive model by performing gradient descent in function space, as proposed by
Friedman [2000].

Gradient Boosting, especially tree-based gradient boosting, has been achieving state-of-the-art
results in many datasets (Li [2012]), especially with structured data. Structured data is any type
of data organized in defined data structures, like a JSON file or a table with rows and columns.
Gradient Boosting is a widely-used machine learning algorithm due to its efficiency, accuracy, and
interpretability, according to Ke et al. [2017a]. The Additive Modeling technique and the Gradient
Descent algorithm are key ideas to GBMs and are briefly introduced below.

3.1 Additive Model

An additive model is a regression technique suggested by Friedman and Stuetzle [1981], where
the basic idea is to approximate a dataset using a sum of smooth functions of the individual
features of the observed data, instead of a complex general regression surface.

Consider a supervised dataset is a set of pairs (x(i), y(i)), where x(i) denotes the d-dimensional
vector of the i-th observation (d is the number of features), and y(i) is the true outcome of the i-th
observation. An additive model is then described as:

E[y(i) | x(i)] = β0 +
d∑
j=1

fj(X:,j) (3.1)

The β0 is the intercept term, and each function fj is learned from the respective j-th feature over all
the observations in the dataset, i.e. the columnX:,j . Each of those functions can be estimated using
any nonparametric regression technique, such as Gaussian Process Regression, smoothing splines,
kernel regression, k-nearest-neighbors, etc., as indicated in Hastie et al. [2009].

3.2 Gradient Descent

Gradient Descent is an iterative optimization algorithm. As explained by Ruder [2016], the basic
version of the algorithm is used to minimize an objective function J(X; θ). This is parameterized

11
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by a model’s parameters θ ∈ Rp, by using the gradient vector w.r.t the parameters θ of the function
at a specific point to update the parameters in the opposite direction of this vector. Usually, the
parameters θ are updated until a fixed number of iterations is reached, or convergence is achieved.
This algorithm uses the learning rate η to control how much the coefficients of θ can change on
each iteration.

The basic update rule of the original gradient descent algorithm is defined as

θt = θt−1 − η · ∇θt−1J(X; θt−1) (3.2)

A gradient descent execution will run the above update t = M times, and it can be interpreted as
generating M vectors pm of the form pm = −η · ∇θm−1J(X; θm−1), and this is a key idea which is
important in the mathematical formulation of Gradient Boosting Machines. Denoting p0 = θ0 (the
initial parameters values before optimization), the final optimal parameters θ? can be written as

θ? =
M−1∑
m=0

pm (3.3)

3.3 Boosting and AdaBoost

The boosting method is a general technique that attempts to "boost" the accuracy of a given
machine learning algorithm, answering the following question: "Can a set of weak learners create a
single strong learner?". A weak learner is a model that performs just slightly better than random
guessing. The purpose of boosting is to sequentially apply the weak learning algorithm (i.e. an
algorithm that produces weak learners) to modified versions of the data, producing a sequence of
weak classifiers fm,m = 1, 2, ...,M , as described by Hastie et al. [2009].

On a superficial level, boosting is similar to another technique called bagging, used in the famous
Random Forest learning algorithm, as both are trying to create a strong learner from an ensemble
of weak learners. However, they are fundamentally different: In both bagging and boosting, the
variance of the estimates is reduced when the ensemble of learners is created, however, the boosting
method reduces both the bias and the variance, which makes this technique prone to overfitting.

Schapire [1999] gives a brief overview of the boosting method and its applications, especially
the famous AdaBoost algorithm, which was a major breakthrough in Machine Learning research.
The original AdaBoost algorithm is designed for classification problems, where the output is either
−1 or 1, and the final prediction for a given instance is a weighted sum of each generated weak
classifier:

Fm(x) = sign(
M∑
m=1

ρm · fm(x)) (3.4)

The weights ρm, ρm ∈ R in equation 3.4 are computed by the boosting algorithm, and the idea is
to increase the influence of weak learners that are more accurate, while at the same time penalizing
the ones that do not predict very well, and this is illustrated in Figure 3.1.

The data modifications done in each step of the boosting procedure is to assign weights wi,
wi ∈ R, for each x(i) in the dataset, based if the instance x(i) was correctly classified or not. The
initial weight for all data points is 1/n, and in the boosting process these weights are adjusted
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Figure 3.1: Training of an AdaBoost classifier, image from Marsh [2016]

following an exponential function using ρm and if the point being updated was correctly classified
or not in the last update. One can refer to Hastie et al. [2009] for a detailed explanation of the
AdaBoost algorithm and its formal mathematical description.

3.4 GBMs

Gradient Boosting Machines were originally introduced by Friedman [2000], in the paper titled
"Greedy Function Approximation: A Gradient Boosting Machine". In this work, Friedman makes a
connection between stagewise additive expansions (the concept of an additive model) and gradient
descent. The GBM algorithm works by optimizing any given differentiable loss function, using
gradient descent. However, the optimization is not done in terms of a numeric optimization (i.e. of
updating a vector of parameters θ), as described in Section 3.2, but by "boosting" functions in the
direction of the gradient of the loss function.

Since GBMs deal with finite data, they optimize the functions in terms of the supervised dataset
(x(i), y(i)) inputs, not w.r.t all values of x, as they are (usually) infinite. The final model of the
GBM will be similar to equations 3.1 and 3.4:

FM (x) = F0(x) +
M∑
m=1

Fm(x) (3.5)

The Fm(x) functions are boosted functions built in a stagewise fashion, just like the θt in gradient
descent. The base functions are learners, and they can be parametrized as βmh(x; am), where βm
is a weight, and am the parameters of the learner h. In most implementations the base functions
are tree-based learners, but they could be any learner where it is possible to assign weights. Also,
given a loss function L(yi, Fm(xi)), we would like to find all the optimal values of am and βm that
would minimize the loss function, ie., if we have M functions:

{βm, am}M1 = arg min
{β‚

m,a
‚
m}M1

n∑
i=1

L

(
y(i),

M∑
m=1

β‚
mh(x(i); a‚m)

)
However in most situations the optimization above is infeasible, so the “greedy-stagewise” approach
is to optimize each pair (βm, am) in a stagewise model, that is, for each m = 1, 2, ...,M
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(βm, am) = arg min
β,a

n∑
i=1

L(y(i), Fm−1(x
(i)) + βh(x(i); a))

using a vectorized notation and replacing ∆m(X) = ρmh(X; am), the update rule of the Fm func-
tions described in Equation 3.5 is

Fm(X) = Fm−1(X) + η∆m(X) (3.6)

The learning rate η can also be called the shrinkage parameter, as it “shrinks” the influence of the
new learner. Friedman [2000] shows that βmh(x; am) can be interpreted as the best greedy step
towards the optimal estimate, which can be represented as F ?(x)(similarly to Equation 3.3). This
can be seen as an update of the gradient descent method, as in Equation 3.2. The analogue of −∇θt
in the numerical gradient descent from Equation 3.2 is the gradient of the loss function L with
relation to the last estimate Fm−1(x), in the notation used by Friedman [2000]:

−gm(x(i)) = −
[
∂L(y(i), F (x(i)))

∂F (x(i))

]
F (x)=Fm−1(x)

In literature, this gradient of the loss function L with respect to the last prediction ŷm−1 (i.e.
Fm−1(X)) is sometimes called pseudo-residual, and written as rm−1. Using a vectorized notation,
the pseudo-residual can be written as

rm−1 = ∇Fm−1(X)L(y, Fm−1(X)) = ∇ŷm−1
L(y, ŷm−1)

The GBM algorithm fits a learner h(x; am) with weight βm using the pseudo-residuals, not the
original X. The final version of the algorithm is formally defined as

gradient_boost(X, y,M, η)

1 F0(X) = arg minν
∑n

i=1 L(y(i), ν)

2 for m = 1 to M
3 rm−1 = ∇ŷm−1

L(y, ŷm−1), where ŷm−1 = Fm−1(X)

4 // Train a base learner minimizing squared error
5 am = arg mina,β

∑n
i=1

(
r(i)m−1 − βh(x(i); a)

)2
6 ρm = arg minρ

∑n
i=1 L(y(i), Fm−1(x

(i)) + ρh(x(i); am))

7 ∆m(X) = ρmh(X; am)

8 Fm(X) = Fm−1(X) + η∆m(X)

9 return FM

3.5 XGBoost and LightGBM

Even though Gradient Boosting was a known technique used in machine learning, its use became
widespread with the development of XGBoost, a scalable end-to-end tree boosting system, by
Chen and Guestrin [2016]. The main improvements brought by XGBoost was the development
of a sparsity-aware algorithm for sparse data and a “weighted quantile sketch for approximate
tree learning”. In general terms, the basic greedy algorithm to find the best split at a given tree
node in the boosting process is very computationally demanding, especially when finding splits for
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continuous variables. In XGBoost an approximate algorithm is used for split finding, using quantiles
of the feature distribution as split points for continuous variables.

These improvements and a parallel tree learning architecture are the main reasons for the recent
spread of gradient boosting techniques. According to Chen and Guestrin [2015], “(XGBoost) has
been widely adopted by data scientists and machine learning practitioners. XGBoost has been used
as a major system in winner solutions of more than ten machine learning challenges in the past
year (2015), most of which are highly competitive. These include highly impactful ones in the field,
such as KDDCup. It has also been widely adopted by industry users, including Google, Alibaba
and Tencent, and various startup companies.”

Figure 3.2: Example of structure score calculation for a single tree, from Chen and Guestrin [2015]

However, the algorithm used in this study is the novel LightGBM, created in 2017 by Microsoft
Research in Ke et al. [2017a]. It is important to understand the basic principles and improvements
of LightGBM since it is the chosen algorithm for the classification models in this study. There are
two main ideas behind LightGBM, both trying to improve the scalability of the gradient boosting
process for highly-dimensional data.

First, they propose a new technique for the estimation of information gain called Gradient-based
One-Side Sampling (GOSS). Since one of the most time-consuming tasks in the learning process
in gradient boosting is to find the split for the trees, usually some sort of sampling is done in
this step for efficiency purposes. The researchers noticed that the gradient for each data point in
the boosting process has useful information for a smarter data sampling strategy. In their paper
Ke et al. [2017a] explains that “(...) if an instance is associated with a small gradient, the training
error for this instance is small and it is already well-trained”. A data sampling strategy is then built
based on the rank of the absolute value of the gradient for each instance, sampling instances with
higher gradient and subsampling instances with small gradients. The idea is to put more focus on
the under-trained instances but keeping the data distribution closer to the original. GOSS has a
theoretical proof that its estimation power and generalization performance is close to using the full
data and better than random sampling.

To reduce the number of features, LightGBM develops a technique called Exclusive Feature
Bundling. It makes use of the high sparsity usually present in high-dimensional data, by designing
a “ (...)nearly lossless approach to reduce the number of features”. Since commonly there are many
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features which are mutually exclusive (never take nonzero values simultaneously), they can be
bundled into a single feature. This reduces significantly the algorithmic complexity of the algorithm
since it is basically reducing the number of features.

Since in this work the impact of hyperparameters from LightGBM is studied, it is important
to understand the basics of hyperparameters in these algorithms, covered in the next section.

3.6 Hyperparameters

One main difference in optimization from other GBM tools is that LightGBM grow trees leaf-
wise (see Figure 3.3), while most decision tree learning algorithms use a depth-wise approach. This
impacts on how each hyperparameter value should be chosen, and which values to optimize.

Figure 3.3: Leaf-wise tree growth, from LightGBM documentation (Ke et al. [2017b])

In the documentation from Ke et al. [2017b], there is a list of more than 20 hyperparameters one
can change and tune when building a gradient boosting model. For tuning the model and controlling
complexity, the commonly used hyperparameters to start with are:

• num_leaves

This hyperparameter controls the maximum number of leaves to grow on each boosting iter-
ation, and it is the main way to control the model complexity. By default, LightGBM has no
tree maximum depth limit, so this is the main way to apply regularization on the structure
of the model.

• min_data_in_leaf

Controls the minimum number of data points required to grow a new leaf, it is very important
since it helps prevent overfitting in leaf-wise trees. From practical experience, this parameter
is one of the most sensitive to the number of training samples.

• max_depth

Controls the depth of each tree explicitly, if needed. In this study, max_depth is one of the
hyperparameters studied.

• learning_rate

The learning rate is the parameter η from the Equation 3.6, and controls the influence of
each new learner. In practice, this is not usually a "tunable" hyperparameter but rather used
in combination with other hyperparameters in the tuning process (e.g. higher learning rate
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makes the training of the model faster, therefore allowing for faster model tuning). It is one
of the hyperparameters analyzed in this study.

• n_estimators

The number of estimators or boosting iterations in the gradient boosting process. This is the
parameter M in Equation 3.5, and controls how many trees are grown in model training.
Usually, the larger the number of iterations, the better the model will get, until it starts
overfitting in the training data. This is also another hyperparameter analyzed in this study.

There are many other parameters in LightGBM, but in practice, a model tuning using the
models described above usually provides a strong baseline for further tuning.
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Chapter 4

Study Structure

The main objective of this work is to study and compare the impact of selected hyperparameters
in different models trained on different datasets, using the LightGBM gradient boosting algorithm.
Each "type" of dataset will be aggregated in different categories using the values of aggregated
characteristics of the dataset itself (e.g. number of features, number of instances), this can be
checked on Section 4.3.

In the following sections an overview of the methodology and the experimental setup is given,
explaining the datasets, the hyperparameters chosen and its distributions, pipeline for testing and
the tools used in each step.

4.1 Tools

All of the study pipeline and analysis is done using Python 3.6. Besides the commonly used
data science tools (numpy, pandas, matplotlib, seaborn) the most important packages used are:

• fklearn: Functional machine learning library, developed by Nubank and built on top of
scikit-learn and main machine learning implementations, e.g. the LightGBM; It has very
useful abstractions, used in this study to build a pipeline of multiple learners and applying
the same evaluation function;

• toolz: Add more functional programming functionality into python, trying to follow the prin-
ciples of composability, purity and laziness.

• scikit-learn: The most widely used machine learning library for python;

• pingouin: Statistical package, mainly used for ANOVA tests and Levene’s test for ho-
moscedasticity. More details about it can be found in Vallat [2018];

• scipy: Scientific computing package, the most used module was scipy.stats for statistical
tests on the experiment results;

• scikit-posthoc: Library from the scikit environment, which provides post hoc tests for pair-
wise multiple comparisons that are usually performed in statistical data analysis to assess
the differences between group levels if a statistically significant result of ANOVA (or the
equivalent nonparametric test) test has been obtained, more details in Terpilowski [2019].

19
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4.2 OpenML Datasets

The OpenML project has an online service to “(...) share, organize and reuse data, code and
experiments. Following best practices observed in other sciences, OpenML allows collaborations
to scale effortlessly and rewards scientists for sharing their data more openly” (Vanschoren et al.
[2014]).

In the research of previous studies for this work, it was noted that OpenML was being used
in different scientific studies related to machine learning; A specific subset of datasets was used in
Probst et al. [2018] to conduct a large-scale benchmarking to measure hyperparameter tunability,
and it was also used in Couronné et al. [2018] as a benchmark platform for automatically retrieving
datasets and comparing different machine learning algorithms.

OpenML provides a python API package for automatically retrieving datasets, tasks, submit
customized runs and obtaining OpenML flows (a description of a personalized machine learning
task). In this study, the datasets used are retrieved using the python API, and filtered according
to some personalized rules, which are:

1. classes = 2, the study consists of analyzing binary classification problems;

2. min_num_features = 3, the dataset must have at least 3 features;

3. min_num_instances = 1000, the dataset must have at least 1000 instances (data points);

4. max_num_instances = 5000000, the dataset must have at most 5 million data points
(provided just as an upper bound, no dataset used had more then 2 million instances);

5. max_nan_percentage = 20%, LightGBM has built-in support for missing values (NaNs),
but the datasets are filtered to have at most 20% of its total number of rows with some missing
values, for more meaningful data and simplicity.

Figure 4.1: Number of datasets after filtering is close to 400
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After all these filters, the number of valid datasets for the experiment would be close to 400
(figure 4.1), in theory. However, several datasets could not be opened by the python API due
to a variety of errors, mostly related to Attribute-Relation File Format (ARFF) in python. This
brought the number of possible datasets to experiment close to 200, but since each hyperparameter
experiment takes a long time to run (favoring more hyperparameter space covered over the number
of datasets, check 4.4.1), the final number of datasets analyzed in this study is 70.

Each dataset retrieved by the OpenML API has a dataset id (did) related to it, along with very
useful metadata related to it, as it can be seen in Figure 4.2. With a simple exploratory analysis
of the datasets, it was observed that a great number of them had a high proportion of categorical
variables, and usually a high number of features too. Datasets with only textual data as features
were also removed from the study, along with features not explicitly indicated as a categorical
feature by the API.

Figure 4.2: Example of dataset information from OpenML

Analyzing the number of instances in the subset of datasets used in this study, it can be seen
that most of the datasets have a relatively small number of instances, but a portion of them have
more than 300000 data points, in hope to cover more data-heavy models (4.3).

Figure 4.3: Number of data points distribution
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4.2.1 Data Cleaning

In this study, there are only two data cleaning steps, intending to keep the cleaned dataset as
close as possible to the original to not interfere with the experiment results.

1. The OpenML provides an attribute describing which of the features in the dataset are the
categorical features; In the dataset building process, the type of each variable is identified
(using pandas-profiling package), and from each identified feature as "categorical", remove all
that aren’t explicitly declared by the OpenML attributes;

2. The data in each OpenML dataset does not follow a specific pattern, e.g. some datasets
represent the target variable as a string (’y’ and ’n’ ), some are represented in floating point,
Boolean, etc. In the experiment pipeline, the target is converted to an integer, if possible. If
not, the target is encoded using a label encoder.

4.3 Descriptive Dataset Statistics

To analyze subgroups of datasets and categorize each one of them, multiple statistics related to
the structure of the dataset are calculated before any machine learning model is trained. Before the
training process, the granularity of these statistics is feature-wise, which is then further aggregated
in the result analysis step.

Categorical features are known to cause a prediction shift in traditional gradient boosting
models, as demonstrated in Prokhorenkova et al. [2018]. This shift is identified as a special kind of
target leakage, which can also be caused in a preprocessing step of categorical features when using
target statistics (e.g. using the target/mean encoding technique)1. As noted in the mentioned paper,
LightGBM converts categorical features to gradient statistics at each step of the boosting process
(as explained in Section 3.5), which results in some information loss. To categorize datasets with
relation to categorical features, in this work the following statistics related to categorical variables
are calculated:

• cardinality, is the number of unique categorical values of a given feature;

• variance, is a simple measure of the variability of a specific categorical feature. Let |topj | be
the number of occurrences of the most frequent category in feature j, i.e. the column X:,j .
Then, this metric is defined as the inverse of the ratio of occurrences of the most frequent
category:

categorical_variability = 1− |topj |
|X:,j |

As an example, if 90% of the values of a given feature is the same, then the categorical
variability of the said feature is 0.1.

For numeric features, the main specific statistic calculated is the sample skewness of each
feature. Skewness is a degree of distribution distortion, and in this study, it is calculated using the

1To fix this kind of problem in a dataset with many categorical features a new boosting algorithm was developed
by Dorogush et al. [2018] called Catboost.
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unbiased adjusted Fisher–Pearson standardized moment coefficient from pandas. The skewness is
also trying to measure the variability of the numeric features and is used in the clustering of each
dataset as a feature.

The pipeline also calculates other useful statistics for each feature, like the percentiles, number
of NaNs, infinite values, mean, median, etc. They are useful in the exploratory step but are not
used when clustering the datasets in the result analysis step.

4.4 Hyperparameter Space

In Section 3.6 the basic hyperparameters used in LightGBM’s gradient boosting algorithm
is explained. In this section, the hyperparameter space2 of this study is explained, along with a
simple overview of the hypothesis behind each distribution choice, related to LightGBM default
hyperparameters and dataset size. Let Di denote the number of instances of the i-th dataset, i.e.
the total number of (x(i), y(i)) pairs for the i-th dataset.

4.4.1 Hyperparameters Tree

The intention is to train multiple models changing the hyperparameters values, and calculate
the metrics (explained in Section 2.4) for each combination of hyperparameter. In this study three
hyperparameters are studied: max_depth, learning_rate and num_estimators.

In this study, the hyperparameter space also represents all valid hyperparameters values to run
for the datasets, and is a function of Di. The hyperparameter space is represented as a special
tree, where each new leaf of the tree takes its parent node and generate new leafs based on a
new hyperparameters. Let LRi, NEi and MDi denote the sets of possible hyperparameter values
for learning rate, number of estimators and maximum depth, respectively. Let Si be the set of
all hyperparameter sets, i.e. Si = {LRi, NEi,MDi}, and P(Si) the power set of Si. The number
of values to test for each hyperparameter is denoted with the numbers NLR, NNE , NMD: e.g. if
NLR = 4 it means 4 values of learning rate will be generated (equivalent to say |LRi| = 4).

For a given tree depth k, the hyperparameter set to be explored at that depth is defined using
the rule in equation 4.1, where

∏
is the cartesian product operator.

HSk =
{ ∏
X∈Q

X : Q ∈ P(Si), |Q| = k
}

(4.1)

The hyperparameter tree of this study, represented in Figure 4.4, is then defined as different cartesian
products of all valid k combinations. Since three hyperparameters are being changed, the maximum
is k = 3, and the final space is the union of all cartesian products combinations:

Hspacei = HS1 ∪HS2 ∪HS3

This structure is generalizable for any number of hyperparameters, and it was designed this way
to measure hyperparameter impact depending on the number of combinations. It is expected that
changing multiple hyperparameters at the same time have a bigger impact on model performance
than changing just one. Each level of the hyperparameter tree represents a "combination effect",

2In model tuning, the hyperparameter space is the set of all the values each hyperparameter can assume in the
tuning process.
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Figure 4.4: Hyperparameter tree

i.e. the experiment can measure, for multiple combinations of hyperparameters, which combination
effect provides the biggest impact on the metrics (for better or worse) compared with the other
combinations.

As an example, consider the three sets of hyperparameters below:

LR = {0.1, 0.2}

NE = {1, 2}

MD = {10, 20}

Then each leaf of the hyperparameter tree will be:

HS1 =
{
{0.1, 0.2}, {1, 2}, {10, 20}

}

HS2 =
{
{(0.1, 1), (0.1, 2), (0.2, 1), (0.2, 2)},

{(0.1, 10), (0.1, 20), (0.2, 10), (0.2, 20)},

{(1, 10), (1, 20), (2, 10), (2, 20)}
}

HS3 =
{
{(0.1, 1, 10), (0.1, 1, 20), (0.1, 2, 10), (0.1, 2, 20),

(0.2, 1, 10), (0.2, 1, 20), (0.2, 2, 10), (0.2, 2, 20)}
}

It can be observed that the number of hyperparameters in each tree node increases multiplica-
tively with the number of initial hyperparameters and the number of layers k in the hyperparameter
tree, and it is one of the reasons why the experiment may take a long time to run depending on
the dataset. This was the chosen configuration of the experiment since the objective is not to per-
form a model tuning, but rather to measure the "magnitude" of the effects in performance metrics.
Better strategies could be used for model tuning like Grid Search, Random Search or Bayesian
Optimization, as it is stated in Probst et al. [2018].
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4.4.2 Maximum Depth

The maximum depth is the hyperparameter that controls the maximum possible depth each
boosting tree can have. As explained in Section 3.6, LightGBM default behavior is to grow the
trees leaf-wise, having an unbound maximum depth, but the structure is controlled by the number
of leaves in the tree. Max depth is a way to apply a constraint on the function space, i.e. the possible
hypothesis the learning algorithm can use and is commonly optimized in classical decision trees for
pruning.

Since gradient boosting harness the power of weak learners by combining them, usually the
depth of a single tree is not as deep as a traditional single classification tree. For example, in
XGBoost the default value for max depth is 6, while in the rpart package in R (single decision
trees) the default max depth is 30. Even though in gradient boosting the max depth can be used to
constrain the model, one can overfit in the data given a high enough number of boosting iterations:
this can be seen as an “overfit relationship” between max_depth and num_estimators. For this
reason, when defining the maximum depth or which values of it to optimize in a model tuning step
there is not a clear rule to choose an optimal value.

In this study, the tested maximum depth values are always the same, independent on the dataset
size:

MDi = {3, 4, ..., NMD + 3}

In the experiments NMD = 20, so each dataset is run using max depth from 3 to 22. The in-
tuition behind these values is to neither test with very big depth values, nor very small depth
for a weak learner in gradient boosting. The num_leaves parameter is automatically set to be
min(2max_depth − 1, 215), because this way the number of leaves will not influence too much the
results when changing the maximum depth and at the same time the number of nodes in each
boosting tree will not grow unbound when training with max_depth ≥ 16.

4.4.3 Learning Rate

The learning rate distribution is simple, and it depends only on the dataset size Di. In XGBoost
the default value of learning rate (also called eta) is 0.3 and in LightGBM it is 0.1, which is also
the default learning rate for scikit-learn implementation of gradient boosting. Since in the OpenML
datasets the dataset sizes aren’t too similar (see Figure 4.3), the distribution of learning rate values
to generate is a simple function starting from 0.01 for small datasets, changing based on the dataset
size.

Premise: Start with a learning rate value between 0.01 for small datasets, and a multiple of
0.1 for bigger datasets (a rule was defined by dividing Di by 10000). Then, experiment with bigger
and smaller values of learning rate around the "middle" value.

First it is defined a "middle" learning rate value ψi (defined in equation 4.2). Then the values
are generated as a list using NLR, to generate a symmetrical pattern of learning rates (the total
length of each "side" of the learning rate list is described in 4.3).

ψi = max
(

0.01, 0.1×max(1,
Di

10000
)
)

(4.2)
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κi = ·max

(
bNLR

2
c, 2
)

(4.3)

The symmetric pattern and the final LRi are generated following the rule described in equation
4.4. By changing the maximum length NLR and the dataset size Di, one can see the learning rate
distribution behavior: In Figure 4.5 all the Di from the study are categorized in percentiles, and
depending on the length (NLR) a given distribution of learning rate values LRi is shown.

LRi =
{ψi
κi
,

ψi
κi − 1

,
ψi

κi − 2
, ...,ψi, ..., (κi − 2) · ψi, (κi − 1) · ψi, κi · ψi

}
(4.4)

In this study, 5 unique learning rates are generated.
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Figure 4.5: Learning rate distribution, changing Di and NLR. Bigger dataset sizes generate higher learning
rates.

4.4.4 Number of Estimators

Both in XGBoost (XGBClassifier) and LightGBM the default value for the number of esti-
mators is set to 100. The optimal number of boosting iterations can be influenced by the dataset
size: by fixing other hyperparameters, a model of a dataset with very few data points can converge
much faster (i.e. in few boosting iterations) than a dataset with 10 times its size. Since in the study
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the intention is to test different boosting iterations, and the actual distribution ideally depends on
Di, first the maximum value of estimators a given dataset can have is defined, and then multiple
values of num_estimators are generated.

The definition of this function is a little arbitrary, but the objective is to cover different values and
tie together the Di of the dataset. Using maximum values of 400 estimators for small datasets and
1700 for big datasets, along with the definitions of small and big datasets beingDi ≤ 10000 andDi >

300000 respectively, a linear function is then defined to calculate the maximum value to be assigned.
After defining the constants in Equation 4.5 the rule for the max value of num_estimators is
defined in Equation 4.6.

a =
1700− 400

300000− 10000
, b = 400− a (4.5)

maxne(Di) =


400 if Di ≤ 10000

1700 if Di > 300000

a ·Di + b

(4.6)

Figure 4.6: Number of estimators distribution - changing Di, for a fixed NNE = 20. Bigger dataset sizes
generate higher num_estimators values.

The final list of number of estimators generated is then a linear interpolation starting at
minne(Di) = min(Di

4 , 50) to maxne(Di), in evenly spaced steps (Equation 4.7). An example of
multiple NEi distributions is shown in Figure 4.6 for different Di values, but with a fixed length
NNE = 20.

step =

(
maxne(Di)−minne(Di)

)
NNE − 1
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NEi =
{
bminne(Di)c, bminne(Di) + stepc, bminne(Di) + 2 · stepc, ..., bmaxne(Di)c

}
(4.7)

4.5 Final Experiment Pipeline

For each dataset considered in this study a pipeline is built for it, following the sequence:

1. Calculate the descriptive statistics for the dataset (see Section 4.3);

2. Build the hyperparameter space Hspacei, for the ith dataset;

3. Split the dataset into train and test set;

4. Build evaluators for each studied metric;

5. Train a LightGBM model for each hyperparameter value ∈ Hspacei, and evaluate it on the
train and test set;

6. Save logs.

The train test split strategy chosen for all datasets is a random split with train size being 70%
of the data points and 30% for the test (70/30). Given a dataset, the split is fixed, i.e. the train
and test are the same in all trained models.

4.5.1 Label Encoding

As stated in LightGBM’s documentation, the library has built-in support for categorical features,
which uses a specific method from Fisher [1958]. However, in order to make the study more general,
it was decided to not use this specific feature of LightGBM. When categorical features are detected,
a label encoding technique is used on the categorical values of the dataset. The label encoding
is just a numeric encoding of the categorical features, i.e. each categorical value is mapped to an
integer number.
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Chapter 5

Experimental Analysis

Each dataset pipeline result has all evaluated metrics (AUC, Brier and Logloss), the dataset
statistics (described in Section 4.3) and the generated hyperparameter space according to Section
4.4 of Chapter 4.

The focus of this Chapter is to give an overview of the main experimental analysis, how the
datasets were clustered and a basic explanation of the statistical theory necessary for the analysis
and statistical framework used.

5.1 Single Dataset Experiment

Each dataset result in the study has the following files:

1. shape: The number of data points Di and the number of features of both train and test set;

2. analyzer_info: A dictionary with information calculated by the analyzer. It contains
the feature set, what is the target column, an indicator if the dataset contains any categorical
variable, and all the categorical features if it has any;

3. openml_object: The original OpenML object of the dataset, with its name, description (if
it has one), basic attribute information, etc;

4. hp_tree: The generated hyperparameter tree for the dataset, i.e. all nodes of Hspacei;

5. final_result: All the metric results for all combinations of hyperparameters in the hyper-
parameter tree; Contains the values used for the main analysis.

Each entry of final_result contains the evaluators result for both train and test set for all
hyperparameters combinations. An example of a single entry in the final_result for a specific
dataset (BNG(kr-vs-kp), a chess move classification problem) is shown in Listing 5.1.

1 { ’ l ea rn ing_rate ’ : 0 .30000000000000004 ,
2 ’ num_estimators ’ : 1700 ,
3 ’max_depth ’ : 10 ,
4 ’ num_leaves ’ : 1023 ,
5 ’ seed ’ : 42 ,
6 ’ nthread ’ : 32 ,

31
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7 ’ verbose ’ : −1,
8 ’ t r a i n_re su l t ’ : { ’ auc_evaluator__target ’ : 0 .9963452091395292 ,
9 ’ log loss_eva luator__target ’ : 0 .07025840176806959 ,

10 ’ br ier_score_evaluator__target ’ : 0 .020611611004153745} ,
11 ’ t e s t_r e su l t ’ : { ’ auc_evaluator__target ’ : 0 .9857593012343584 ,
12 ’ log loss_eva luator__target ’ : 0 .208979460099794 ,
13 ’ br ier_score_evaluator__target ’ : 0 .03484311126894392} ,
14 }

Listing 5.1: BNG(kr-vs-kp) experiment result for hyperparam combination (0.3, 1700, 10)

Since each dataset has multiple results assigned to it, one can do an individual analysis
looking into a single dataset behavior. In this section, a summarized analysis of the BNG(kr-vs-
kp) dataset is given as an example. The BNG(kr-vs-kp) or "King+Rook versus King+Pawn" is one
of the datasets available in the OpenML platform, where the objective is to classify if the white
player can win or not (given the board positions determined by the feature values), and it is described
in more details in Shapiro [1987]. The "BNG" means this is an artificially augmented/generated
dataset.

5.1.1 Individual Hyperparameter Impact

The first node of the hyperparameter tree only defines single hyperparameters values. By keeping
the default LightGBM values for the remaining hyperparameters one can observe the impact of
changing a single hyperparameter on each metric of interest. The plot of these values is the classical
learning curve used in model tuning to assess the hyperparameter effect on model performance.
In Figure 5.1 impact of max depth is illustrated and in 5.2 the number of estimators, for the
BNG(kr-vs-kp) dataset.

Figure 5.1: Individual impact of max_depth on the BNG(kr-vs-kp) dataset: one can observe that when
max_depth > 14 the model starts to overfit.
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Figure 5.2: Individual impact of num_estimators on the BNG(kr-vs-kp) dataset

5.1.2 Hyperparameter Pairs Impact

The second node of the hyperparameter tree defines all pairs of possible combinations of hyper-
parameters. In this study, these combinations are MDi × LRi, MDi × NEi and LRi × NEi. For
example, in Figure 5.3 one can see at the same time that a high num_estimators combined with
lower max_depth have higher AUC on the test set (on this specific dataset), but at the same time
low num_estimators combined with high max_depth also achieve high AUC. This is an inter-
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esting behavior that repeats in different hyperparameters combinations, and are easily detectable
in the final general analysis looking at the treatment effect of each hyperparameter combination.

Figure 5.3: Pair impact of MDi ×NEi on the BNG(kr-vs-kp) dataset

On the other hand, when analyzing Figure 5.4 the pairMDi×LRi does not show a clear inversion
of the hyperparameters impact: one can only conclude that for BNG(kr-vs-kp) lower max_depth
and high learning_rate results in higher AUC (keeping the other hyperparameters the same).
This is expected since the learning rate does not have the same “overfit relationship” as maximum
depth and number of estimators have (explained in Subsection 4.4.2).
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Figure 5.4: Pair impact of MDi × LRi on the BNG(kr-vs-kp) dataset

5.1.3 Hyperparameter Triples Impact

Finally, each dataset is also run using all possible combinations of the studied hyperparame-
ters, i.e. a classical Grid Search run using num_estimators, max_depth and learning_rate.
Results of AUC of the triple impact for BNG(kr-vs-kp) can be seen in Figure 5.5.
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Figure 5.5: Triple impact of hyperparameters on the BNG(kr-vs-kp) dataset, showing only test set AUC

One of the inherent difficulties when analyzing these results is due to the high dimensionality
of the results: Each experiment has at least three different types of hyperparameters, plus three
different metrics for each run. In Subsection 5.3.2 this problem will be tackled, with an overview of
the statistical techniques and analysis performed to compare and obtain insights into the impact
on performance metrics.

5.2 Dataset Aggregation and Clustering

To tie dataset characteristics to hyperparameters effect in the subsequent analysis, a variety of
different measures were calculated in the dataset analysis process, explained in detail in Section 4.3
of Chapter 4. When analyzing all datasets’ features characteristics, useful insights into the data can
be found on it. First, a clear conclusion is that proportion of categorical features in the dataset is
much higher than other types (numeric, Boolean or constants), as demonstrated in Figure 5.6, and
that the most common cardinality is two categories for the categorical features1, while few features
have high cardinality (Figure 5.7).

1These categorical features could be encoded as the Boolean feature type, or vice-versa. In the study it was decided
that Boolean features are columns which had explicitly True and False as values.



5.2 DATASET AGGREGATION AND CLUSTERING 37

Figure 5.6: Feature types of the benchmark datasets

Figure 5.7: Cardinality of categorical features of the benchmark datasets

With relation to the skewness of the numeric features, most of them have low skewness, with the
majority of them having 0 skewness. This can indicate either that the features themselves do not
have innate skewness, or they’ve been processed by different techniques to normalize and remove
skewness, like a logarithmic transformation, cubic root transformation, etc. The distribution can be
seen in Figure 5.8.
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Figure 5.8: Skewness distribution of the numeric features in the dataset

5.2.1 Aggregation

Since the granularity of the statistics are feature-wise, all datasets were subjected to an aggrega-
tion process which combines the feature-wise statistics into dataset aggregated characteristics. The
objective of this aggregation is to represent each dataset considered in the study into a point in a
high dimensional space, which gives power to perform a multitude of transformations and compar-
isons, and in the case of this study, a clustering by the similarity of the datasets according to these
aggregated values. For each dataset, the following aggregations are made:

• num_rows: Number of rows in the dataset, i.e. the number of instances of Di;

• num_features: Number of features in the dataset;

• mean_skewness: 0 if there is no numeric features in the dataset, otherwise the mean of the
skewness of the numeric features;

• mean_variance: The mean of the variance of categorical features, where the variance con-
cept is the one described at Section 4.3;

• num_categorical: How many categorical features the dataset has;

• sum_cardinality_over_categorical: Let K be the set of categorical features of the
dataset, and CardinalityK the sum of the cardinality of all k ∈ K. Then, this aggregation is
defined as CardinalityK

|K|+1 , which is simply the "mean" of cardinality in the dataset. The +1 is
to avoid error with datasets which do not have categorical features;

• categorical_ratio: Proportion of categorical features in the dataset;

• numeric_ratio: Proportion of numeric features;

• boolean_ratio: Proportion of Boolean features;

• constant_ratio: Proportion of constant features.
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After this transformation, each dataset Di is now represented by a Pi ∈ R10 where each com-
ponent of the multidimensional point represents one of the aggregated characteristics calculated
above. To visualize these multidimensional points, a t-SNE projection (dimensionality reduction
technique, more details in Maaten and Hinton [2008]) on two dimensions is shown in Figure 5.9.

Figure 5.9: t-SNE projection of all Pi

The aggregated characteristics were designed in a way to encompass both the proportion of
feature types in the dataset and the absolute size of the dataset. The *ratio aggregations are
done to compare multiple datasets regardless of the absolute numeric value of features it has but
on the ratio of the feature types. On the other hand, the absolute features like num_rows captures
the absolute size of the data. For example, a simple analysis using num_rows, num_features
and categorical_ratio could yield interesting insights and a way to bundle similar datasets
together based on the proportion of categorical features, controlling for both the number of data
points and the number of features.

Finally, there is also an explicit emphasis on characteristics regarding numeric and categori-
cal features, which are of interest in this study (more information about the premisses about it
on Section 4.3 of Chapter 4). The mean of skewness aggregation can be used to control (in the
experimental design sense) for datasets with a similar distribution of skewed or not numerical fea-
tures, while the mean of variance, the number of categorical features and the "mean" of cardinality
describes important information regarding the categorical aspect of the dataset.

5.2.2 Clustering Strategy

To analyze all experiments based on similar dataset characteristics, the decided approach was to
perform a simple clustering technique, instead of manually selecting which datasets are similar by
looking at the aggregated characteristics by hand. Using the aggregated characteristics explained
in the last section, a clustering approach on the points Pi generates clusters based on those char-
acteristics.
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Figure 5.10: Dendrogram of the old clustering method

After some initial experimentation, the chosen clustering approach was to use the well known
K-means algorithm, with k = 6 clusters. K-means is a very simple algorithm that reduces the data
to centroids, and resulted in reasonable clusters for this study. The other tested technique was to use
agglomerative hierarchical clustering and choose the number of clusters by analyzing the resulting
dendrogram (the dendrogram for the hierarchical clustering is shown in Figure 5.10). However, this
technique generated an uneven number of datasets in each cluster, more than K-means, so the
K-means was chosen. It is important to note that the algorithms and the number of clusters chosen
here can highly impact the subsequent analysis of the experiment results. The objective is not to
create a generic analysis that could work with any possible dataset, but to actually measure the
impact of hyperparameters into specific clusters which follow a similar distribution of the aggregated
characteristics.

After the K-means procedure, the assigned clusters can be seen in the t-SNE projection in
Figure 5.11, where each color represents a different cluster. Even though the number of Pi in each
cluster is not uniform, the clustering assignment is more intuitive, albeit in reduced dimensionality.
As an observation note, the two t-SNE projections (Figure 5.9 and 5.11) are different because the
embeddings in low dimension change when new data is introduced. In this case, the centroids were
also added to the dataset before using t-SNE.

To understand better the behavior and general characteristics of each dataset of clusters, a
superficial manual analysis of the datasets in each cluster is performed. As an example, the names
of the datasets from Cluster 2 and 3 are described in Table 5.1. From the superficial analysis of
the content of each dataset, one can see that most of the datasets in Cluster 2 have a high number
of categorical features, while datasets in Cluster 3 are all synthetically augmented, i.e. Bayesian
Network Generated (BNG) and have a very high number of rows.

Using ridgeline plots is another way to understand the meaning of each cluster. By calculating
the distribution of the aggregated characteristics over each cluster and plotting them on the same
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Figure 5.11: t-SNE projection with the assigned clusters and the centroids

Cluster 2 Cluster 3

kr-vs-kp BNG(kr-vs-kp)
splice BNG(labor,nominal,1000000)

mfeat-pixel BNG(breast-cancer,nominal,1000000)
PhishingWebsites BNG(mushroom)

20_newsgroups.drift BNG(colic.ORIG,nominal,1000000)
Internet-Advertisements BNG(credit-a,nominal,1000000)

BNG(credit-g,nominal,1000000)
BNG(credit-g)

Table 5.1: Datasets from Cluster 2 and Cluster 3

scale against each other, it is possible to evaluate if the clustering makes sense. In total there are 10

ridgeline plots, one for each aggregated characteristic. Here two of them are illustrated: In Figure
5.12 and Figure 5.13 the ridgeline plots for categorical_ratio and mean_skewness can be
seen. It is easy to see that Cluster 2 datasets have a very high categorical ratio with very little
variance, i.e. almost all of the datasets in this cluster contains a high proportion of categorical
features. Clusters 1 and 6 have the lowest proportion of categorical features amongst all Clusters.
Another conclusion is that Cluster 6 contains more skewed features, as its distribution is skewed
towards high mean_skewness values.

All the remaining ridgeline plots are available on the appendix A.
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Figure 5.12: Ridgeline plot of categorical_ratio. Clusters are represented by different colors

Figure 5.13: Ridgeline plot of mean_skewness. Clusters are represented by different colors

5.3 Experiment Definitions

The experimental analysis is performed on each cluster, therefore a common metric must be
used when comparing multiple dataset’s results. In fact, one of the objectives is to analyze the
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impact of changing selected hyperparameters on the specified performance metrics of classification
tasks. For this part of the analysis, instead of looking directly into the performance metrics of AUC,
Logloss and Brier Score, a difference from the baseline metric δmetric is defined.

5.3.1 δmetric Definition

The reason to not directly use the performance metrics when comparing different models under
the same hyperparameters changes is that the objective of the study does not takes into account
the actual performance of a given dataset, but actually how much each hyperparameter affects the
performance metrics, i.e. the sensitivity of a dataset w.r.t a hyperparameter. For example, it does
not matter in this case if dataset A has a higher AUC than dataset B under a new hyperparameter
value h, but actually if the increase or decrease in performance of both datasets A and B are
significant for hyperparameter value h.

Another problem that can be avoided by the following definition of a δmetric is the fact that it
captures relative changes, instead of the absolute value of the metric; e.g. a dataset with almost
constant 0.9 AUC value will have a δAUC equal to 0 most of the time, and will be treated as equal
as a dataset with constant low AUC (e.g. 0.55): the actual absolute value of the AUC does not
matter.

LightGBM has a default set of values for its hyperparameters and the ones analyzed in this
study are defined below. As an observation, the correct default value for max_depth is −1 because
it is unlimited on LightGBM, as mentioned in Section 3.6; However, because the num_leaves

default is 31, this approximately results in a balanced tree with depth 5.

• LR = {0.1}

• NE = {100}

• MD = {5}

The baseline metrics are defined, for each dataset Di, as the performance metrics (AUC, Logloss
and Brier Score as explained in Section 2.4) obtained on the test set using the LightGBM
model trained with the parameters as close as possible to the default hyperparameter values above.
The δmetric is then just the difference between a given new metric and the baseline metric. Its
interpretation depends on the performance metric being analyzed: in the case of AUC, a positive
δAUC means a higher AUC than baseline (a better result), a negative one means a lower AUC than
baseline (worse result), and 0 an equal performance in terms of AUC. For both the Brier Score and
Logloss the interpretation is the opposite, as in these metrics the lower the better.

Some of the datasets in the clusters, when analyzed through the δmetric plots, had very erratic
behaviors when compared to the majority of the other datasets in the cluster. In the following
analysis, some of these datasets were removed from the clusters to avoid an overemphasizing of the
outlier behavior.

In Figure 5.14 is displayed the δAUC w.r.t max_depth changes for the datasets in Cluster 3, i.e.
one example of a δmetric plot from the experiment result. Each point represents a value of δmetric
for a single dataset, and the colors represent different datasets. The δmetric captures the relative
increase or decrease in AUC considering 5 the baseline for max_depth. By manually analyzing
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the results of the δAUC one can determine, for this Cluster, which values of max_depth have the
highest impact on the AUC metric, both positive and negative.

Figure 5.14: δAUC for Cluster 3, changing only max_depth. The colors represent different datasets

5.3.2 Ordering and Visualization

In Figure 5.15 a different δmetric plot is displayed, where each point is the δbrier w.r.t both
max_depth and learning_rate changes summarized into a single dimension in the x-axis, for
Cluster 2 experiments. The higher the number of hyperparameters being analyzed at the same
time, the more difficult it is to visualize these δmetric plots due to the high dimensionality. For
this reason, in the study the hyperparameter values were summarized into a single point that
encompasses multiple hyperparameter changes.

In the Subsections 5.1.1, 5.1.2 and 5.1.3 the full results for individual hyperparameter impact,
pairs of hyperparameters and finally all three hyperparameters, respectively, are shown. These plots
are not possible in this part of the analysis because instead of one individual dataset experiment
result being evaluated as in Section 5.1, the final analysis is done with multiple datasets of a cluster.

For visualization purposes, an ordering of the data points in the x-axis was defined to facilitate
the visualization and to maintain an order that makes sense, even when reducing the dimensionality.
First, the ranking of each hyperparameter is calculated based on the sorted order within that
individual hyperparameter distribution, and then the final ranking of these points is based on the
average of the individual hyperparameter ranks. This custom ranking has two advantages:

1. Retains the relative value of each hyperparameter into the final ordering. This means that the
first points represent the lower values of all hyperparameters and the last points in the x-axis
represent the combinations with the highest hyperparameters values;

2. Is robust w.r.t the scale of the absolute values between the hyperparameters. The ordering
takes first into account the rank of each hyperparameter to avoid dealing with values in uneven
scales. For example, a learning rate of 1.5 is considered to be a high value in practice, but its
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Figure 5.15: δBrier for Cluster 2, changing both max_depth and learning_rate. The colors represent
different datasets

numeric value is much smaller than a maximum depth of 5, which can be considered a small
value of max_depth.

As an example of this ordering, if the points were H = {(3, 500), (20, 100), (5, 200), (10, 400)},
each tuple a pair of maximum depth and number of estimators, the first step of the ordering is to
get the ranking of each hyperparameter within its distribution. This would generate a set of the
individual ranks r′(H) = {(1, 4), (4, 1), (2, 2), (3, 3)}, and the final ranking order depends on the
average ranks of each tuple, in this case ravg(H) = {2.5, 2.5, 2, 3}. And using ravg(H) to order the
original points H, the final ordering is H? = {(5, 200), (3, 500), (20, 100), (10, 400)}.

It is important to note that, because of the statistical framework chosen in the study, the ranking
strategy does not change the result of the analysis, but provides a way to visually understand its
results.

5.4 Statistical Framework

To generalize and be more certain about the hyperparameter sensitivity analysis, a statistical
framework is defined to analyze the δmetric obtained on each cluster and different configurations of
hyperparameters. The comparisons include changing different aspects of the experiment, such as
the performance metric chosen (AUC, Logloss, Brier Score), the hyperparameter(s) being changed
and the clusters being analyzed.

The statistical framework is divided into two main parts: tests for the significance of the changes
in the δmetric obtained in the experiment, and the subsequent modeling of the sensitivity factors
of the hyperparameters of each cluster. An overview of the statistical tools used is defined in the
following subsections, along with examples of real results obtained in the analysis of the experiments.
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5.4.1 Experimental Scenarios

An important concept in this study related to the statistical framework is the definition of
an experimental scenario. In this study the experimental units are the datasets of a cluster,
which receive a "treatment" of different hyperparameter values. First, Ck is the set of experimental
units (i.e. the datasets) of the kth cluster. The hyperparameters of a scenario are a partition Q

of the union of all hyperparameter spaces (as defined in Subsection 4.4.1) of the kth cluster (η(k),
defined in Equation 5.1) and is referred to as η(k)Q . For example, the hyperparameters values of the
experiment when changing both maximum depth and learning rate in Cluster 4 can be written as
η
(4)
max_depth,learning_rate.

η(k) =
⋃
d∈Ck

Hspaced (5.1)

Given the Ck experimental units, the hyperparameters configuration η(k)Q and a performance metric
m, the experimental scenario can be represented as is Equation 5.2:

S(Ck, η
(k)
Q ,m) (5.2)

Which means the experiment outputs of δm observed when applying the treatments η
(k)
Q to all

experimental units in the kth cluster. For example, Figure 5.14 represents the experimental scenario
S(C3, η

(3)
max_depth, AUC) and Figure 5.15 is a visualization of S(C2, η

(2)
max_depth,num_estimators, brier).

5.4.2 Analysis of Variance

The typical scenario of an analysis of variance, according to Montgomery [2017], is an experimen-
tal setting where there are k treatments or different levels of a factor that one wishes to compare.
The response observed from each of the k levels of treatment is a random variable. In general, there
are n observations under the same treatment, which can be seen in Table 5.2. In this study, the
treatment is the hyperparameter, and the different values of the hyperparameter are the different
treatment levels in the analysis of variance.

Treatment Observations Totals Averages

1 y11 y12 · · · y1n y(1) y(1)

2 y21 y22 · · · y2n y(2) y(2)

...
...

... · · ·
...

...
...

k yk1 yk2 · · · ykn y(k) y(k)

yΣ yΣ

Table 5.2: Table exemplifying a general Single-Factor Experiment, based on Montgomery [2017]

There are two main models in the literature when dealing with Single-Factor experiments,
the means model and the effects model. Even though in this study the observations from the
experiments are described using the effects model, it is useful to comprehend the idea behind both
models to understand why one was chosen over the other.
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In the means model each observation (i.e. each point in the δmetric plot for example) is defined as
a function of the mean within treatment and a random error component that incorporates “all other
sources of variability in the experiment including measurement, variability arising from uncontrolled
factors, differences between the experimental units to which the treatments are applied, and the
general background noise in the process” according to Montgomery [2017]. The structure from the
means model is described in Equation 5.3.

yij = µi + εij

i = 1, 2, · · · , k

j = 1, 2, · · · , n
(5.3)

On the other hand, the effects model defines the treatment means µi as a deviation from the
overall mean µ of the experiment, i.e. µi = µ + τi where i = 1, 2, · · · , k. Thus, the experimental
results are described according to Equation 5.4. The parameter τi is called the ith treatment
effect, and it represents the deviation from the overall mean of the experiment.

For simplicity, all the scenarios were structured using a single-factor model, even the scenarios
where the treatment is actually two or more values of different hyperparameters being changed. This
means that the results and conclusions from pairs or triples of hyperparameters are interpreted as
a single factor that can change the δmetric of the gradient boosting models, instead of decomposing
the effects into multiple variables.

yij = µ+ τi + εij

i = 1, 2, · · · , k

j = 1, 2, · · · , n
(5.4)

One of the reasons why the effects model was chosen to analyze the results of this study is
because it has a more intuitive interpretation for the objective of this study. One can interpret the
τi as the amount of effect a configuration of hyperparameter produces in the performance metrics,
i.e. It is a measure of sensitivity from the overall case. Before modeling the experimental results
and comparing the τi for different scenarios, it is important to test for equality of the output of
the treatments (in this case, equality of δmetric for different performance metrics) and testing the
assumptions of the statistical tests.

5.4.3 ANOVA

The most widely used test in the analysis of variance is the ANOVA test or single-factor
analysis of variance. In the assumptions of the ANOVA model, there is a requirement that the
experiments are performed in random order to keep the environment in which the experiments
are applied as uniform as possible. According to Montgomery [2017], the objective is to test the
appropriate hypothesis about the treatment means and to estimate them. However, there a very
strong assumption that must be validated before applying the ANOVA test: the model errors εij
are assumed to be normally and independently distributed random variables with mean zero and
variance σ2; The data must also be homoscedastic, i.e. the variance σ2 is assumed to be constant
for all levels of the factor.

These assumptions imply that the observations must follow a normal distribution:

yij ∼ N (µ+ τi, σ
2)
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The ANOVA model has different flavors, and is highly used in the field of applied statistics.
Different variations and extensions of the ANOVA model can be found throughout the literature
of statistics and machine learning. In the study of hyperparameters, Hoos et al. [2014] describe a
method using the functional ANOVA framework (a variation of ANOVA) to quantify the importance
of “both single hyperparameters and of interactions between hyperparameters” in a single dataset.
In more recent work, van Rijn and Hutter [2017] also extend the functional ANOVA framework for
multiple datasets, with an empirical experiment using OpenML datasets.

5.4.4 Testing of Assumptions

However, the ANOVA test was not used in this study, because its assumptions were not met
in almost all scenarios. A different nonparametric statistical test was used, and since some of the
assumptions apply for both the parametric (ANOVA) and nonparametric tests, it is important
to understand the assumptions of them. Using Montgomery [2017] definition of the residuals for
observation j in treatment i as

Eij = yij − ŷij (5.5)

where ŷij is an estimate of the respective observation yij , obtained as follows:

ŷij = µ̂+ τ̂i

= yΣ + (y(i) − yΣ)

= y(i)

(5.6)

This just means that the estimate of any experimental scenario observation in the ith treatment is
the corresponding treatment average y(i). In the terms of this study, the estimate of relative change
in the performance metric δmetric for a given configuration of a value of hyperparameters is the
mean of the δmetric’s of all datasets in the corresponding cluster being analyzed. The analysis of
the residuals is one of the ways to check for model adequacy, and can be analyzed using a Normal
Q-Q Plot and using statistical tests to test for the normality and homoscedasticity assumptions.

The test of assumptions is applied to every experimental scenario S in this study, in the
following order:
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1. Fit a single-factor model (SFM) on S, and calculate the residuals according to Equation 5.5.
In Table 5.3 the complete SFM model output for S(C1, η

(1)
max_depth, Brier) is illustrated.

y(i) µ̂ τ̂i
max_depth

3 0.001872 -0.00106 0.002932
4 0.001275 -0.00106 0.002335
5 0.000000 -0.00106 0.001060
6 -0.000835 -0.00106 0.000225
7 -0.001350 -0.00106 -0.000290
8 -0.001588 -0.00106 -0.000528
9 -0.001548 -0.00106 -0.000488
10 -0.001575 -0.00106 -0.000515
11 -0.001558 -0.00106 -0.000497
12 -0.001646 -0.00106 -0.000586
13 -0.001451 -0.00106 -0.000391
14 -0.001456 -0.00106 -0.000396
15 -0.001413 -0.00106 -0.000352
16 -0.001397 -0.00106 -0.000337
17 -0.001391 -0.00106 -0.000331
18 -0.001425 -0.00106 -0.000365
19 -0.001395 -0.00106 -0.000335
20 -0.001383 -0.00106 -0.000323
21 -0.001439 -0.00106 -0.000379
22 -0.001501 -0.00106 -0.000441

Table 5.3: SFM model for scenario S(C1, η
(1)
max_depth, Brier)

2. Plot a Normal Q-Q Plot to visually observe the structure of the SFM residuals. In this study,
the Normal Q-Q Plot will match the SFM residuals quantiles with the theoretical quantiles
of a normal distribution, while also fitting a Linear Regression model and calculating the
coefficient of determination (R2), as suggested in Vallat [2018]. Residuals are filtered to be
inside the quantiles q5 and q95 to remove outliers. To showcase this, in Figure 5.16a the Normal
Q-Q plot for the scenario S(C1, η

(1)
max_depth,learning_rate, AUC) represents a distribution of

residuals close to a normal distribution, with a relatively high R2. This is a specific case
where the ANOVA test could be used because of its robustness to the normality assumption,
as stated in Montgomery [2017] “In general, moderate departures from normality are of little
concern in the fixed effects analysis of variance”. A more drastic departure from normality
can be observed in scenario S(C1, η

(1)
num_estimators,learning_rate, Logloss), in Figure 5.16b.
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(a) Normal Q-Q Plot for scenario S(C1, η
(1)
max_depth,learning_rate, AUC)

(b) Normal Q-Q Plot for scenario S(C1, η
(1)
num_estimators,learning_rate, Logloss)

Figure 5.16: Two Normal Q-Q Plots from Cluster 1 results

3. Perform a Shapiro–Wilk test for the normality assumption with α-level = 0.05. In almost
all of the experimental scenarios the test rejected the null hypothesis that the residuals are
normally distributed with p-value less than 0.05.

4. To validate the homoscedasticity assumption, a statistical test for equality of variance is also
performed on the residuals. As indicated in Montgomery [2017], these statistical procedures
are testing the following hypotheses:

H0 : σ21 = σ22 = · · · = σ2k

H1 : above not true for at least one σ2i

A widely used procedure for homoscedasticity is the Bartlett’s Test, which computes a statis-
tic whose sampling distribution is, according to Montgomery [2017]: “closely approximated by
the chi-square distribution with k−1 degrees of freedom when the k random samples are from
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independent normal populations.”. By analyzing the results of the Normal Q-Q plots and the
Shapiro–Wilk tests there is no statistical evidence that the residuals of this study follow a nor-
mal distribution, so the Bartlett’s test should not be used. The Levene test is an alternate
procedure that is robust to departures from normality, as explained in Brown and Forsythe
[1974], and it is the test chosen to verify the homoscedasticity for all experimental scenarios.

5.4.5 Kruskal–Wallis: A Nonparametric Approach

Given that most of the experimental results failed the normality assumption tests, the
Kruskal–Wallis test is used to test for the statistical significance of the treatment means. The
Kruskal–Wallis test is applied to all experimental scenarios and is used to test the null hypothe-
sis that the k treatments are identical against the alternative hypothesis that some of the treat-
ments generate observations that are larger than others. There is a convenient interpretation of the
Kruskal–Wallis, described in Montgomery [2017]:

“Because the procedure is designed to be sensitive for testing differences in means, it
is sometimes convenient to think of the Kruskal–Wallis test as a test for equality of
treatment means. The Kruskal–Wallis test is a nonparametric alternative to the
usual analysis of variance.”

Kruskal–Wallis works by applying the usual analysis of variance to the ranks of the observations.
The rank transformation consists of ranking the observations yij in ascending order and replacing
each observation by its rank rij . The results of testing after a ranking transformation are preferred
because it is less likely to be distorted by nonnormality and unusual observations, which is the case
of the results of the experimental scenarios in the study.

Even though this nonparametric approach does not require the data to be normally distributed,
it does, however, assume the same distribution within groups, as explained in McDonald [2009]:

“(Kruskal–Wallis) does assume that the different groups have the same distribution, and
groups with different standard deviations have different distributions. If your data are
heteroscedastic, Kruskal–Wallis is no better than one-way ANOVA, and may be worse.”

So the homoscedasticity tests are still needed for the assumptions of the Kruskal–Wallis test. In
Table 5.4 the statistical results for all the scenarios in Cluster 2 is available, where NE, MD and
LR refer to num_estimators, max_depth and learning_rate respectively. The numbers in
the table are the p-values of all statistical tests performed in Cluster 2 experiments, and the values
in red are the tests that failed the desired hypothesis testing. Some tests can have NaN if there are
not enough samples or all values are equal, in the case of the residuals.
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Shapiro–Wilk Levene Kruskal–Wallis
Treatment Metric

η
(2)
NE δAUC 4.059920e-08 9.968117e-01 9.996506e-01

δBrier 5.942564e-06 2.105453e-01 9.965572e-01
δLogloss 2.502680e-05 9.636175e-03 2.827828e-03

η
(2)
MD δAUC 2.536182e-10 9.210022e-01 1.860650e-02

δBrier 3.926061e-06 2.774635e-01 2.283747e-02
δLogloss 2.522154e-05 1.285176e-01 1.764531e-02

η
(2)
LR δAUC 2.714980e-09 NaN NaN

δBrier 9.808685e-09 NaN NaN
δLogloss 1.213540e-10 NaN NaN

η
(2)
MD,LR δAUC 1.406702e-20 9.999939e-01 1.316980e-02

δBrier 1.339994e-23 1.000000e+00 6.235464e-12
δLogloss 1.334960e-23 1.000000e+00 1.005025e-08

η
(2)
MD,NE δAUC 2.548462e-22 1.000000e+00 1.000000e+00

δBrier 6.494320e-28 9.969882e-01 9.274816e-01
δLogloss 3.974093e-21 2.655356e-23 6.191510e-22

η
(2)
LR,NE δAUC 9.960932e-27 1.000000e+00 3.306332e-06

δBrier 2.709085e-26 9.999995e-01 7.035798e-09
δLogloss 2.452305e-24 9.999999e-01 1.650304e-05

η
(2)
NE,MD,LR δAUC 0.000000e+00 1.000000e+00 2.904172e-64

δBrier 0.000000e+00 1.000000e+00 4.013155e-111
δLogloss 0.000000e+00 1.000000e+00 7.298816e-70

Table 5.4: Statistical p-values of the experimental scenarios in Cluster 2. All the normality assumptions
were rejected in this case



Chapter 6

Results and Discussion

All the statistical tests shown in the last chapter were applied to all experimental scenarios and
then filtered by their significance. In very few scenarios of the study, it was possible to conclude
that the residuals followed a normal distribution according to the Shapiro-Wilk test. Even though in
these specific instances the typical ANOVA test could be used (given they are also homoscedastic),
it was decided to use only the Kruskal–Wallis test so every experimental scenario uses the same
statistical framework.

6.1 Statistical Significance

Scenarios with a p-value above the 0.05 significance level in the Levene test means it failed
to reject the hypothesis that the group variances are different: in practice, the homoscedasticity
assumption is considered to be true in these cases. In the Kruskal–Wallis test if the p-value is
less than the 0.05 the null hypothesis of equal treatment means is rejected, i.e. in practice, it is
considered at least one treatment mean is different from the other. When an experimental scenario
has enough samples (i.e. It won’t return NaN), passed the homoscedasticity assumption and reject
the equality of treatment means in the Kruskal–Wallis test it is indicated here as X. If either the
homoscedasticity test failed or Kruskal–Wallis failed to reject the hypothesis of equal means, it is
indicated as ×. All the results of the statistical significance of treatment means are summarized in
Table 6.1.

An important note about homoscedasticity in these results is that the results can be analyzed
even though failing the homoscedasticity assumption. For instance, the treatment means can be
individually analyzed taking into the context the experimental scenario it belongs to, and insights
can be obtained from it. Even though in this case the Kruskal–Wallis cannot be used, observed
behaviors that do not require directly statistical significance are reported if deemed insightful.

53
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ηNE ηMD ηLR ηMD,LR ηMD,NE ηLR,NE ηNE,MD,LR

Cluster Metric

1
δAUC × × X X × × X

δBrier × X × X × X X

δLogloss X X × × X X X

2
δAUC × X × X × X X

δBrier × X × X × X X

δLogloss X X × X X X X

3
δAUC × × X X × × ×
δBrier × × × X × × ×
δLogloss × × × × × × ×

4
δAUC × × × × × × ×
δBrier × × × X × X X

δLogloss × × × X × X X

5
δAUC × × X X × X X

δBrier × X X X × X X

δLogloss × X X X × X X

6
δAUC X × × X × × X

δBrier × × × X × × ×
δLogloss × × × X × × ×

Table 6.1: All experimental scenarios and their respective Kruskal–Wallis results for equality of treatment
means

Some interesting insights can be drawn by inspecting the statistical significance results in Table
6.1 and the specific p-values for the tests in the tables from the Appendix B:

1. For instance, Cluster 3 scenarios failed most of the homoscedasticity tests, but by visually
analyzing the δmetric plot it displays the same behavior of the treatments as the other clusters.
However, Cluster 3 datasets are all synthetically generated (as illustrated in Table 5.1), and
this can be a reason why it has so few statistically significant results. In Figure 6.1 one δAUC
plot from Cluster 3 results is illustrated.
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Figure 6.1: δAUC for scenario S(C3, η
(3)
LR,NE , AUC), which failed the Levene Test; Some datasets δAUC

increased the variance in treatment groups with very high learning rate and number of estimators

2. Analyzing Table 6.1 column-wise, the experiments changing the number of estimators (ηNE)
and changing both the number of estimators and maximum depth (ηMD,NE) have very few
scenarios where there is a significant change in the performance metrics.

3. Overall, the Brier Score and Logloss metrics are relatively more sensitive when compared to
AUC in the analyzed datasets.

In experimental analysis, if a statistically significant result of parametric or nonparametric
analysis of variance is obtained on the experimental data, a post hoc test is used to assess the
difference between group treatment results, as described in Terpilowski [2019]. In this study, the
results of the post hoc tests are not analyzed in this work, although it could be useful in future
analysis. For this reason, the analysis pipeline implemented in the code has the option to perform
a pair-wise Conover test (using the Holm–Bonferroni method to correct for family-wise error rate)
on all treatment means. In Figure 6.2 one example of a Conover test of the experimental scenario
S(C1, η

(1)
LR, Brier) is shown1.

1This is just an example plot that wasn’t used in the analysis, since the scenario is not statistically significant
according to Kruskal–Wallis.
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Figure 6.2: Example of post hoc plot with the pairwise differences in treatment means

6.2 Treatment Effect and Single-Factor Plots

In the analysis, a SFM model is fitted for every experimental scenario. After the statistical
testing, the calculated SFM model is then visualized using the SFM plot, a very important plot
to understand the overall behavior of the estimated treatment effects τ̂i w.r.t the overall estimated
mean µ̂. The defined ordering of the treatment values, defined in Subsection 5.3.2 is very useful
in this step to grasp the general impact in the metrics of an experimental scenario. To correctly
understand the SFM plot, in Figure 6.3 the processed SFM plot for scenario S(C3, η

(3)
MD,LR, AUC)

is illustrated. All SFM plots have two components:
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Figure 6.3: SFM plot of S(C3, η
(3)
MD,LR, AUC)

1. The overall mean is the estimated average effect µ̂. In practice, it means what is the average
change in the performance metric of the LightGBM classification model of the current cluster
when subjected to all treatment values η(k)Q .

2. The vertical lines in the plot are the estimated treatment effects τ̂i of each treatment value
(shown in the x-axis). The colors orange and green distinguish treatments higher and lower
than µ̂, respectively.

3. For each SFM plot, the τ̂i with the highest and lowest value are calculated and highlighted in
two groups:

(a) The best treatments are the treatments that provide the highest improvement on the
performance metric. As explained on Subsection 5.3.1, this depends on the metric being
chosen: in Figure 6.3 a positive δAUC means a model with a higher AUC than baseline,
so the highest orange lines are the best treatments in this case.

(b) The worst treatments are the treatments that have the worst impact on the perfor-
mance metrics, i.e. treatments that generate models with worse metrics than the baseline.
Again, it depends on the metrics being chosen: in the case of AUC the worst treatments
are the ones where the δAUC is the lowest in absolute value, but for Logloss and Brier
Score this interpretation is reversed. In Figure 6.3 the worst cases for this specific sce-
nario are low values of both learning rate and maximum depth, i.e. the lowest green
lines.

The SFM plots are the final plots for the analysis done in this study. They become increasingly
difficult to read the higher the dimensionality of the treatments, i.e. the higher the number of
different hyperparameters being changed at the same time.
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6.3 Result by Hyperparameters

In this part, the hyperparameters combinations are analyzed individually for their impact ob-
tained with the experimental results.

6.3.1 ηNE

By analyzing the results of the Kruskal–Wallis tests, without considering the homoscedasticity
test, the number of estimators is the hyperparameter that has the least impact on the metrics, on
all clusters. The proportion of times this hyperparameter actually provided a significant difference
for δAUC , δBrier and δLogloss were approximately 16%, 16% and 50% respectively. That is, from
all the experimental scenarios with treatments of only changing the number of estimators (ηNE),
almost none of them had a significant difference in AUC and Brier Score.

When analyzing the SFM plots, a peculiar behavior was observed on the results of ηNE experi-
ments. The treatment effects are very noisy, with many intercalating positive and negative results.
In many of the SFM plots, there is a middle region where the worst treatments appear. In Figures
6.4 and 6.5 two SFM plots exemplify this behavior, one with a Logloss metric and the other with
AUC.

Figure 6.4: SFM plot for S(C1, η
(1)
NE , Logloss)
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Figure 6.5: SFM plot for S(C6, η
(6)
NE , AUC)

One possible explanation for these results can be that the hyperparameter space chosen for
num_estimators (see Subsection 4.4.4) didn’t cover the most significant values for it. In the
results of Probst et al. [2018], the optimal default value for the number of estimators (in their
case n_rounds) is 4168, and the optimal tuning quantiles q5 and q95 for the number of boosting
iterations were 920.7 and 4550.95, respectively. This means that a good improvement to assess the
number of estimators impact is to increase the upper limit in the hyperparameter space of this
study to at least 4550 estimators, using the values from Probst et al. [2018].

6.3.2 ηMD

The maximum depth is the individual hyperparameter (i.e. treatments with only one type of
hyperparameter being changed) that had the highest significant changes in the performance metrics
over all analyzed clusters. The treatment effects are very intuitive and confirm the expected behavior
of changing the maximum depth of the trees in machine learning models. This behavior is that small
values of maximum depth will limit the model complexity (i.e. It is a form of regularization) and
higher values will increase it, which can be seen in Figure 6.6.

Very low values of maximum depth generate models with poor performance, which then increases
as the maximum depth rises, achieving an “optimal point”. Then it starts decreasing, probably
because the models start to overfit due to high complexity.
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Figure 6.6: SFM plot for S(C3, η
(3)
MD, AUC)

6.3.3 ηLR

The learning rate hyperparameter had a small number of significant results, but when analyzing
the absolute value of the experiment is τ̂i, their overall absolute impact is smaller than ηMD.
Increasing the value of the learning is a way to increase the “steps” in the optimization space of an
algorithm. Both the δAUC plot and the SFM plot in Figures 6.7 and 6.8 show a similar pattern,
where low values of learning rate usually have a worse performance metric than high values of
learning rate. This probably happens because all other hyperparameters are kept the same, and the
learning rate increases the effect of each boosting iteration, which can yield a better model if the
number of boosting iterations (num_estimators) is relatively low.

Figure 6.7: δAUC plot for S(C3, η
(3)
LR, AUC)
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Figure 6.8: SFM plot for S(C1, η
(1)
LR, Brier)

Comparing these results with van Rijn and Hutter [2018], it would be better to use a log scale
in this hyperparameter space, instead of a uniformly spaced learning rate values: probably the
magnitude of the learning rate values was too small to really observe the full impact of the learning
rate individually. Another fact is that some of the learning rate experiments didn’t have enough
samples when testing their significance, so a possible improvement for future work is to increase
the number of learning rates values considered.

6.3.4 ηMD,LR

The combination of changing both the maximum depth and learning rate (ηMD,LR) in the
machine learning models is the one combination that had the highest number of significant changes
in performance metrics, according to Kruskal–Wallis tests. For instance, 100% of the scenarios with
ηMD,LR and δBrier have had a significant difference in the treatment means, the only hyperparameter
combination to do so.
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Figure 6.9: SFM plot for S(C3, η
(3)
MD,LR, Brier)

As explained in the last Subsection, the learning rate can increase (or “accelerate”) the search
over the gradient boosting optimization space, and the results showed here confirmed this intuition.
First, we can observe in Figure 6.9 and Figure 6.10 the same behavior found in the SFM plots
from the experimental scenarios where the treatments are only the max depth ηMD, albeit reversed
because the figures showed here display the Brier Score instead of AUC. The other evidence is that
by looking at the statistical tests results in Table 6.1, one can see that all significant experiments for
treatment ηMD are also significant for ηMD,LR, but there is a number of experiments from column
ηMD which aren’t significant that became significant when the treatment is ηMD,LR.

Figure 6.10: SFM plot for S(C1, η
(1)
MD,LR, Brier)
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6.3.5 ηMD,NE

This combination of maximum depth and number of estimators had the lowest number of
statistically significant experiments: only in two experimental scenarios the null hypothesis of the
Kruskal–Wallis test was rejected. This combination, when seen on an individual level (as in Figure
5.3), reveals that possibly treating both maximum depth and number of estimators as a single
factor does not capture the overall impact of each hyperparameter. Different approaches might be
more useful here, like the Functional ANOVA used in van Rijn and Hutter [2018]. Higher limits of
the number of estimators distribution could also give a better overall picture of the ηMD,NE , as
explained in Subsection 6.3.1.

However, when analyzing some of the SFM models (even the ones which are heteroscedastic),
there is a common pattern in the SFM plots structure. It was explained in 4.4.2 a relationship
between max depth and the number of estimators, which describe different ways to change the
performance of a classifier based on the magnitude of each hyperparameter.

Figure 6.11: SFM plot for S(C3, η
(3)
MD,NE , AUC)

The same pattern observed in Figure 5.3 can be recognized in the SFM plots of the experi-
ments with treatments ηMD,NE . In Figure 6.11 for example, lower values of both max_depth and
num_estimators decreases the AUC, then the AUC increases when there is an equilibrium be-
tween both hyperparameter values (the orange section). Finally, the AUC starts decreasing again
when both hyperparameter values have high values. There is also a “middle ground” where the es-
timated treatment effects are intercalating, which is an effect of the ordering defined in Subsection
5.3.2: combinations with an average value of maximum depth or number of estimators can increase
or decrease the AUC with high variance, which produces the intercalating effect clearly seen in
Figure 6.12.
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Figure 6.12: SFM plot for S(C2, η
(2)
MD,NE , Logloss)

6.3.6 ηLR,NE

The combination of learning rate and the number of estimators yield a similar result to ηMD,LR,
with more statistically significant results than individually changing either learning rate or the
number of estimators. The SFM plots from these scenarios follow a ∪-shaped pattern for AUC, and
the opposite ∩-shaped pattern for Brier Score (Figure 6.13) and Logloss results.

The result is also intuitive because, on one hand, a small number of boosting iterations coupled
with a small learning rate will likely lead to a very simple gradient boosting model, with low
performance on the test set. On the other hand, high values of both the learning rate and the
number of estimators can also generate bad classifiers. In the middle section of the SFM plot there
is the highest density of the best treatments, which equilibrate both hyperparameter values.
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Figure 6.13: SFM plot for S(C1, η
(1)
LR,NE , Brier)

6.3.7 ηNE,MD,LR

There is a high proportion of single-factor models of experimental scenarios with ηNE,MD,LR

that are significant. If not taking into account the homoscedasticity violations from Cluster 3 data,
this would be the combination with the highest number of significant experiments.

Even though this combination has a high impact on the performance metrics, it is harder to
visualize a pattern in the SFM plots due to the high dimensionality of the data. There is a clear pat-
tern throughout all cluster results, although some behaviors can be interpreted from it. Figure 6.14
illustrates the δLogloss plot for all treatment values of ηNE,MD,LR for Cluster 2, with the respective
SFM plot in Figure 6.15: there is a similar ∪-shaped pattern as in the ηLR,NE combinations, but in
this case this pattern does not consistently appear in the other clusters experimental results.
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Figure 6.14: δLogloss for scenario S(C2, η
(2)
NE,MD,LR, Logloss)

Figure 6.15: SFM plot for S(C2, η
(2)
NE,MD,LR, Logloss)

In some metrics and clusters, the SFM plot for ηNE,MD,LR is very noisy, probably due to a
high dimensionality reduction in the x-axis, which makes it even more difficult to interpret it, as
illustrated in Figure 6.16.
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Figure 6.16: SFM plot for S(C1, η
(1)
NE,MD,LR, Logloss)

6.4 Results by Hyperparameter Combination Effect

Another perspective in the analysis of the results of the experiments is about the “combination
effect” of the hyperparameters, i.e. how changing one hyperparameter individually, in pairs or in
triples differs in terms of significant difference in the performance metrics δmetric.

Theoretically, training models while changing multiple hyperparameters in a model tuning pro-
cess means more hyperparameter space is covered. For example, the Random Search algorithm (see
Probst et al. [2018]) typically change more than one hyperparameter value at a time, searching for
a more “extensive” hyperparameter space than changing just a single hyperparameter value each
time. This fact can be confirmed in the study, at least for the clusters analyzed here. Table 6.2 show
the percentage of scenarios in which a significant change in the metrics was observed in the study.

Metric
δAUC δBrier δLogloss

Combinations

Individual 22.2% 22.2% 38.8%

Pair 38.8% 55.5% 50%

Triple 66.6% 66.6% 66.6%

Table 6.2: Percentage of statistically significant results for each comparison and metric

d

In practice, changing several hyperparameters at the same time can be costly, which is one of
the reasons a Bayesian Optimization or multi-stage optimization can be performed, e.g. the multi-
stage algorithm described in Wang et al. [2015]. Using the results of this study, the typical trade-off
between computational complexity and search space in the model tuning can be better evaluated
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depending on the case. For instance, one could start a gradient boosting model tuning process by
changing max_depth and learning_rate at the same time, as it is a pair of hyperparameters (it
is faster to run than a triple or higher number of combinations) that resulted in a high percentage
of statistically significant SFM models (the models are highly sensitive to this combination of
hyperparameters).

6.5 Results by Cluster

Each cluster result can also provide useful insights related to the datasets inside the cluster
and how sensitive they are w.r.t different combinations of hyperparameters. In this section, the
main observations from each cluster results are addressed, along with possible explanations for
their behavior. To understand this analysis, it is useful to refer to the cluster’s ridgeline plots in
Appendix A.

By using table 6.1 from Section 6.1, it is possible to summarize the results of the experiments
grouping by the cluster number. Table 6.3 describes the proportion of statistically significant ex-
periments for each metric on each cluster. This table gives an idea of how sensitive each cluster is
to changes in the performance metrics when subjected to all treatments of this study.

Cluster
1 2 3 4 5 6

Metric

δAUC 42.8% 57.1% 28.5% 0.0% 57.1% 42.8%

δBrier 57.1% 57.1% 14.2% 42.8% 71.4% 14.2%

δLogloss 71.4% 85.7% 0.0% 42.8% 71.4% 14.2%

Overall 57.1% 66.6% 14.2% 28.5% 66.6% 23.8%

Table 6.3: Percentage of statistically significant results in each cluster, by metric

The most insensitive cluster, i.e. the cluster with the least number of statistically significant
experiments isCluster 3. As said in Subsection 5.2.2, all the datasets of this cluster are synthetically
generated datasets, and all of them have ≥ 100000 rows in them. However, when looking at the
statistical test results of Cluster 3, it is the cluster that rejected the most the null hypothesis of
equal variance, i.e. It is the most heteroscedastic cluster. With further analysis, some of its datasets
also have a very constant δmetric in the metrics, another evidence or the insensitivity of this cluster:
in Figure 6.17 the δAUC for scenario S(C3, η

(3)
MD,NE , AUC) shows that most of the datasets have a

constant δAUC regardless of the changes in maximum depth and number of estimators.
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Figure 6.17: δAUC plot for S(C3, η
(3)
MD,NE , AUC) - only two datasets seem to change the AUC

On the other hand, the most sensitive clusters are Cluster 2 and Cluster 5. Analyzing the
datasets aggregated characteristics (more details about them in Subsection 5.2.1) of both clusters,
they are fairly similar: both have almost no numerical features, with a high proportion of categorical
features; the number of rows is also similar, but Cluster 2 datasets typically have more rows than
Cluster 5. The main difference between them is the number of features, where Cluster 2 datasets
can have from 2 to 200 features and Cluster 5 datasets typically range from 10 to 20.

In Figure 6.18 two SFM plots of statistically significant experiments showcase both the behavior
of max depth explained in Subsection 6.3.2, and also the impact of the number of features in max
depth performance. One can see that the amount of tree depth needed to capture more information
— reflected here as a lower Brier Score — is smaller when the datasets have fewer features. In Figure
6.18b max depth of 6 is enough to have a negative treatment effect (in this case, an improvement over
the baseline Brier Score), while for Cluster 2 which has more features this value is 9, as illustrated
in Figure 6.18a.

(a) S(C2, η
(2)
MD, Brier) (b) S(C5, η

(5)
MD, Brier)

Figure 6.18: Two SFM plots of ηMD and δBrier on Cluster 2 and 5, respectively

Finally, it is interesting to note that Cluster 4 does not have a single statistically significant
experiment when the performance metric is δAUC , and when an experimental scenario with δBrier
rejected the null hypothesis of equality of treatment means the corresponding scenario with δLogloss
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also rejected it, and vice versa.

6.6 Results by Metrics

Regarding the performance metrics of the study, described in Section 2.4, there are some insights
about their results from the experimental scenarios. Table 6.4 illustrates the proportion of scenarios
with a significant change in the δmetric: The Logloss metric is the most sensitive in this study,
changing in almost 50% of the experiments. It is closely followed by the Brier Score, and the least
sensitive metric in the study is the AUC.

δAUC δBrier δLogloss

38.1% 42.7% 47.6%

Table 6.4: Percentage of statistically significant results of each metric

The higher percentage of statistically significant experiments regarding the logarithmic loss is
expected since it is the metric being optimized in all LightGBM binary classification models of the
study. Logloss is not bound to the [0, 1] interval as AUC and Brier Score, which means in practice
the treatment values of the Logloss aren’t as interpretable when compared to other metrics. The
similarity of the percentage of Table 6.4 between the Brier Score and Logloss is partially expected,
as both metrics assess the value of the predicted probabilities of the classifier.

At the same time, the AUC does not directly evaluate the performance of the predicted prob-
abilities themselves, but it actually assesses the relative ordering of the classifier. For this reason,
results like the one observed in Cluster 4 can happen, i.e. the relative ordering performance can be
kept the same while the forecasted probabilities can be better. The highest shift of the δAUC was in
the experimental scenario S(C5, η

(5)
NE,MD,LR, AUC) illustrated in Figure 6.19, albeit mostly worse

AUC than baseline — probably because Cluster 5 datasets have relatively few instances that make
the models easy to overfit.
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Figure 6.19: δAUC plot for S(C5, η
(5)
NE,MD,LR, AUC)

Several clusters in the study have imbalanced datasets, and it is known that AUC isn’t the
most informative metric in imbalanced situations, as described in Saito and Rehmsmeier [2015]. In
future work, a possible improvement is to use the Precision-Recall curve for imbalanced datasets,
as it provides a better interpretation and of the classifier performance in these cases.
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Chapter 7

Conclusion

The comprehension of hyperparameters effects and its impacts on performance metrics is very
important in the process of building a good machine learning model. Throughout this study, different
aspects of the interaction between gradient boosting hyperparameters and performance metrics were
observed and analyzed, providing an insight into how they affect a model.

In this work, a large-scale benchmark was done using 70 different binary classification datasets,
which provided enough results to observe how each combination of hyperparameter affected the
metrics. Using a solid analysis of variance statistical framework, the experimental results of this
work also take into account the statistical significance of each experimental scenario. It was found
that some combinations of hyperparameters highly impacted the machine learning models, like the
combination of maximum depth and learning rate, while others had a small impact.

The final results also present a variety of single-factor models that estimate the impact effect
of each hyperparameter(s) value(s), while at the same time providing useful information about the
overall behavior of the hyperparameter in the datasets of the study. Some of the effects observed
could be isolated due to the characteristics of some datasets, like the number of features and
proportion of categorical features. These insights may prove useful when building new gradient
boosting models from scratch, by giving a better idea of which hyperparameters to tackle first
depending on the characteristics of the dataset.

7.1 Limitations and Future Work

Given the amount of computational time taken to completely run the study (approximately one
month, sharing the workload in parallel between 4 different machines), the scope of this study had
to be reduced. First, it only considers binary classification problems, even though the experiment
comprises a fairly decent number of 70 datasets. Future work could expand the experiment to
analyze the hyperparameters interactions on multiclass classification, regression, ranking, survival
models, etc.

The experiment pipeline is rather solid, so it could also be extended with different values,
or even with different techniques other than gradient boosting. For instance, different types of
hyperparameters could be analyzed in future work, or different combinations of hyperparameters.
In this regard, a different framework could be used, like a Functional ANOVA or even a surrogate
model to assess the importance of the hyperparameters.

The hyperparameter space of the study could also increase the gaps between the hyperparameter
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values, alongside with the maximum level for some of them. A specific limitation found was that
the maximum number of estimators generated was probably too small to observe more effects of
this hyperparameter. The learning rate could also be generated using a logarithmic scale instead of
being uniformly distributed, to generate more different levels of magnitude.

Finally, the clustering strategy could be enriched a lot by adding new information for the
datasets. For example, the OpenML platform provides many more characteristics of datasets than
the ones used here: entropy of the classes, dimensionality, kurtosis of the features, autocorrelation,
percentage of missing values, etc. These statistics could lead to other useful conclusions, depending
on the objective of the research.



Appendix A

Cluster Ridgelines Plots

In this appendix all the distributions from the aggregated characteristics of each cluster are
summarized using ridgeline plots, with the exception of the constant_ratio, because only one
cluster has datasets with constant features.

Each cluster is represented by a different color, with the number of the cluster displayed in the
y axis. The x axis is the value of the variable, and the height of each distribution is the frequency,
like in a histogram.

Figure A.1: Ridgeline plot of num_rows
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Figure A.2: Ridgeline plot of num_features

Figure A.3: Ridgeline plot of mean_variance
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Figure A.4: Ridgeline plot of mean_skewness

Figure A.5: Ridgeline plot of num_categorical
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Figure A.6: Ridgeline plot of sum_cardinality_over_categorical

Figure A.7: Ridgeline plot of categorical_ratio
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Figure A.8: Ridgeline plot of numeric_ratio

Figure A.9: Ridgeline plot of boolean_ratio
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Appendix B

Statistical Tests Results

Shapiro–Wilk Levene Kruskal-Wallis
Treatment Metric

η
(1)
NE δAUC 4.965994e-19 9.630606e-01 9.951832e-01

δBrier 3.710903e-24 9.999938e-01 9.793033e-01
δLogloss 6.203025e-23 9.828542e-01 3.733919e-04

η
(1)
MD δAUC 3.388219e-21 8.590251e-01 2.901450e-01

δBrier 8.838670e-15 2.941775e-01 4.174048e-04
δLogloss 9.113385e-14 1.231119e-01 1.246510e-02

η
(1)
LR δAUC 1.013322e-07 9.811205e-01 2.878008e-02

δBrier 5.617271e-14 1.408917e-03 2.329982e-07
δLogloss 7.958839e-14 1.050014e-03 3.927624e-07

η
(1)
MD,LR δAUC 2.401885e-32 9.999982e-01 6.661712e-08

δBrier 1.177091e-43 3.361336e-01 1.067366e-90
δLogloss 6.678448e-41 9.901324e-19 8.193802e-91

η
(1)
MD,NE δAUC 0.000000e+00 1.000000e+00 1.000000e+00

δBrier 0.000000e+00 1.000000e+00 1.000000e+00
δLogloss 0.000000e+00 1.000000e+00 1.025601e-04

η
(1)
LR,NE δAUC 0.000000e+00 6.240957e-01 2.852539e-01

δBrier 0.000000e+00 9.999999e-01 4.590395e-17
δLogloss 0.000000e+00 1.000000e+00 1.088594e-33

η
(1)
NE,MD,LR δAUC 0.000000e+00 1.000000e+00 1.089024e-10

δBrier 0.000000e+00 1.000000e+00 6.880061e-293
δLogloss 0.000000e+00 1.000000e+00 0.000000e+00

Table B.1: Statistical p-values of the experimental scenarios in Cluster 1
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Shapiro–Wilk Levene Kruskal-Wallis
Treatment Metric

η
(2)
NE δAUC 4.059920e-08 9.968117e-01 9.996506e-01

δBrier 5.942564e-06 2.105453e-01 9.965572e-01
δLogloss 2.502680e-05 9.636175e-03 2.827828e-03

η
(2)
MD δAUC 2.536182e-10 9.210022e-01 1.860650e-02

δBrier 3.926061e-06 2.774635e-01 2.283747e-02
δLogloss 2.522154e-05 1.285176e-01 1.764531e-02

η
(2)
LR δAUC 2.714980e-09 NaN NaN

δBrier 9.808685e-09 NaN NaN
δLogloss 1.213540e-10 NaN NaN

η
(2)
MD,LR δAUC 1.406702e-20 9.999939e-01 1.316980e-02

δBrier 1.339994e-23 1.000000e+00 6.235464e-12
δLogloss 1.334960e-23 1.000000e+00 1.005025e-08

η
(2)
MD,NE δAUC 2.548462e-22 1.000000e+00 1.000000e+00

δBrier 6.494320e-28 9.969882e-01 9.274816e-01
δLogloss 3.974093e-21 2.655356e-23 6.191510e-22

η
(2)
LR,NE δAUC 9.960932e-27 1.000000e+00 3.306332e-06

δBrier 2.709085e-26 9.999995e-01 7.035798e-09
δLogloss 2.452305e-24 9.999999e-01 1.650304e-05

η
(2)
NE,MD,LR δAUC 0.000000e+00 1.000000e+00 2.904172e-64

δBrier 0.000000e+00 1.000000e+00 4.013155e-111
δLogloss 0.000000e+00 1.000000e+00 7.298816e-70

Table B.2: Statistical p-values of the experimental scenarios in Cluster 2

Shapiro–Wilk Levene Kruskal-Wallis
Treatment Metric

η
(3)
NE δAUC 5.611898e-16 9.988256e-01 1.147338e-01

δBrier 2.050222e-10 8.124238e-01 9.418066e-02
δLogloss 8.273422e-11 6.302806e-01 2.663393e-01

η
(3)
MD δAUC 3.139396e-07 2.645190e-02 2.556998e-05

δBrier 3.959432e-05 3.419306e-02 4.180864e-06
δLogloss 6.005177e-04 3.551900e-02 2.702174e-06

η
(3)
LR δAUC 3.676430e-01 1.621118e-01 1.767196e-06

δBrier 5.871765e-03 6.829990e-04 1.551529e-06
δLogloss 1.938849e-02 6.932106e-06 1.598158e-06

η
(3)
MD,LR δAUC 8.839741e-14 5.496276e-01 2.534254e-20

δBrier 5.927692e-07 7.132355e-01 8.655283e-48
δLogloss 3.870745e-10 3.646846e-02 1.441531e-51

η
(3)
MD,NE δAUC 3.996994e-40 3.524884e-03 6.177612e-25

δBrier 2.490148e-35 2.958452e-02 6.911108e-22
δLogloss 2.679125e-35 1.031149e-169 3.001168e-100

η
(3)
LR,NE δAUC 8.223911e-28 3.639094e-15 4.084732e-19

δBrier 4.965566e-27 1.425324e-08 6.548453e-23
δLogloss 1.446958e-34 5.364655e-11 1.063454e-24

η
(3)
NE,MD,LR δAUC 0.000000e+00 2.067193e-23 2.847486e-123

δBrier 1.401298e-45 1.522520e-09 1.016972e-125
δLogloss 1.401298e-45 0.000000e+00 0.000000e+00

Table B.3: Statistical p-values of the experimental scenarios in Cluster 3
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Shapiro–Wilk Levene Kruskal-Wallis
Treatment Metric

η
(4)
NE δAUC 3.616501e-13 9.873830e-01 2.111212e-01

δBrier 2.482372e-13 9.980555e-01 9.970748e-01
δLogloss 1.336703e-11 9.292868e-01 9.770873e-01

η
(4)
MD δAUC 2.537239e-11 9.982780e-01 9.797863e-01

δBrier 1.019241e-06 9.964629e-01 9.957778e-01
δLogloss 6.850468e-10 9.998679e-01 9.999136e-01

η
(4)
LR δAUC 1.831653e-07 0.000000e+00 1.000000e+00

δBrier 3.636517e-09 0.000000e+00 1.024704e-01
δLogloss 3.636517e-09 6.581044e-29 1.024704e-01

η
(4)
MD,LR δAUC 9.831066e-33 9.999617e-01 7.098868e-01

δBrier 9.176373e-28 1.000000e+00 2.899170e-10
δLogloss 2.758601e-30 9.999158e-01 5.548296e-09

η
(4)
MD,NE δAUC 3.372529e-39 1.000000e+00 9.862816e-01

δBrier 0.000000e+00 1.000000e+00 1.000000e+00
δLogloss 4.203895e-45 1.000000e+00 1.000000e+00

η
(4)
LR,NE δAUC 1.439362e-30 9.994980e-01 1.000000e+00

δBrier 1.217919e-29 9.984107e-01 1.066378e-08
δLogloss 2.404549e-26 9.772312e-01 4.468989e-09

η
(4)
NE,MD,LR δAUC 0.000000e+00 1.000000e+00 1.000000e+00

δBrier 0.000000e+00 1.000000e+00 2.812655e-136
δLogloss 0.000000e+00 1.000000e+00 2.501047e-153

Table B.4: Statistical p-values of the experimental scenarios in Cluster 4

Shapiro–Wilk Levene Kruskal-Wallis
Treatment Metric

η
(5)
NE δAUC 2.727656e-13 9.999921e-01 8.138489e-01

δBrier 2.316378e-11 5.085153e-01 9.999896e-01
δLogloss 5.203110e-10 5.821598e-03 9.999997e-01

η
(5)
MD δAUC 1.056675e-27 9.999371e-01 3.299262e-01

δBrier 5.635529e-28 9.999508e-01 1.229116e-04
δLogloss 1.100347e-27 9.999037e-01 1.275362e-02

η
(5)
LR δAUC 6.518040e-13 9.998573e-01 1.734229e-02

δBrier 3.448695e-14 9.983008e-01 1.984047e-03
δLogloss 1.160934e-13 9.997163e-01 2.143289e-03

η
(5)
MD,LR δAUC 2.371575e-30 1.000000e+00 3.281449e-28

δBrier 1.079978e-39 1.000000e+00 7.005511e-07
δLogloss 3.393346e-36 1.000000e+00 1.115711e-06

η
(5)
MD,NE δAUC 0.000000e+00 1.000000e+00 1.000000e+00

δBrier 2.802597e-45 9.981370e-01 1.000000e+00
δLogloss 4.049753e-43 6.341819e-85 1.000000e+00

η
(5)
LR,NE δAUC 0.000000e+00 1.000000e+00 1.663213e-08

δBrier 0.000000e+00 1.000000e+00 7.634533e-16
δLogloss 1.401298e-45 1.000000e+00 1.683672e-15

η
(5)
NE,MD,LR δAUC 0.000000e+00 1.000000e+00 1.252096e-92

δBrier 0.000000e+00 1.000000e+00 1.095053e-251
δLogloss 0.000000e+00 1.000000e+00 8.787394e-273

Table B.5: Statistical p-values of the experimental scenarios in Cluster 5
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Shapiro–Wilk Levene Kruskal-Wallis
Treatment Metric

η
(6)
NE δAUC 5.555299e-15 7.331148e-02 9.810169e-05

δBrier 4.446020e-13 1.695424e-02 1.426687e-07
δLogloss 5.699214e-15 1.302647e-04 1.309669e-17

η
(6)
MD δAUC 8.323186e-18 9.659329e-01 2.275562e-01

δBrier 8.587676e-18 8.808170e-01 3.733077e-02
δLogloss 8.382108e-16 7.293658e-01 1.738130e-01

η
(6)
LR δAUC 8.634467e-17 NaN NaN

δBrier 1.000000e+00 NaN NaN
δLogloss 5.394157e-16 NaN NaN

η
(6)
MD,LR δAUC 8.691273e-41 9.990496e-01 3.351863e-04

δBrier 7.470919e-39 1.000000e+00 6.020948e-12
δLogloss 1.597480e-43 9.999978e-01 1.947958e-15

η
(6)
MD,NE δAUC 0.000000e+00 6.248752e-01 9.997299e-01

δBrier 6.459986e-43 9.233229e-71 1.014506e-50
δLogloss 0.000000e+00 3.935870e-148 5.383524e-198

η
(6)
LR,NE δAUC 1.401298e-45 9.999975e-01 2.575427e-03

δBrier 1.916556e-41 2.863830e-01 1.070646e-03
δLogloss 0.000000e+00 6.187968e-16 2.237852e-06

η
(6)
NE,MD,LR δAUC 0.000000e+00 1.000000e+00 2.705704e-150

δBrier 0.000000e+00 5.205595e-22 6.798990e-02
δLogloss 0.000000e+00 0.000000e+00 6.851411e-86

Table B.6: Statistical p-values of the experimental scenarios in Cluster 6
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