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Abstract

Bruno Hideki Akamine. Alon Boppana Bound for Non-Regular Expanders. Cap-

stone Project Report (Bachelor). Institute of Mathematics and Statistics, University of

São Paulo, São Paulo, 2024.

The goal of this project is to study generalizations of expander graphs to graphs that are not regular

and to prove two Alon-Boppana type bounds for them. The first generalization covered uses the notion of

spectral sparsifiers and we consider as expanders the spectral sparsifiers of the complete graph. The second

generalization uses the normalized Laplacian matrix of unweighted graphs which do not need to be regular.

The proofs of such bounds utilizes some interesting concepts such as non backtracking walks.
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Chapter 1

Introduction

Expander graphs are a class of graphs with useful properties, such as forming a single

cluster, behaving like random graphs in certain ways, and having the distribution of the

last vertex in a random walk converge rapidly to the uniform distribution. Furthermore,

expander graphs can be used to construct good error-correcting codes, enabling the

retrieval of the original content of a message even if the communication channel is

noisy and corrupts the message. Another application is efficiently reducing the error in

probabilistic algorithms while using fewer random bits than a naive sampling method.

In the definition of expanders, they are required to be unweighted and regular graphs.

Consequently, many studies have explored properties under this traditional definition.

One of the most significant results for expander graphs is the result of Alon and Boppana

(Nilli, 1991), which bounds the second-largest eigenvalue of the adjacency matrix. This

property is key for defining expander graphs and establishing the notion of optimal

expanders. A natural question that arises when studying expander graphs is whether it is

possible to generalize this notion to non-regular or weighted graphs. In this monograph,

two Alon-Boppana type bounds for generalizations of expanders will be studied. The

first approach uses spectral sparsifiers to generalize the notion of expanders to weighted

graphs, while the second employs the normalized Laplacian matrix to extend the concept

to unweighted graphs.

1.1 Preliminaries on Graph Theory

In this section, we will define properties of graphs that will be used later in the text.

An useful operator that will appear in the definition of some of the properties is the

Iverson bracket, where for an expression 𝑃 that can be either true or false the Iverson

bracket of 𝑃 is defined as

[𝑃] =

{

1 if 𝑃 is true,

0 otherwise.
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Denote the vector of all-ones by 1, where the domain is implicit by the context, i.e., if

1 ∈ ℝ𝑉 then 1
𝑇 𝑒𝑣 = 1 for each 𝑣 ∈ 𝑉 . Also, denote by 1𝑈 the incidence vector of 𝑈 ⊆ 𝑉 ,

i.e., one has 1
𝑇
𝑈 𝑒𝑣 = [𝑣 ∈ 𝑈 ] for each 𝑣 ∈ 𝑉 .

A weighted graph is an ordered triple (𝑉 , 𝐸, 𝑤) where (𝑉 , 𝐸) is a graph and𝑤 is a weight

function𝑤∶ 𝐸 → ℝ++, i.e., the function𝑤 assigns weights for each edge of the graph. Note

that a graph 𝐺 = (𝑉 , 𝐸) can be seen as a weighted graph where all the edges have weight 1,

i.e., can be seen as (𝑉 , 𝐸,1). The complete graph on the vertex set 𝑉 is denoted by 𝐾𝑉 .

Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. The neighborhood of a vertex 𝑣 ∈ 𝑉 is

𝑁𝐺(𝑣) ∶= {𝑢 ∈ 𝑉 ∶ 𝑢 is adjacent to 𝑣}.

The combinatorial degree of a vertex 𝑣 ∈ 𝑉 is deg𝐺(𝑣) ∶= |𝑁 (𝑣)|, where 𝐺 can be

omitted if it is implicit by the context. We define the minimum and maximum combi-

natorial degree as

𝛿(𝐺) ∶= min
𝑣∈𝑉

deg𝐺(𝑣) and Δ(𝐺) ∶= max
𝑣∈𝑉

deg𝐺(𝑣).

The girth of 𝐺 is the length of a shortest circuit of 𝐺, if one exists, and is denoted

by girth(𝐺). The length of a shortest path between two vertices 𝑢, 𝑣 ∈ 𝑉 is denoted by

dist(𝑢, 𝑣). Let 𝑆 ⊆ 𝑉 . Denote the cut induced by 𝑆 as

𝛿𝐺(𝑆) ∶= {𝑒 ∈ 𝐸 ∶ ∃𝑣 ∈ 𝑆, ∃𝑢 ∈ 𝑉 ⧵ 𝑆, 𝑒 = 𝑢𝑣},

where the index 𝐺 can be omitted if it is clear in the context. When |𝑆| = 1, we abuse

notation and use

𝛿({𝑣}) ∶= 𝛿(𝑣) for each 𝑣 ∈ 𝑉 .

Denote the volume of 𝑆 as

vol𝐺(𝑆) ∶= ∑

𝑣∈𝑆

deg𝐺(𝑣).

Denote the weighted degree of 𝑣 as 𝑤𝑣 ∶= 𝑤
𝑇
1𝛿(𝑣) for each 𝑣 ∈ 𝑉 . We define the minimum

and maximum weighted degree of 𝐺 as

𝛿𝑤(𝐺) ∶= min
𝑣∈𝑉

𝑤𝑣 and Δ𝑤(𝐺) ∶= max
𝑣∈𝑉

𝑤𝑣.

Let 𝛼 ∈ ℝ++. A multiple of G is defined as

𝛼𝐺 ∶= (𝑉 , 𝐸, 𝛼𝑤).

For any set 𝑆 ⊆ 𝑉 , we denote the complement of 𝑆 as 𝑆 ∶= 𝑉 ⧵ 𝑆. The expansion
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ratio of 𝐺 is defined as

ℎ(𝐺) ∶= min
∅≠𝑆⊂𝑉

|𝛿(𝑆)|

min{|𝑆|, |𝑆|}
.

Finally, we can define the expander graphs.

Definition 1. Let 𝑑 ∈ ℤ++ such that 𝑑 ≥ 2. Let (𝐺𝑛)𝑛∈ℕ be a family of 𝑑-regular graphs

such that lim
𝑛→∞

|𝑉 (𝐺𝑛)| = ∞. The family (𝐺𝑛)𝑛∈ℕ is called a family of expanders if there is

𝜀 > 0 such that, for each 𝑛 ∈ ℕ, one has ℎ(𝐺𝑛) ≥ 𝜀.

By the definition, we can observe that expander graphs are defined as a family of

graphs, so we are reffering to a family of graphs whenever we mention expander graphs.

Also, from the definition of expander graphs, we see that expander graphs become more

sparse as 𝑛 increases because it has a linear number of edges in relation to the number of

vertices of the graph, as every graph in the family is 𝑑-regular with 𝑑 constant.

The volume of a set 𝑆 ⊆ 𝑉 is

vol𝐺(𝑆) ∶= ∑

𝑣∈𝑆

deg𝐺(𝑣).

The conductance of a nonempty set 𝑆 ⊂ 𝑉 is

𝜙𝐺(𝑆) ∶=
𝑤𝑇

1𝛿(𝑆)

min{vol𝐺(𝑆), vol𝐺(𝑆)}
.

The conductance of 𝐺 is

𝜙(𝐺) ∶= min
∅≠𝑆⊂𝑉

𝜙𝐺(𝑆).

The notion of conductance is useful for indentifying clusters, which are sets 𝑆 ⊆ 𝑉 such

that the number of edges between vertices in 𝑆 is considerably larger than the size of 𝛿(𝑆).

Consider a family of 𝑑-regular expander graphs, hence vol𝐺(𝑆) = 𝑑|𝑆| for each 𝑆 ⊆ 𝑉 . Thus

𝜙(𝐺) = min
∅≠𝑆⊂𝑉

𝑤𝑇
1𝛿(𝑆)

min{vol𝐺(𝑆), vol𝐺(𝑆)}
=

|𝛿(𝑆)|

𝑑min{|𝑆|, |𝑆|}
=
ℎ(𝐺)

𝑑
.

Therefore, the conductance of expanders is away from zero since their expansion ratio is

away from zero. We conclude that expander graphs form a single cluster, i.e., if we take

any set of vertices in a expander graph, we observe that the number of edges between

vertices in the set is comparable to the number of edges leaving the set.

1.2 Algebraic Graph-Theoretical Preliminaries

In this section, we define some algebraic properties of graphs and prove some results

that will be used later.
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The support of a vector 𝑓 ∈ ℝ𝑉 is

supp(𝑓 ) ∶= {𝑖 ∈ 𝑉 ∶ 𝑓𝑖 ≠ 0}.

Let 𝑓 ∶ 𝑉 → ℝ be a function. Let 𝑋 ⊆ 𝑉 . Denote the restriction of 𝑓 with respect to 𝑋 as a

function 𝑓 ↾𝑋∶ 𝑉 → ℝ such that 𝑓 ↾𝑋 (𝑥) = 𝑓 (𝑥)[𝑥 ∈ 𝑋] for each 𝑥 ∈ 𝑉 .

Denote the set of all symmetric 𝑉 × 𝑉 matrices as 𝕊𝑉 . A matrix 𝑃 ∈ ℝ𝑉×𝑉 is called

a orthogonal projector if 𝑃 is symmetric and idempotent, i.e., if 𝑃 = 𝑃𝑇 and 𝑃 = 𝑃 2
. Let

𝑈 ⊆ 𝑉 be a linear subspace of 𝑉 , and let 𝑥 ∈ ℝ𝑉 . There exist 𝑦 ∈ 𝑈 and 𝑧 ∈ 𝑈 ⟂
such that

𝑥 = 𝑦 + 𝑧. A orthogonal projector 𝑃 ∈ 𝕊𝑉 projects onto the subspace 𝑈 if 𝑃𝑥 = 𝑦.

Define the function 𝜆↓ ∶ 𝕊𝑉 → ℝ[𝑛]
that sends each 𝐴 ∈ 𝕊𝑉 to the vector of eigenvalues

of A in non-increasing order. Similarly, define the function 𝜆↑ ∶ 𝕊𝑉 → ℝ[𝑛]
that sends each

𝐴 ∈ 𝕊𝑉 to the vector of eigenvalues of A in non-decreasing order.

Theorem 2. Let 𝐴 ∈ 𝕊𝑉 . Set 𝑛 ∶= |𝑉 |. Then there is an orthonormal basis {𝑞1,… , 𝑞𝑛} of

ℝ𝑉 , all of whose elements are eigenvectors of 𝐴, such that

𝐴 =

𝑛

∑

𝑖=1

𝜆
↑
𝑖 (𝐴)𝑞𝑖𝑞

𝑇
𝑖 .

From Theorem 2, any symmetric matrix can be decomposed by its eigenvalues and

eigenvetors. The next two theorems will show us how to compute the eingenvalues and

eigenvectors of a symmetric matrix.

Theorem 3. Let 𝐴 ∈ 𝕊𝑉 and set 𝑛 ∶= |𝑉 |. Let 𝑘 ∈ [𝑛]. Let {𝑞𝑖 ∶ 𝑖 ∈ [𝑘 − 1]} ⊆ ℝ𝑉 be an

orthonormal set such that 𝑀𝑞𝑖 = 𝜆
↓
𝑖 (𝐴)𝑞𝑖 for each 𝑖 ∈ [𝑘 − 1]. Then

𝜆
↓

𝑘
= max

{
𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
∶ 𝑥 ∈ ℝ

𝑉
, 𝑥 ≠ 0, ∀𝑖 ∈ [𝑘 − 1] 𝑥 ⟂ 𝑞𝑖

}

.

Theorem 4. Let 𝐴 ∈ 𝕊𝑉 and set 𝑛 ∶= |𝑉 |. Let 𝑘 ∈ [𝑛]. Let {𝑞𝑖 ∶ 𝑖 ∈ [𝑘 − 1]} ⊆ ℝ𝑉 be an

orthonormal set such that 𝑀𝑞𝑖 = 𝜆
↑
𝑖 (𝐴)𝑞𝑖 for each 𝑖 ∈ [𝑘 − 1]. Then

𝜆
↑

𝑘
= min

{
𝑥𝑇𝐴𝑥

𝑥𝑇𝑥
∶ 𝑥 ∈ ℝ

𝑉
, 𝑥 ≠ 0, ∀𝑖 ∈ [𝑘 − 1] 𝑥 ⟂ 𝑞𝑖

}

.

From Theorem 3 and Theorem 4, all the eigenvalues and eigenvectors of a symmetric

matrix can be computed recursively, starting from the largest eigenvalue and its eigenvector

(Theorem 3) or starting from the smallest eingevalue and its eigevector (Theorem 4).

The adjacency matrix of𝐺 is the matrix 𝐴𝐺 ∈ 𝕊𝑉 where, for each 𝑖𝑗 ∈ 𝑉 ×𝑉 , we have

𝐴𝐺(𝑖, 𝑗) = [𝑖𝑗 ∈ 𝐸]𝑤𝑖𝑗 .

The degree matrix of 𝐺 is the matrix 𝐷𝐺 ∈ 𝕊𝑉 where, for each 𝑖𝑗 ∈ 𝑉 × 𝑉 , we have

𝐷𝐺(𝑖, 𝑗) = [𝑖 = 𝑗]𝑤𝑖.
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The Laplacian matrix of 𝐺 is the matrix 𝐿𝐺 ∈ 𝕊𝑉 defined as

𝐿𝐺 ∶= ∑

𝑖𝑗∈𝐸

𝑤𝑖𝑗(𝑒𝑖 − 𝑒𝑗)(𝑒𝑖 − 𝑒𝑗)
𝑇
= 𝐷𝐺 − 𝐴𝐺.

Thus,

𝑥
𝑇
𝐿𝐺𝑥 = ∑

𝑖𝑗∈𝐸

𝑤𝑖𝑗𝑥(𝑒𝑖 − 𝑒𝑗)(𝑒𝑖 − 𝑒𝑗)
𝑇
𝑥 = ∑

𝑖𝑗∈𝐸

𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)(𝑥𝑖 − 𝑥𝑗) = ∑

𝑖𝑗∈𝐸

𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2
,

for each 𝑥 ∈ ℝ𝑉 . For any 𝛼 ∈ ℝ++, we have that 𝐴𝛼𝐺 = 𝛼𝐴𝐺 and 𝐷𝛼𝐺 = 𝛼𝐷𝐺. So

𝐿𝛼𝐺 = 𝛼𝐿𝐺.

Lemma 5. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Let 𝛼 ∈ ℝ++. Then

𝜆
↑
(𝐿𝛼𝐺) = 𝛼𝜆

↑
(𝐿𝐺).

Proof. Set 𝑛 ∶= |𝑉 |. Let 𝑖 ∈ [𝑛]. Let 𝑥 be a 𝜆
↑
𝑖 (𝐿𝐺)-eigenvector of 𝐿𝐺. Then

𝐿𝛼𝐺𝑥 = 𝛼𝐿𝐺𝑥 = 𝛼𝜆
↑
𝑖 (𝐿𝐺)𝑥.

Let 𝐴, 𝐵 ∈ 𝕊𝑉 . We say that 𝐴 is positive semidefinite if 𝑥𝑇𝐴𝑥 ≥ 0 for each 𝑥 ∈ ℝ𝑉 .

We write 𝐴 ≽ 𝐵 when 𝐴 − 𝐵 is positive semidefinite. Thus, 𝐴 ≽ 0 if and only if A is

positive semidefinite.

Theorem 6. Let 𝐴, 𝐵 ∈ 𝕊𝑉 such that 𝐴 ≽ 𝐵. Then 𝜆↑(𝐴) ≥ 𝜆↑(𝐵).

Lemma 7. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Then 𝐿𝐺 is positive semidefinite.

Proof. Let 𝑥 ∈ ℝ𝑉 . Then

𝑥
𝑇
𝐿𝐺𝑥 = ∑

𝑖𝑗∈𝐸

𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)
2
.

Note that for each 𝑖𝑗 ∈ 𝐸 we have that 𝑤𝑖𝑗 ≥ 0 and (𝑥𝑖 − 𝑥𝑗)
2 ≥ 0, hence 𝑥𝑇𝐿𝑥 ≥ 0.

The Normalized Laplacian matrix is the matrix 𝐺 ∈ 𝕊𝑉 defined as

𝐺 ≔ 𝐷
−1/2

𝐺 𝐿𝐺𝐷
−1/2

𝐺 .

Lemma 8. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Then 𝐺 is positive semidefinite.

Proof. Let 𝑥 ∈ ℝ𝑉 . Then

𝑥
𝑇𝐺𝑥 = 𝑥

𝑇
𝐷

−1/2

𝐺 𝐿𝐺𝐷
−1/2

𝐺 𝑥.

Note that 𝐷−1/2𝑥 ∈ ℝ𝑉 . Since 𝐷𝐺 ∈ 𝕊𝑉 and using Lemma 7,

𝑥
𝑇𝐺𝑥 = 𝑥

𝑇
𝐷

−1/2

𝐺 𝐿𝐺𝐷
−1/2

𝐺 𝑥 = (𝐷
−1/2

𝐺 𝑥)
𝑇
𝐿𝐺𝐷

−1/2

𝐺 𝑥 ≥ 0.

From Theorem 2, both the Laplacian matrix and the normalized Laplacian matrix of a

graph can be decomposed into their eigenvalues and eigenvectors. The next lemma will

show the relationship between a graph being positive semidefinite and its eigenvalues.
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Lemma 9. Let 𝐴 ∈ 𝕊𝑉 . Then 𝐴 is positive semidefinite if and only if 𝜆↑(𝐴) ≥ 0.

Proof. If 𝐴 is positive semidefinite, it holds that 𝑥𝑇𝐴𝑥 ≥ 0 for each 𝑥 ∈ ℝ𝑉 . Let 𝑥 ∈ ℝ𝑉 and

let 𝛼 ∈ ℝ such that 𝑥 is an 𝛼-eigenvetor of A. Suppose 𝛼 < 0, hence

𝑥
𝑇
𝐴𝑥 = 𝑥

𝑇
(𝐴𝑥) = 𝑥

𝑇
𝛼𝑥 = 𝛼𝑥

𝑇
𝑥 = 𝛼‖𝑥‖

2
.

Since ‖𝑥‖2 > 0, we have that 𝑥𝑇𝐴𝑥 < 0, a contradiction.

Suppose 𝜆↑(𝐴) ≥ 0. Let 𝑥 ∈ ℝ𝑉 and set 𝑛 ∶= |𝑉 |. By Theorem 2, there is an or-

thonormal basis {𝑞1,… , 𝑞𝑛} of ℝ𝑉 , all of whose elements are eigenvectors of 𝐴, such that

𝐴 =
𝑛

∑
𝑖=1

𝜆
↑
𝑖 (𝐴)𝑞𝑖𝑞

𝑇
𝑖 . Hence

𝑥
𝑇
𝐴𝑥 =

𝑛

∑

𝑖=1

𝜆
↑
𝑖 (𝐴)𝑥

𝑇
𝑞𝑖𝑞

𝑇
𝑖 𝑥 =

𝑛

∑

𝑖=1

𝜆
↑
𝑖 (𝐴)(𝑥

𝑇
𝑞𝑖)

2
.

Since the square of any real number is nonnegative and 𝜆
↑
𝑖 (𝐴) ≥ 0 for every 𝑖 ∈ [𝑛],

we conclude that 𝑥𝑇𝐴𝑥 is a sum of nonnegative terms and so 𝑥𝑇𝐴𝑥 ≥ 0.

Lemma 9, together with Lemma 7 and Lemma 8, tells us that all the eigenvalues of the

laplacian matrix and the normalized laplacian matrix of a graph are nonnegative.

Theorem 10. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Then

Null(𝐿𝐺) = span {1𝐶 ∶ 𝐶 ⊆ 𝑉 is a component of 𝐺}.

Corollary 11. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Then 𝜆
↑
1(𝐿𝐺) = 0 and 1 is a

0 - eigenvector of 𝐿𝐺.

Proof. Immediate from Theorem 10.

Corollary 12. Let (𝐺, 𝐸, 𝑤) be a weighted graph. Then 𝐺 is connected if and only if

𝜆
↑
2(𝐿𝐺) > 0.

Proof. Immediate from Theorem 10.

Corollary 12 will be important in chapter 2, since the graphs we will consider in this

chapter must be connected. Otherwise, we would have a division by 0 in the denominator.

Lemma 13. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Then 𝜆
↑
1(𝐺) = 0 and 𝐷

1/2

𝐺 1 is a

0-eigenvetor of 𝐺.

Proof. By the definition of 𝐺,

𝐺𝐷1/2
1 = 𝐷

−1/2
𝐿𝐺𝐷

−1/2
𝐷

1/2
1 = 𝐷

−1/2
𝐿𝐺1.

Using Corollary 11,

𝐺𝐷1/2
1 = 𝐷

−1/2
𝐿𝐺1 = 𝐷

−1/2
0 = 0.

By Lemma 8, it follows that 𝜆
↑
1(𝐺) = 0.
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Corollary 14. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Then, 𝐺 is connected if and only if

𝜆
↑
2(𝐺) > 0.

Proof. Immediate from Corollary 12.

Corollary 14 will be important in chapter 3, because if 𝐺 is not connected, then the

bound being proved in this chapter is trivial.

Let 𝑋 ∈ ℝ𝑉×𝑉 be a square matrix. The trace of 𝑋 is

Tr(𝑋) = ∑

𝑖∈𝑉

𝑋𝑖𝑖.

Lemma 15. Let 𝑋 ∈ 𝕊𝑉 . Then

Tr(𝑋) = 1
𝑇
𝜆
↑
(𝑋).

The next two lemma are basic facts of linear algebra but will be useful in some proofs

throughout the text.

Lemma 16. Let 𝑈 be a linear subspace of 𝑉 . Let 𝐵𝑈 be a orthonormal basis of 𝑈 . Then

∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇
= Proj𝑈 .

Proof. First, we prove that the sum is orthogonal,

(
∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇

)

𝑇

= ∑

𝑏∈𝐵𝑈

(𝑏𝑏
𝑇
)
𝑇
= ∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇
.

By assumption, we have 𝑏𝑇1 𝑏2 = [𝑏1 = 𝑏2] for each 𝑏1, 𝑏2 ∈ 𝐵𝑈 . So,

(
∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇

)

𝑇

(
∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇

)
= ∑

𝑏1∈𝐵𝑈

∑

𝑏2∈𝐵𝑈

𝑏1𝑏
𝑇
1 𝑏2𝑏

𝑇
2 = ∑

𝑏1∈𝐵𝑈

∑

𝑏2∈𝐵𝑈

𝑏1[𝑏1 = 𝑏2]𝑏
𝑇
2 = ∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇
.

Let 𝑥 ∈ 𝑉 . There exist 𝑦 ∈ 𝑈 and 𝑧 ∈ 𝑈 ⟂
such that 𝑥 = 𝑦 + 𝑧. We can extend 𝐵𝑈 to be a

orthonormal basis of 𝑉 . Take the extended orthogonal basis 𝐵𝑉 , note that 𝐵𝑈⟂ ∶= 𝐵𝑉 ⧵𝐵𝑈 is

a orthonormal basis of 𝑈 ⟂
. Hence, there are coeficients (𝛼𝑏)𝑏∈𝐵𝑈 such that 𝑦 = ∑

𝑏∈𝐵𝑈

𝛼𝑏𝑏𝑏
𝑇

,

and there are coeficients (𝛽𝑏)𝑏∈𝐵
𝑈⟂

such that 𝑧 = ∑
𝑏∈𝐵

𝑈⟂

𝛽𝑏𝑏𝑏
𝑇
. Since 𝑏𝑇1 𝑏2 = 0 for each

𝑏1 ∈ 𝐵𝑈 and for each 𝑏2 ∈ 𝐵𝑈⟂ ,

(
∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇

)
𝑥 =

(
∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇

)
(𝑦 + 𝑧) =

(
∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇

)
𝑦 +

(
∑

𝑏∈𝐵𝑈

𝑏𝑏
𝑇

)
𝑧

= ∑

𝑏1∈𝐵𝑈

∑

𝑏2∈𝐵𝑈

𝛼𝑏2𝑏1𝑏
𝑇
1 𝑏2𝑏

𝑇
2 + ∑

𝑏1∈𝐵𝑈

∑

𝑏2∈𝐵𝑈⟂

𝛽𝑏2𝑏1𝑏
𝑇
1 𝑏2𝑏

𝑇
2

= ∑

𝑏1∈𝐵𝑈

∑

𝑏2∈𝐵𝑈

𝛼𝑏2𝑏1[𝑏1 = 𝑏2]𝑏
𝑇
2 + 0

= ∑

𝑏∈𝐵

𝛼𝑏𝑏𝑏
𝑇
= 𝑦.



8

1 | INTRODUCTION

Lemma 17. Let 𝑓 ∈ ℝ𝑉 . Then

‖
‖𝑓
‖
‖
2
= ‖
‖Projspan{1}𝑓

‖
‖
2
+ ‖
‖Proj{1}⟂𝑓

‖
‖
2
.

Proof. Note that Proj{1}⟂𝑓 = (𝐼 − Projspan{1})𝑓 . Since a projector is symmetric and idem-

potent:

(Projspan{1}𝑓 )
𝑇
Proj{1}⟂𝑓 = 𝑓

𝑇
Proj

𝑇
span{1}(𝐼 − Projspan{1})𝑓

= 𝑓
𝑇
(Proj

𝑇
span{1} − Proj

2
span{1})𝑓

= 𝑓
𝑇
(Projspan{1} − Projspan{1})𝑓 = 0

So,

‖
‖𝑓
‖
‖
2
= ‖
‖Projspan{1}𝑓 + Proj{1}⟂𝑓

‖
‖
2

= (Projspan{1}𝑓 + Proj{1}⟂𝑓 )
𝑇

(Projspan{1}𝑓 + Proj{1}⟂𝑓 )

= (Projspan{1}𝑓 )
𝑇

(Projspan{1}𝑓 ) + (Proj{1}⟂𝑓 )
𝑇

(Proj{1}⟂𝑓 ) + 2(Projspan{1}𝑓 )
𝑇

(Proj{1}⟂𝑓 )

= ‖
‖Projspan{1}𝑓

‖
‖
2
+ ‖
‖Proj{1}⟂𝑓

‖
‖
2
.

1.3 Motivation

In section 1.1, we defined expander graphs and showed one of their properties: that

the vertices of expander graphs lie in a single cluster. In this section, we explore more

properties and explain in more details some of the things discussed at the beggining of

the chapter. A result that was very important due to Cheeger and Buser, which bounds

the expansion ratio of a graph using the spectral gap of the adjacency matrix of the

graph, is the following.

Theorem 18. (see [Hoory et al., 2006, Theorem2.4]) Let 𝐺 be a 𝑑-regular graph. Then

𝑑 − 𝜆
↓
2(𝐴𝐺)

2
≤ ℎ(𝐺) ≤

√

2𝑑(𝑑 − 𝜆
↓
2(𝐴𝐺)).

Recall that 𝑑 is the largest eingevalue of a 𝑑-regular graph. Hence, the value 𝑑−𝜆
↓
2(𝐴𝐺)

for any 𝑑-regular graph is called the espectral gap of 𝐺. From Theorem 18, one can show

that the definition of expanders can use the spectral gap instead of the expansion ratio.

Corollary 19. Let 𝑑 ∈ ℤ++ such that 𝑑 ≥ 2. Let (𝐺𝑛)𝑛∈ℕ be a family of 𝑑-regular graphs

such that lim
𝑛→∞

= ∞. The family (𝐺𝑛)𝑛 ∈ ℕ is called a family of expanders if and only if

there is 𝜀 > 0 such that, for each 𝑛 ∈ ℕ, one has 𝑑 − 𝜆
↓
2(𝐴𝐺𝑛) ≥ 𝜀.

Alon and Boppana bounded below the second largest eigenvalue of the adjacency

matrix of 𝑑-regular graphs, hence they bounded the spectral gap of 𝑑-regular graphs.
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Theorem 20. ([Nilli, 1991]) Let 𝐺 = (𝑉 , 𝐸) be a 𝑑-regular graph with 𝑑 ≥ 2. Then

𝜆
↓
2(𝐴𝐺) ≥ 2

√
𝑑 − 1 −

2
√
𝑑 − 1 − 1

diam(𝐺)

2
− 1

.

From Theorem 20 and the updated definition in Corollary 19, one can think of optimal

expanders. The optimal expanders, which are called Ramanujan graphs, use the bound

proved by Alon and Boppana.

Definition 21. Let 𝐺 = (𝑉 , 𝐸) be a 𝑑-regular graph with 𝑛 vertices and with 𝑑 ≥ 2. The

graph 𝐺 is called Ramanujan graph if, for each 𝑖 ∈ [𝑛], one has

|𝜆
↓
𝑖 (𝐴𝐺)| ≤ 2

√
𝑑 − 1 or |𝜆

↓
𝑖 (𝐴𝐺)| = 𝑑.

There are some deterministic constructions of familys of Ramanujan graphs. One recent

example is a construction that uses stable polynomials to create bipartite Ramanujan

graphs [Marcus et al., 2015].

An important property of expander graphs is the Expander Mixing Lemma.

Lemma 22. (Expander Mixing Lemma) Let 𝐺 = (𝑉 , 𝐸) be a 𝑑-regular graph with 𝑛 ≥ 2

vertices and 𝑑 ≥ 1. Then, for all 𝑆, 𝑇 ⊆ 𝑉 ,

|
|
|
|
|𝐸(𝑆, 𝑇 )| −

𝑑|𝑆||𝑇 |

𝑛

|
|
|
|
≤ max{|𝜆

↓
2(𝐴𝐺)|, |𝜆𝑚𝑖𝑛(𝐴𝐺)|}

√
|𝑆||𝑇 |,

where 𝐸(𝑆, 𝑇 ) is the set of edges with one end in 𝑆 and the other in 𝑇 .

From the Expander Mixing Lemma (Lemma 22), one has that the number of edges

between any two set of vertices 𝑆 and 𝑇 in an expander graph is approximately the number

of expected edges between any two sets of size |𝑆| and |𝑇 | in a random graph with the same

number of vertices and with the same number of expected edges of the expander graph.

Hence, expander graphs behave as random graphs with the same number of vertices and

the same expected number of edges.

Another interesting property of expanders is about random walks in the expander

graphs.

Lemma 23. Let 𝐺 = (𝑉 , 𝐸) be a 𝑑-regular graph. Let 𝑝 be a vector of probabilities. Then

‖
‖
‖
‖
‖
(

𝐴𝐺

𝑑 )

𝑡

𝑝 −
1

𝑛
1

‖
‖
‖
‖
‖

≤
(

max{|𝜆
↓
2(𝐴𝐺)|, |𝜆𝑚𝑖𝑛(𝐴𝐺)|}

𝑑 )

𝑡

.

From Lemma 23, one has that random walks in expander graphs converge rapidly to

the uniform distribution. Hoory, Linial, and Wigderson [Hoory et al., 2006] discussed

many other applications and properties of expanders, such as efficiently reducing the

error in probabilistic algorithms.

Throughout this chapter, the main focus was to introduce some notations and results,

and familiarize the reader to the traditional notion of expander graphs, which are 𝑑-regular

graphs. In the next chapters, we introduce two different generalizations of expanders graphs
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and prove Alon Boppana bounds for these generalizations.
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Chapter 2

Weighted Expanders

2.1 Introduction
One of the approaches to generalize the notion of expander graphs beyond regular

graphs uses spectral sparsifiers of complete graphs.

Definition 24. Let 𝐺 = (𝑉 , 𝐸, 𝑤) and 𝐻 = (𝑉 , 𝐹 , 𝜔) be weighted graphs. Let 𝜀 ≥ 0. The

weighted graph 𝐻 is called a (1 + 𝜀)-spectral sparsifier of 𝐺 if

𝐿𝐺 ≼ 𝐿𝐻 ≼ (1 + 𝜀)𝐿𝐺.

Note that, when 𝜀 = 0, this can only hold if the graph 𝐺 is the graph 𝐻 . We also say that

𝐻 is a (1 + 𝜀)-approximation of 𝐺.

Batson, Spielman, and Srivastava [Batson et al., 2012] proved that, for every graph 𝐺

with average degree at most 2𝑑, there exists a weighted subgraph of 𝐺 that is a (1 + 𝜀)-

spectral sparsifier of 𝐺, where

1 + 𝜀 ∶=
𝑑 + 2

√
𝑑 − 1

𝑑 − 2
√
𝑑 − 1

= 1 +
4
√
𝑑 − 1

𝑑 − 2
√
𝑑 − 1

,

by showing a deterministic algorithm for constructing such weighted graphs. In the context

of approximating complete graphs, we can observe some properties of expander graphs in

their sparsifiers, such as the following version of the Expander Mixing Lemma.

Lemma 25 ([Batson et al., 2012, Lemma 4.1]). Let 𝜀 > 0. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted

connected graph. Suppose that 𝐺 is a (1 + 𝜀)-spectral sparsifier of 𝐾𝑉 . Then

|
|
|
1
𝑇
𝑆𝐴𝐺1𝑇 − (

1 +
𝜀

2)
|𝑆||𝑇 |

|
|
|
≤ 𝑛

(

𝜀

2)

√
|𝑆||𝑇 | for each 𝑆, 𝑇 ⊆ 𝑉 s.t. 𝑆 ∩ 𝑇 = ∅.

Thus, it is reasonable to think of sparsifiers of complete graphs as expanders that

are weighted and not necessarily regular. Hence, we consider this class of expanders as

weighted expanders. Another way to analyze a weighted expander 𝐺 is through the ratio

𝜆↑𝑛(𝐿𝐺)/𝜆
↑
2(𝐿𝐺), referred to as the finite condition number of the Laplacian, which is a

fundamental object of study in Numerical Linear Algebra, and has a strong connection
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to sparsification as shown below.

Lemma 26. Let 𝜀 ∈ ℝ++. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph with 𝑛 vertices. If 𝐺 is a

(1 + 𝜀)-spectral sparsifier of 𝐾𝑉 , then

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≤ 1 + 𝜀. (2.1)

Proof. Since 𝐺 is a (1 + 𝜀)-sparsifier of 𝐾𝑉 ,

𝐿𝐾𝑉 ≼ 𝐿𝐺 and (2.2a)

𝐿𝐺 ≼ (1 + 𝜀)𝐿𝐾𝑉 . (2.2b)

By Theorem 6, (2.2a) and (2.2b),

0 < 𝜆
↑
2(𝐿𝐾𝑉 ) ≤ 𝜆

↑
2(𝐿𝐺) and (2.3a)

𝜆
↑
𝑛(𝐿𝐺) ≤ 𝜆

↑
𝑛((1 + 𝜀)𝐿𝐾𝑉 ). (2.3b)

Note that 𝜆
↑
2(𝐿𝐾𝑉 ) = ⋯ = 𝜆↑𝑛(𝐿𝐾𝑉 ) = 𝑛. So, one has that 𝜆↑𝑛((1 + 𝜀)𝐿𝐾𝑉 ) = (1 + 𝜀)𝑛. Hence,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≤
𝜆↑𝑛((1 + 𝜀)𝐿𝐾𝑉 )

𝜆
↑
2(𝐿𝐾𝑉 )

=
(1 + 𝜀)𝑛

𝑛
= 1 + 𝜀,

where (2.3a) and (2.3b) are used to reach the first inequality.

Lemma 27. Let 𝜀 ∈ ℝ++. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. If

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≤ 1 + 𝜀, (2.4)

then 𝛼𝐺 is a (1 + 𝜀)−spectral sparsifier of 𝐾𝑉 , where 𝛼 ∶= 𝑛/𝜆
↑
2(𝐿𝐺).

Proof. Set 𝑛 ∶= |𝑉 |. Note that

𝐿𝐾𝑛 = 𝑛𝐼 − 𝐽 = 𝑛(
𝐼 −

11
𝑇

𝑛 )
= 𝑛

(
𝐼 −

11
𝑇

1𝑇1)
= 𝑛Proj{1}⟂ . (2.5)

Using Lemma 5, we have that 𝜆↑(𝐿𝛼𝐺) =
𝑛

𝜆
↑
2(𝐿𝐺)

𝜆↑(𝐿𝐺). Since 𝜆
↑
1(𝐿𝐺) = 𝜆

↑
1(𝐿𝛼𝐺) = 0, we can

decompose the Laplacian as follows:

𝐿𝛼𝐺 =

𝑛

∑

𝑖=1

𝜆
↑
𝑖 (𝐿𝛼𝐺)𝑢𝑖𝑢

𝑇
𝑖 =

𝑛

∑

𝑖=2

𝜆
↑
𝑖 (𝐿𝛼𝐺)𝑢𝑖𝑢

𝑇
𝑖 ,

where {𝑢1,… , 𝑢𝑛} is an orthonormal basis of ℝ𝑛. Let 𝑥 ∈ ℝ𝑛. Since 𝜆
↑
2(𝐿𝛼𝐺) ≤ 𝜆

↑
𝑖 (𝐿𝛼𝐺), for

each 𝑖 ∈ [𝑛] ⧵ {1},

𝑥
𝑇
𝐿𝛼𝐺𝑥 = 𝑥

𝑇

(

𝑛

∑

𝑖=2

𝜆
↑
𝑖 (𝐿𝛼𝐺)𝑢𝑖𝑢

𝑇
𝑖 )
𝑥 ≥ 𝑥

𝑇

(

𝑛

∑

𝑖=2

𝜆
↑
2(𝐿𝛼𝐺)𝑢𝑖𝑢

𝑇
𝑖 )
𝑥 = 𝜆

↑
2(𝐿𝛼𝐺)𝑥

𝑇

(

𝑛

∑

𝑖=2

𝑢𝑖𝑢
𝑇
𝑖 )
𝑥.
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Using Lemma 16,

𝑥
𝑇
𝐿𝛼𝐺𝑥 ≥ 𝜆

↑
2(𝐿𝛼𝐺)𝑥

𝑇

(

𝑛

∑

𝑖=2

𝑢𝑖𝑢
𝑇
𝑖 )
𝑥 = 𝜆

↑
2(𝐿𝛼𝐺)𝑥

𝑇
Proj{1}⟂𝑥

=
𝑛

𝜆
↑
2(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)𝑥

𝑇
Proj{1}⟂𝑥 = 𝑛𝑥

𝑇
Proj{1}⟂𝑥.

(2.6)

Additionaly, since 𝜆↑𝑛(𝐿𝐺) ≥ 𝜆
↑
𝑖 (𝐿𝐺) for each 𝑖 ∈ [𝑛],

𝑥
𝑇
𝐿𝛼𝐺𝑥 = 𝑥

𝑇

(

𝑛

∑

𝑖=2

𝜆
↑
𝑖 (𝐿𝛼𝐺)𝑢𝑖𝑢

𝑇
𝑖 )
𝑥 ≤ 𝑥

𝑇

(

𝑛

∑

𝑖=2

𝜆
↑
𝑛(𝐿𝛼𝐺)𝑢𝑖𝑢

𝑇
𝑖 )
𝑥 = 𝜆

↑
𝑛(𝐿𝛼𝐺)𝑥

𝑇

(

𝑛

∑

𝑖=2

𝑢𝑖𝑢
𝑇
𝑖 )
.

Using Lemma 16,

𝑥
𝑇
𝐿𝛼𝐺𝑥 ≤ 𝜆

↑
𝑛(𝐿𝛼𝐺)𝑥

𝑇

(

𝑛

∑

𝑖=2

𝑢𝑖𝑢
𝑇
𝑖 )
𝑥 = 𝜆

↑
𝑛(𝐿𝛼𝐺)𝑥

𝑇
Proj{1}⟂𝑥

=
𝑛

𝜆
↑
2(𝐿𝐺)

𝜆
↑
𝑛(𝐿𝐺)𝑥

𝑇
Proj{1}⟂𝑥 = 𝑛

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

𝑥
𝑇
Proj{1}⟂𝑥.

(2.7)

So using (2.6) and (2.5),

𝑥
𝑇
(𝐿𝛼𝐺 − 𝐿𝐾𝑛)𝑥 ≥ 𝑛𝑥

𝑇
Proj{1}⟂𝑥 − 𝑛𝑥

𝑇
Proj{1}⟂𝑥 = 0.

Hence, 𝐿𝐾𝑛 ≼ 𝐿𝛼𝐺. Using (2.7), (2.4) and (2.5),

𝑥
𝑇
((1 + 𝜀)𝐿𝐾𝑛 − 𝐿𝛼𝐺)𝑥 ≥ (1 + 𝜀)𝑛𝑥

𝑇
Proj{1}⟂𝑥 − 𝑛

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

𝑥
𝑇
Proj{1}⟂𝑥

≥ 𝑛
𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

𝑥
𝑇
Proj{1}⟂𝑥 − 𝑛

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

𝑥
𝑇
Proj{1}⟂𝑥

= 0.

(2.8)

So, we have that 𝐿𝛼𝐺 ≼ (1 + 𝜀)𝐿𝐾𝑛 .

One of the most interesting family of expander graphs, using the traditional definiton

of expanders, are the Ramanujan Graphs. If 𝐺 is a Ramanujan Graph (Definition 21) then

using the bound proved by Alon and Boppana [Nilli, 1991] give us

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≤
𝑑 + 2

√
𝑑 − 1

𝑑 − 2
√
𝑑 − 1

=
𝑑 − 2

√
𝑑 − 1 + 4

√
𝑑 − 1

𝑑 − 2
√
𝑑 − 1

= 1 +
4
√
𝑑 − 1

𝑑 − 2
√
𝑑 − 1

≤ 1 +
4
√
𝑑

𝑑 − 2
√
𝑑

= 1 +
4
√
𝑑
+

8

𝑑 − 2
√
𝑑

So a question that has been considered recently is whether the bound can be generalized to

weighted expanders and if this bound remains optimal for a broader category of expanders.
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2.2 Preliminaries

Lemma 28. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph with 𝑛 vertices. Let 𝜅 ≥ 1. If 𝐺 is a

𝜅-spectral sparsifier of 𝐾𝑉 . Then 𝛿𝑤(𝐺) ≥ 𝑛 − 1 and Δ𝑤(𝐺) ≤ 𝜅(𝑛 − 1).

Proof. Let 𝑣 ∈ 𝑉 . Note that

𝑒
𝑇
𝑣 𝐿𝐾𝑉 𝑒𝑣 = 𝑒

𝑇
𝑣 (𝑛𝐼 − 𝐽 )𝑒𝑣 = 𝑛𝑒

𝑇
𝑣 𝐼 𝑒𝑣 − 𝑒

𝑇
𝑣 𝐽 𝑒𝑣 = 𝑛 − 1,

and

𝜅𝑒
𝑇
𝑣 𝐿𝐾𝑉 𝑒𝑣 = 𝜅𝑒

𝑇
𝑣 (𝑛𝐼 − 𝐽 )𝑒𝑣 = 𝜅(𝑛𝑒

𝑇
𝑣 𝐼 𝑒𝑣 − 𝑒

𝑇
𝑣 𝐽 𝑒𝑣) = 𝜅(𝑛 − 1).

Since 𝐺 is a 𝜅-spectral sparsifier of 𝐾𝑉 , we have that 𝐿𝐾𝑉 ≼ 𝐿𝐺 ≼ 𝜅𝐿𝐾𝑉 . Hence,

𝑛 − 1 = 𝑒
𝑇
𝑣 𝐿𝐾𝑉 𝑒𝑣 ≤ 𝑒

𝑇
𝑣 𝐿𝐺𝑒𝑣,

and

𝑒
𝑇
𝑣 𝐿𝐺𝑒𝑣 ≤ 𝜅𝑒

𝑇
𝑣 𝐿𝐾𝑛𝑒𝑣 = 𝜅(𝑛 − 1).

But we have that

𝑒
𝑇
𝑣 𝐿𝐺𝑒𝑣 = 𝑒

𝑇
𝑣 𝐷𝑒𝑣 − 𝑒

𝑇
𝑣 𝐴𝐺𝑒𝑣 = 𝑤𝑣 − 0 = 𝑤𝑣.

So, we conlude that 𝑛 − 1 ≤ 𝑒𝑇𝑣 𝐿𝐺𝑒𝑣 = 𝑤𝑢 and 𝑤𝑢 = 𝑒
𝑇
𝑣 𝐿𝐺𝑒𝑣 ≤ 𝜅(𝑛 − 1).

Lemma 29. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Let 𝑥 ∈ ℝ𝑉 . Then

Proj
𝑇
{1}⟂𝐿𝐺Proj{1}⟂ = 𝐿𝐺.

Proof. It is sufficient to prove that 𝐿𝐺Proj{1}⟂ = 𝐿𝐺, because 𝐿𝐺 is orthogonal. So,

Proj
𝑇
{1}⟂𝐿𝐺 = (𝐿

𝑇
𝐺Proj{1}⟂)

𝑇
= (𝐿𝐺Proj{1}⟂)

𝑇
.

Since Proj{1}⟂ = (𝐼 − 11
𝑇/1𝑇1) = (𝐼 − 11

𝑇/𝑛) and by Corollary 11,

𝐿𝐺Proj{1}⟂ = 𝐿𝐺(
𝐼 −

11
𝑇

𝑛 )
= 𝐿𝐺 −

𝐿𝐺11
𝑇

𝑛
= 𝐿𝐺 − 0 = 𝐿𝐺.

Theorem 30 (see [Batson et al., 2012, Proposition 4.2]). Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a connected

weighted graph with 𝑛 vertices and let 𝑑 be the combinatorial degree of some vertex. Let

𝜅 ≥ 1. If 𝐺 is a 𝜅-spectral sparsifier of 𝐾𝑉 . Then

𝜅 ≥ 1 +
2
√
𝑑
−
8
√
𝑑

𝑛
.

Proof. There exist 𝑣 ∈ 𝑉 of combinatorial degree 𝑑. Define the function 𝑓 ∶ 𝑉 → ℝ as

𝑓 (𝑢) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1 if 𝑢 = 𝑣,

1/
√
𝑑 if 𝑢 ∈ 𝑁 (𝑣),

0 otherwise,

for each 𝑢 ∈ 𝑉 .
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Also, define 𝑔 ∶ 𝑉 → ℝ as

𝑔(𝑢) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1 if 𝑢 = 𝑣,

−1/
√
𝑑 if 𝑢 ∈ 𝑁 (𝑣),

0 otherwise,

for each 𝑢 ∈ 𝑉 .

Consider the induced subrgraph 𝐺′ ≔ 𝐺[𝑁 (𝑣) ∪ {𝑣}]. Set

𝑤𝑢 ∶= ∑

𝑥∈𝑁 (𝑢)⧵(𝑁 (𝑣)∪{𝑣})

𝑤𝑢𝑥 for each 𝑢 ∈ 𝑁 (𝑣).

Note that the functions 𝑓 and 𝑔 are constant over 𝑁 (𝑣). Hence,

𝑓
𝑇
𝐿𝐺𝑓 = ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑣𝑢(𝑓 (𝑣) − 𝑓 (𝑢))

2
+ ∑

𝑥∈𝑁 (𝑢)⧵(𝑁 (𝑣)∪{𝑣})

𝑤𝑢𝑥(𝑓 (𝑢) − 𝑓 (𝑥))
2

)

= ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑣𝑢(1 − 1/

√
𝑑)

2
+ ∑

𝑥∈𝑁 (𝑢)⧵(𝑁 (𝑣)∪{𝑣})

𝑤𝑢𝑥(1/
√
𝑑 − 0)

2

)

= ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑢𝑣 − 2𝑤𝑢𝑣/

√
𝑑 + 𝑤𝑢𝑣/𝑑 + 𝑤𝑢/𝑑

)

= ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑢𝑣 + (𝑤𝑢𝑣 + 𝑤𝑢)/𝑑 − 2𝑤𝑢𝑣/

√
𝑑
)

= ∑

𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣 + ∑

𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣 + 𝑤𝑢)/𝑑 −
1
√
𝑑
2 ∑

𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣

= 1 −
1
√
𝑑

2 ∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣

∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣 + ∑
𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣 + 𝑤𝑢)/𝑑
,

(2.9)
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and

𝑔
𝑇
𝐿𝐺𝑔 = ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑢𝑣(𝑓 (𝑢) − 𝑓 (𝑣))

2
+ ∑

𝑥∈𝑁 (𝑢)⧵(𝑁 (𝑣)∪{𝑣})

𝑤𝑢𝑥(𝑓 (𝑢) − 𝑓 (𝑥))
2

)

= ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑢𝑣(1 + 1/

√
𝑑)

2
+ ∑

𝑥∈𝑁 (𝑢)⧵(𝑁 (𝑣)∪{𝑣})

𝑤𝑢𝑥(−1/
√
𝑑 − 0)

2

)

= ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑢𝑣 + 2𝑤𝑢𝑣/

√
𝑑 + 𝑤𝑢𝑣/𝑑 + 𝑤𝑢/𝑑

)

= ∑

𝑢∈𝑁 (𝑣)
(
𝑤𝑢𝑣 + (𝑤𝑢𝑣 + 𝑤𝑢)/𝑑 + 2𝑤𝑢𝑣/

√
𝑑
)

= ∑

𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣 + ∑

𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣 + 𝑤𝑢)/𝑑 +
1
√
𝑑
2 ∑

𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣

= 1 +
1
√
𝑑

2 ∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣

∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣 + ∑
𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣 + 𝑤𝑢)/𝑑
.

(2.10)

Note that

2 ∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣

∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣 + ∑
𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣 + 𝑤𝑢)/𝑑
=

2

1 +

∑
𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣+𝑤𝑢)/𝑑

∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣

By Lemma 28, 𝛿𝑤(𝐺) ≥ 𝑛 − 1 and Δ𝑤(𝐺) ≤ 𝜅 (𝑛 − 1). So, we have that ∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣 =

𝑤𝑣 ≥ 𝑛 − 1. Also,

1

𝑑
∑

𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣 + 𝑤𝑢) ≤
1

𝑑
∑

𝑢∈𝑁 (𝑣)

𝑤𝑢 ≤
1

𝑑
∑

𝑢∈𝑁 (𝑣)

𝜅(𝑛 − 1) =
1

𝑑
𝑑𝜅(𝑛 − 1) = 𝜅(𝑛 − 1).

Hence,

∑
𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣 + 𝑤𝑢)/𝑑

∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣
≤
𝜅(𝑛 − 1)

𝑛 − 1
= 𝜅.

And so,

2

1 +

∑
𝑢∈𝑁 (𝑣)

(𝑤𝑢𝑣+𝑤𝑢)/𝑑

∑
𝑢∈𝑁 (𝑣)

𝑤𝑢𝑣

≥
2

1 + 𝜅
.

From (2.9) and (2.10)

, 𝑓
𝑇
𝐿𝐺𝑓 ≤ 1 −

1
√
𝑑

2

1 + 𝜅
, (2.11)

and

𝑔
𝑇
𝐿𝐺𝑔 ≥ 1 +

1
√
𝑑

2

1 + 𝜅
. (2.12)
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Since Projspan{1} = 11
𝑇/1𝑇1 and by Lemma 17, we have that

‖
‖Proj{1}⟂𝑓

‖
‖
2
= ‖𝑓 ‖

2
− ‖
‖Projspan{1}𝑓

‖
‖
2
= 2 − (Projspan{1}𝑓 )

𝑇
Projspan{1}𝑓

= 2 − 𝑓
𝑇
Proj

𝑇
span{1}Projspan{1}𝑓 = 2 − 𝑓

𝑇
Projspan{1}𝑓

= 2 − 𝑓
𝑇 11

𝑇

1𝑇1
𝑓 = 2 −

(𝑓 𝑇1)2

𝑛
= 2 −

(1 +
√
𝑑)2

𝑛
,

and

‖
‖Proj{1}⟂𝑔

‖
‖
2
= ‖𝑔‖

2
− ‖
‖Projspan{1}𝑔

‖
‖
2
= 2 − (Projspan{1}𝑔)

𝑇
Projspan{1}𝑔

= 2 − 𝑔
𝑇
Proj

𝑇
span{1}Projspan{1}𝑔 = 2 − 𝑔

𝑇
Projspan{1}𝑔

= 2 − 𝑔
𝑇 11

𝑇

1𝑇1
𝑔 = 2 −

(𝑔𝑇1)2

𝑛
= 2 −

(1 −
√
𝑑)2

𝑛
.

So,

‖
‖Proj{1}⟂𝑓

‖
‖
2

‖
‖Proj{1}⟂𝑔

‖
‖
2
=

2 −
(1+

√
𝑑)2

𝑛

2 −
(1−

√
𝑑)2

𝑛

=
2𝑛 − (1 +

√
𝑑)2

2𝑛 − (1 −
√
𝑑)2

=
2𝑛 − 1 − 2

√
𝑑 − 𝑑

2𝑛 − 1 + 2
√
𝑑 − 𝑑

= 1 −
4
√
𝑑

2𝑛 − 1 + 2
√
𝑑 − 𝑑

.

Since 𝑑 is the degree of 𝑣, we have that 𝑑 ≤ 𝑛 − 1, which implies that 𝑑 + 1 ≤ 𝑛. So,

2𝑛 − 1 + 2
√
𝑑 − 𝑑 = 2𝑛 + 2

√
𝑑 − (𝑑 + 1) ≥ 2𝑛 + 2

√
𝑑 − 𝑛 = 𝑛 + 2

√
𝑑 ≥ 𝑛.

Hence,

‖
‖Proj{1}⟂𝑓

‖
‖
2

‖
‖Proj{1}⟂𝑔

‖
‖
2
= 1 −

4
√
𝑑

2𝑛 − 1 + 2
√
𝑑 − 𝑑

≥ 1 −
4
√
𝑑

𝑛
. (2.13)

Combining (2.11), (2.12) and (2.13) and using Lemma 26 and Lemma 29,

𝜅 ≥
𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥
(Proj{1}⟂𝑔)

𝑇
𝐿𝐺Proj{1}⟂𝑔

(Proj{1}⟂𝑓 )
𝑇
𝐿𝐺Proj{1}⟂𝑓

‖
‖Proj{1}⟂𝑓

‖
‖
2

‖
‖Proj{1}⟂𝑔

‖
‖
2

=
𝑔𝑇𝐿𝐺𝑔

𝑓 𝑇𝐿𝐺𝑓

‖
‖Proj{1}⟂𝑓

‖
‖
2

‖
‖Proj{1}⟂𝑔

‖
‖
2
≥

1 + 1√
𝑑

2

1+𝜅

1 − 1√
𝑑

2

1+𝜅
(
1 −

4
√
𝑑

𝑛 )
.

Rearranging the terms,

𝜅
(
1 −

1
√
𝑑

2

1 + 𝜅)
≥
(
1 +

1
√
𝑑

2

1 + 𝜅)(
1 −

4
√
𝑑

𝑛 )

= 1 +
1
√
𝑑

2

1 + 𝜅
−
4
√
𝑑

𝑛
−
4
√
𝑑

𝑛

1
√
𝑑

2

1 + 𝜅
.
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Since 𝜅 ≥ 1 and 𝑑 ≥ 1, we have that 0 < 1√
𝑑

2

1+𝜅
≤ 1. So,

4
√
𝑑

𝑛

1
√
𝑑

2

1 + 𝜅
≤

4
√
𝑑

𝑛
,

whence

𝜅
(
1 −

1
√
𝑑

2

1 + 𝜅)
≥ 1 +

1
√
𝑑

2

1 + 𝜅
−
4
√
𝑑

𝑛
−
4
√
𝑑

𝑛

1
√
𝑑

2

1 + 𝜅

≥ 1 +
1
√
𝑑

2

1 + 𝜅
−
4
√
𝑑

𝑛
−
4
√
𝑑

𝑛

= 1 +
1
√
𝑑

2

1 + 𝜅
−
8
√
𝑑

𝑛
.

Set 𝛾 ∶= 1 + 𝜅. Hence,

(𝛾 − 1)
(
1 −

1
√
𝑑

2

𝛾 )
≥ 1 +

1
√
𝑑

2

𝛾
−
8
√
𝑑

𝑛
.

Multiplying all the terms by 𝛾 ,

(𝛾 − 1)
(
𝛾 −

2
√
𝑑)

≥ 𝛾 +
2
√
𝑑
− 𝛾

8
√
𝑑

𝑛
.

Rearranging the inequality,

(𝛾 − 1)
(
𝛾 −

2
√
𝑑)

≥ 𝛾 +
2
√
𝑑
− 𝛾

8
√
𝑑

𝑛

⇒𝛾
2
− 𝛾

2
√
𝑑
− 𝛾 +

2
√
𝑑
≥ 𝛾 +

2
√
𝑑
− 𝛾

8
√
𝑑

𝑛

⇒𝛾
2
− 𝛾

2
√
𝑑
− 2𝛾 + 𝛾

8
√
𝑑

𝑛
≥ 0

⇒𝛾
(
𝛾 −

2
√
𝑑
− 2 +

8
√
𝑑

𝑛 )
≥ 0.

Since 𝛾 = 1 + 𝜅 > 0,

𝛾 −
2
√
𝑑
− 2 +

8
√
𝑑

𝑛
≥ 0 ⇒ 𝛾 ≥ 2 +

2
√
𝑑
−
8
√
𝑑

𝑛
.

So,

1 + 𝜅 = 𝛾 ≥ 2 +
2
√
𝑑
−
8
√
𝑑

𝑛
⇒ 𝜅 ≥ 1 +

2
√
𝑑
−
8
√
𝑑

𝑛
.

Lemma 31. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a connected weighted graph with 𝑛 vertices and let 𝑑 be
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the combinatorial degree of some vertex. Then

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
2
√
𝑑
−
8
√
𝑑

𝑛
.

Proof. Take 𝜀 ∶=
𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

− 1 ≥ 0. By Lemma 27, there is 𝛼 ∈ ℝ++ such that 𝛼𝐺 is a

(1 + 𝜀)-spectral sparsifier of 𝐾𝑉 . Note that each vertex has the same combinatorial degree

in 𝐺 and in 𝛼𝐺. Hence, by Theorem 30,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

= 1 +
𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

− 1 = 1 + 𝜀 ≥ 1 +
2
√
𝑑
−
8
√
𝑑

𝑛
.

Corollary 32 ([Srivastava and Trevisan, 2018, Claim 2.1]). Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a

connected weighted graph and suppose that 𝛿(𝐺) ≤ 𝑑/4 where 𝑑 ∶= 2|𝐸|/|𝑉 |. Then

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
−
4
√
𝑑

𝑛
.

Proof. By the hypothesis, there is a vertex in𝐺 with combinatorial degree 𝑑′ ≤ 𝑑/4. Hence,

using Lemma 31,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
2

√
𝑑′

−
8
√
𝑑′

𝑛
≥ 1 +

2
√
𝑑/4

−
8
√
𝑑/4

𝑛
= 1 +

4
√
𝑑
−
4
√
𝑑

𝑛
.

Lemma 33 ([Srivastava and Trevisan, 2018, Claim 2.2]). Let 𝜀 > 0. Set

𝐶𝜀 ∶=
√
16 + 𝜀/(

√
16 + 𝜀 − 4) > 0. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a connected weighted

graph on 𝑛 vertices. Set 𝛼 ∶= (Δ𝑤(𝐺))
−1

. Suppose the average combinatorial degree 𝑑 of 𝐺

satisfies 𝑑 ≥ 16 + 𝜀 and suppose that there exists 𝑢 ∈ 𝑉 such that 𝛼𝑤𝑢 ≤ 1 − 4/
√
𝑑. Then

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
− 𝐶𝜀

1

𝑛
.

Proof. Let 𝑢, 𝑣 ∈ 𝑉 such that 𝛼𝑤𝑢 ≤ 1 − 4/
√
𝑑 and 𝑤𝑣 = 1/𝛼. Define the function

𝑓 ∶ 𝑉 → ℝ as

𝑓 (𝑖) =

{

1 if 𝑖 = 𝑢,

−1

𝑛−1
otherwise,

for each 𝑖 ∈ 𝑉 .

Note that

1
𝑇
𝑓 = ∑

𝑖∈𝑉

𝑓 (𝑖) = 1 + ∑

𝑖∈𝑉⧵{𝑢}

𝑓 (𝑖) = 1 + ∑

𝑖∈𝑉⧵{𝑢}

−1

𝑛 − 1
= 1 −

𝑛 − 1

𝑛 − 1
= 0,
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hence 𝑓 ⟂ 1, and so 𝜆
↑
2(𝐿𝐺) ≤

𝑓 𝑇 𝐿𝐺𝑓

‖𝑓 ‖2
. Also we have that

‖𝑓 ‖
2
= ∑

𝑖∈𝑉

𝑓 (𝑖)
2
= 1 + ∑

𝑖∈𝑉⧵{𝑢}

𝑓 (𝑖)
2
= 1 + ∑

𝑖∈𝑉⧵{𝑢}
(

−1

𝑛 − 1)

2

= 1 +
𝑛 − 1

(𝑛 − 1)2
= 1 +

1

𝑛 − 1
.

Since 𝑓 is constant over 𝑉 ⧵ {𝑢},

𝑓
𝑇
𝐿𝛼𝐺𝑓 = 𝛼∑

𝑖𝑗∈𝐸

𝑤𝑖𝑗 (𝑓 (𝑖) − 𝑓 (𝑗))
2
= ∑

𝑖∈𝑁 (𝑢)

𝛼𝑤𝑖𝑢 (𝑓 (𝑖) − 𝑓 (𝑢))
2

= 𝛼𝑤𝑢
(
1 +

1

𝑛 − 1)

2

≤
(
1 −

4
√
𝑑)(

1 +
1

𝑛 − 1)

2

,

where the last inequality uses the hypothesis 𝛼𝑤𝑢 ≤ 1 − 4√
𝑑
. So,

𝜆
↑
2(𝛼𝐿𝐺) ≤

𝑓 𝑇𝐿𝛼𝐺𝑓

‖𝑓 ‖2
=
𝑓 𝑇𝐿𝛼𝐺𝑓

1 + 1

𝑛−1

≤
(
1 −

4
√
𝑑)(

1 +
1

𝑛 − 1)

2
1

1 + 1

𝑛−1

=
(
1 −

4
√
𝑑)(

1 +
1

𝑛 − 1)
.

Define the function 𝑔 ∶ 𝑉 → ℝ as 𝑔 ∶= 𝑒𝑣. Note that ‖𝑔‖2 = 1 and

𝑔
𝑇
𝐿𝛼𝐺𝑔 = 𝑒

𝑇
𝑣 𝐿𝐺𝑒𝑣 = ∑

𝑖𝑗∈𝐸

𝛼𝑤𝑖𝑗([𝑖 = 𝑣] − [𝑗 = 𝑣])
2
= ∑

𝑖∈𝑁 (𝑣)

𝛼𝑤𝑖𝑣 = 1.

So ,

𝜆
↑
𝑛(𝐿𝛼𝐺) ≥

𝑔𝑇𝐿𝛼𝐺𝑔

‖𝑔‖2
= 1.

Finally, we can bound the ratio

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

=
𝜆↑𝑛(𝐿𝛼𝐺)

𝜆
↑
2(𝐿𝛼𝐺)

≥
1

(1 −
4√
𝑑) (1 +

1

𝑛−1)
=

1

(

√
𝑑−4√
𝑑 ) (

𝑛

𝑛−1)

=

√
𝑑𝑛 −

√
𝑑

√
𝑑𝑛 − 4𝑛

=

√
𝑑𝑛

√
𝑑𝑛 − 4𝑛

−

√
𝑑

√
𝑑𝑛 − 4𝑛

= 1 +
4𝑛

√
𝑑𝑛 − 4𝑛

−

√
𝑑

√
𝑑𝑛 − 4𝑛

= 1 +
4

√
𝑑 − 4

−

√
𝑑

√
𝑑𝑛 − 4𝑛

≥ 1 +
4
√
𝑑
−

√
𝑑

√
𝑑𝑛 − 4𝑛

.

Note that 𝐶𝜀 ≥
√
𝑑√
𝑑−4

. So,

𝐶𝜀
1

𝑛
≥

√
𝑑

√
𝑑𝑛 − 4𝑛

,

Whence,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
−

√
𝑑

√
𝑑𝑛 − 4𝑛

≥ 1 +
4
√
𝑑
− 𝐶𝜀

1

𝑛
.

Lemma 34 (see [Srivastava and Trevisan, 2018, Claim 2.3]). Let 𝜀 > 0. Let 𝑑 ≥ 16 + 𝜀.
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Set 𝐶𝜀 ∶=
√
16 + 𝜀/(

√
16 + 𝜀 − 4) and set 𝐶𝑑 ∶= 1 + 4/

√
𝑑. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a

connected weighted graph on 𝑛 vertices such that 𝑑 is the average combinatorial degree

of 𝐺. Set 𝛼 ∶= (Δ𝑤(𝐺))
−1

. Suppose that there exists 𝑒 ∈ 𝐸 such that 𝛼𝑤𝑒 > 8/
√
𝑑. Set

𝐶𝜀 ∶=
√
16 + 𝜀/(

√
16 + 𝜀 − 4) and set 𝐶𝑑 ∶= 1 + 4/

√
𝑑. Then

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
− max{𝐶𝜀 , 𝐶𝑑}

1

𝑛
.

Proof. The maximum weighted degree of 𝛼𝐺 is 1, so Tr(𝐿𝛼𝐺) ≤ 𝑛. By Lemma 15 the sum

of the eigenvalues is less than or equal to 𝑛. Since 𝜆
↑
1(𝐿𝛼𝐺) = 0, one has

𝜆
↑
2(𝐿𝛼𝐺) ≤

𝑛

𝑛 − 1
, (2.14)

otherwise

Tr(𝐿𝛼𝐺) = 1
𝑇
𝜆
↑
(𝐿𝛼𝐺) =

𝑛

∑

𝑖=2

𝜆
↑
𝑖 (𝐿𝛼𝐺) >

𝑛

∑

𝑖=2

𝑛

𝑛 − 1
= 𝑛,

a contradiction.

Let 𝑢, 𝑣 ∈ 𝑉 be such that 𝑢𝑣 ∈ 𝐸 and 𝛼𝑤𝑢𝑣 > 8/
√
𝑑. Set 𝑓 ∶= 𝑒𝑢 − 𝑒𝑣. By Lemma 33 we can

assume that 𝛼𝑤𝑖 ≥ 1 − 4/
√
𝑑 for each 𝑖 ∈ 𝑉 . So

𝑓
𝑇
𝐿𝛼𝐺𝑓 = 𝛼𝑤𝑢𝑣(𝑓 (𝑢) − 𝑓 (𝑣))

2
+ ∑

𝑖∈𝑁 (𝑣)⧵{𝑢}

𝛼𝑤𝑖𝑣(𝑓 (𝑖) − 𝑓 (𝑣))
2
+ ∑

𝑖∈𝑁 (𝑢)⧵{𝑣}

𝛼𝑤𝑖𝑢(𝑓 (𝑖) − 𝑓 (𝑢))
2

= 4𝛼𝑤𝑢𝑣 + 𝛼𝑤𝑣 − 𝛼𝑤𝑢𝑣 + 𝛼𝑤𝑢 − 𝛼𝑤𝑢𝑣 = 2𝛼𝑤𝑢𝑣 + 𝛼𝑤𝑣 + 𝛼𝑤𝑢

≥ 2
8
√
𝑑
+ 2

(
1 −

4
√
𝑑)

= 2 +
8
√
𝑑
.

Hence,

𝜆
↑
𝑛(𝐿𝛼𝐺) ≥

𝑓 𝑇𝐿𝛼𝐺𝑓

‖𝑓 ‖2
≥

2 + 8/
√
𝑑

2
= 1 +

4
√
𝑑
. (2.15)

Now we can bound the ratio using (2.14) and (2.15):

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

=
𝜆↑𝑛(𝐿𝛼𝐺)

𝜆
↑
2(𝐿𝛼𝐺)

≥
1 + 4√

𝑑

𝑛

𝑛−1

=
(𝑛 − 1)(

√
𝑑 + 4)

𝑛
√
𝑑

=
𝑛
√
𝑑 + 4𝑛 −

√
𝑑 − 4

𝑛
√
𝑑

= 1 +
4
√
𝑑
−

1

𝑛
(1 +

4
√
𝑑
)

= 1 +
4
√
𝑑
− 𝐶𝑑

1

𝑛
.

The ball of radius 𝓁 ∈ ℤ+ centered at 𝑟 ∈ 𝑉 is defined as

𝐵𝓁(𝑟) ∶= {𝑣 ∈ 𝑉 ∶ dist(𝑣, 𝑟) ≤ 𝓁}.

Also, we denote the set of vertices at the boundary of the ball of radius 𝓁 ∈ ℤ+ centered

at 𝑟 ∈ 𝑉 as

bd(𝐵𝓁(𝑟)) ∶= {𝑣 ∈ 𝑉 ∶ dist(𝑣, 𝑟) = 𝓁}.
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Lemma 35. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Set 𝓁 ∶= (girth(𝐺) − 1)/2. Let 𝑟 ∈ 𝑉 .

Let 𝓁 ∈ ℤ++ such that 𝓁 ≤ 𝓁. Set 𝑇𝓁−1 ∶= 𝐺[𝐵𝓁−1(𝑟)]. Then 𝑇𝓁−1 is a tree.

Proof. The proof is by induction. For 𝓁 = 1, the subgraph 𝑇0 is a tree because it has only a

vertex and no edges. Let 𝓁 ≤ 𝓁 and assume that 𝑇𝓁−2 is a tree. Suppose that there is a cycle

𝐶 in 𝑇𝓁−1. Note that 𝑇𝓁−2 is a subgraph of 𝑇𝓁−1. Hence, by induction hypothesis, the cycle

𝐶 must have at least one vertex 𝑣 ∈ 𝑉 (𝑇𝓁−1) ⧵ 𝑉 (𝑇𝓁−2). There exist two distinct vertices

𝑢,𝑤 ∈ 𝑉 (𝐶) such that 𝑢,𝑤 ∈ 𝑁 (𝑣), and there exist a path 𝑃𝑟𝑢 from 𝑟 to 𝑢 and a path 𝑃𝑤𝑟

from 𝑤 to 𝑟 , where both paths have length less than or equal to 𝓁 − 1. By concatenating

𝑃𝑟𝑢, 𝑢𝑣, 𝑣𝑤, 𝑃𝑤𝑟 we form a closed trail. Since 𝑢 ≠ 𝑤, the closed trail formed contain a cycle

with length less than or equal to the length of the closed trail, i.e., with length less than or

equal to

𝓁 − 1 + 𝓁 − 1 + 2 = 2𝓁 = girth(𝐺) − 1 < girth(𝐺),

a contradiction. So 𝑇𝓁−1 is a tree.

Lemma 36. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a weighted graph. Set 𝓁 ∶= (girth(G) − 1)/2. Let 𝑟 ∈ 𝑉 .

Let 𝓁 ∈ ℤ++ such that 𝓁 ≤ 𝓁. Set 𝑇𝓁−1 ∶= 𝐺[𝐵𝓁−1(𝑟)]. Let 𝑢, 𝑣 ∈ bd(𝐵𝓁−1(𝑟)) be distinct. Then

𝑢 and 𝑣 have no commom neighbor in 𝑉 ⧵ 𝑉 (𝑇𝓁−1).

Proof. By Lemma 35, 𝑇𝓁−1 is a tree. Take 𝑇𝓁−1 to be rooted at 𝑟 . Hence bd(𝐵𝓁−1(𝑟)) is the

set of leaves of 𝑇𝓁−1. Suppose that there are leaves 𝑢, 𝑣 of 𝑇𝓁−1 that are adjacent to some

𝑥 ∈ 𝑉 ⧵ 𝐵𝓁−1(𝑟). Then there exist a path 𝑃𝑟𝑢 with length less than or equal to 𝓁 − 1, and a

path 𝑃𝑣𝑟 with length less than or equal to 𝓁 − 1. So we can build a cycle by concatenating

𝑃𝑟𝑢, 𝑢𝑥 , 𝑥𝑣 and 𝑃𝑣𝑟 , with length at most

𝓁 − 1 + 𝓁 − 1 + 2 = 2𝓁 = 2(girth(𝐺) − 1)/2 = girth(𝐺) − 1 < girth(𝐺),

a contradiction.

Lemma 37 (see [Srivastava and Trevisan, 2018, Claim 2.4]). Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a

weighted graph of average combinatorial degree 𝑑 ≥ 12. Suppose that 𝛿(𝐺) ≥ 𝑑/4. Set

𝓁 ∶= (girth(𝐺) − 1)/2. Let 𝑟 ∈ 𝑉 . Then for every positive integer 𝓁 ≤ 𝓁, we have that

|𝐵𝓁(𝑟)| ≤
2𝑛

(
𝑑

4
− 1)

𝓁−𝓁
.

Proof. Let 𝓁 ∈ ℤ++ such that 𝓁 ≤ 𝓁. Set 𝑇𝓁−1 ∶= 𝐺[𝐵𝓁−1(𝑟)]. By Lemma 35, 𝑇𝓁−1 is a tree.

Take 𝑇𝓁−1 to be rooted at 𝑟 . Since 𝛿(𝐺) ≥ 𝑑/4 ≥ 3, each internal node has at least 2

children, so the number of internal nodes is less than or equal to the number of leaves,

which will be the vertices at distance 𝓁 − 1 from 𝑟 . Let 𝛽 be the number of leaves of 𝑇𝓁−1.

So |𝐵𝓁−1(𝑟)| ≤ 2𝛽. Since 𝛿(𝐺) ≥ 3, each leaf of 𝑇𝓁−1 has at least 2 neighbors in the set

𝑉 ⧵ 𝐵𝓁−1(𝑟), and by Lemma 36, there is no commom neighbor outside 𝑇𝓁−1 between two

distinct leaves. Consider the set bd(𝐵𝓁(𝑟)) that has the vertices outside of 𝑇𝓁−1 that are

adjacent to some leaf of 𝑇𝓁−1. Hence, one has |bd(𝐵𝓁(𝑟))| ≥ 2𝛽 ≥ |𝐵𝓁−1(𝑟)|. So,

|𝐵𝓁(𝑟)| = |𝐵𝓁−1(𝑟)| + bd(𝐵𝓁(𝑟)) ≤ 2|bd(𝐵𝓁(𝑟))|.
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Hence, it is sufficient to prove that

|bd(𝐵𝓁(𝑟))| ≤
𝑛

(
𝑑

4
− 1)

𝓁−𝓁
.

Set 𝑇𝓁−1 ∶= 𝐺[𝐵𝓁−1(𝑟)]. By Lemma 35, the graph 𝑇𝓁−1 is a tree. Take 𝑇𝓁−1 to be rooted at

𝑟 . Note that each internal node has at least 𝛿(𝐺) − 1 ≥ 𝑑/4 − 1 children. Also, each leaf

of 𝑇𝓁−1 has at least 𝛿(𝐺) − 1 ≥ 𝑑/4 − 1 neighbors outside of 𝑇𝓁−1, and by Lemma 36, there

is no commom neighbor outside of 𝑇𝓁−1 between two distinct leaves. Denote the number

of vertices at distance 𝑖 ≤ 𝓁 from 𝑟 as 𝑡𝑖. So for each positive integer 𝑖 ≤ 𝓁, we have that

𝑡𝑖−1(𝑑/4 − 1) ≤ 𝑡𝑖. More generally, for each positive integer 𝑖 ≤ 𝓁 and for each nonnegative

integer 𝛽 ≤ 𝑖, we have that 𝑡𝑖−𝛽(𝑑/4 − 1)𝛽 ≤ 𝑡𝑖. Clearly 𝑡𝓁 ≤ 𝑛. Hence,

𝑡𝓁(

𝑑

4
− 1

)

𝓁−𝓁

≤ 𝑡𝓁 ≤ 𝑛.

So,

|bd(𝐵𝓁(𝑟))| = 𝑡𝓁 ≤
𝑛

(
𝑑

4
− 1)

𝓁−𝓁
.

2.3 Main Result

Throughout this section we consider the following hypotheses. Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a

connected weighted graph of average combinatorial degree 𝑑 ∶= 2|𝐸|/|𝑉 | such that

Δ𝑤(𝐺) = 1, (2.16a)

𝛿(𝐺) ≥ 𝑑/4, (2.16b)

𝛿𝑤(𝐺) > 1 − 4/
√
𝑑, (2.16c)

𝑤𝑒 ≤ 8/
√
𝑑 for each 𝑒 ∈ 𝐸. (2.16d)

Let 𝑘 ∈ ℤ++ be such that 𝑘 < (girth(𝐺) − 1)/2 and define the function 𝑓𝑟 ∶ 𝑉 → ℝ

for each 𝑟 ∈ 𝑉 as

𝑓𝑟(𝑣) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

0 if dist(𝑟, 𝑣) > 𝑘,

1 if 𝑟 = 𝑣,
√

∏
𝑒∈𝐸(𝑃𝑟𝑣)

𝑤𝑒 otherwise, where 𝑃𝑟𝑣 is the unique path between u and v in 𝐺.

(2.17)

Lemma 38 (see [Srivastava and Trevisan, 2018, Equation (3)]). Let 𝐺 = (𝑉 , 𝐸, 𝑤) be a

connected weighted graph of average combinatorial degree 𝑑 ∶= 2|𝐸|/|𝑉 | ≥ 144 such that

(2.16) holds. Let 𝑘 ∈ ℤ++ such that 𝑘 < (girth(𝐺) − 1)/2. Let 𝑟 ∈ 𝑉 and define 𝑓𝑟 ∶ 𝑉 → ℝ

as in (2.17). Then

(
1 −

12
√
𝑑)

𝑘

(𝑘 + 1) ≤ ‖𝑓𝑟 ‖
2
≤ 𝑘 + 1 for each 𝑣 ∈ 𝑉 .
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Proof. Let 𝑇 be the subgraph induced by 𝐵𝑘(𝑟). By Lemma 35, the graph 𝑇 is a tree. Take

𝑇 to be rooted at 𝑟 . Denote the parent of each vertex 𝑣 ∈ 𝑉 (𝑇 ) ⧵ {𝑟} as 𝑝(𝑣). Note that

𝑓𝑟(𝑣)
2
= ∏

𝑒∈𝐸(𝑃𝑟𝑣)

𝑤𝑒 = 𝑤𝑣𝑝(𝑣) ∏

𝑒∈𝐸(𝑃𝑟𝑝(𝑣))

𝑤𝑒 = 𝑤𝑣𝑝(𝑣)𝑓𝑟(𝑝(𝑣))
2

for each 𝑣 ∈ 𝑉 (𝑇 ) ⧵ {𝑟}.

Hence, for each 0 ≤ 𝓁 ≤ 𝑘 − 1, one has

‖
‖𝑓𝑟 ↾bd(𝐵𝓁+1(𝑟))

‖
‖
2
= ∑

𝑣∈bd(𝐵𝓁+1(𝑟))

𝑓𝑟(𝑣)
2
= ∑

𝑣∈bd(𝐵𝓁+1(𝑟))

𝑤𝑣𝑝(𝑣)𝑓𝑟(𝑝(𝑣))
2
= ∑

𝑣∈bd(𝐵𝓁(𝑟))

𝑓𝑟(𝑣)
2
(𝑤𝑣 − 𝑤𝑣𝑝(𝑣)).

By (2.16a) and since 𝑤𝑒 ≥ 0 for each 𝑒 ∈ 𝐸, we have that 𝑤𝑣 − 𝑤𝑣𝑝(𝑣) ≤ 1 − 0 = 1 for

each 𝑣 ∈ 𝑉 . So,

‖
‖𝑓𝑟 ↾bd(𝐵𝓁+1(𝑟))

‖
‖
2
= ∑

𝑣∈bd(𝐵𝓁(𝑟))

𝑓𝑟(𝑣)
2
(𝑤𝑣 − 𝑤𝑣𝑝(𝑣)) ≤ ∑

𝑣∈bd(𝐵𝓁(𝑟))

𝑓𝑟(𝑣)
2
= ‖
‖𝑓𝑟 ↾bd(𝐵𝓁(𝑟))

‖
‖
2
. (2.18)

By (2.16c) and (2.16d),

𝑤𝑣 − 𝑤𝑣𝑝(𝑣) ≥ 1 −
4
√
𝑑
−

8
√
𝑑
= 1 −

12
√
𝑑
.

So

‖
‖𝑓𝑟 ↾bd(𝐵𝓁+1(𝑟))

‖
‖
2
= ∑

𝑣∈bd(𝐵𝓁(𝑟))

𝑓𝑟(𝑣)
2
(𝑤𝑣 − 𝑤𝑣𝑝(𝑣))

≥ (1 −
12
√
𝑑
) ∑

𝑣∈bd(𝐵𝓁(𝑟))

𝑓𝑟(𝑣)
2

= (1 −
12
√
𝑑
)
‖
‖𝑓𝑟 ↾bd(𝐵𝓁(𝑟))

‖
‖
2
.

(2.19)

Note that
‖
‖𝑓𝑟 ↾bd(𝐵0(𝑟))

‖
‖
2
= 1. By (2.19),

‖
‖𝑓𝑟 ↾bd(𝐵𝑖(𝑟))

‖
‖
2
≤ ‖
‖𝑓𝑟 ↾bd(𝐵0(𝑟))

‖
‖
2
= 1 for each 1 ≤ 𝑖 ≤ 𝑘.

So,

‖𝑓𝑟 ‖
2
=

𝑘

∑

𝑖=0

‖
‖𝑓𝑟 ↾bd(𝐵𝑖(𝑟))

‖
‖
2
≤

𝑘

∑

𝑖=0

1 = 𝑘 + 1.

By (2.18),

(
1 −

12
√
𝑑)

𝑘

= ‖
‖𝑓𝑟 ↾bd(𝐵0(𝑟))

‖
‖
2

(
1 −

12
√
𝑑)

𝑘

≤ ‖
‖𝑓𝑟 ↾bd(𝐵𝑘(𝑟))

‖
‖
2
.

Since
‖
‖𝑓𝑟 ↾bd(𝐵𝑘(𝑟))

‖
‖
2
≤ ‖
‖𝑓𝑟 ↾bd(𝐵𝑖(𝑟))

‖
‖
2

for each 0 ≤ 𝑖 ≤ 𝑘, we have that

‖𝑓𝑟 ‖
2
=

𝑘

∑

𝑖=0

‖
‖𝑓𝑟 ↾bd(𝐵𝑖(𝑟))

‖
‖
2
≥

𝑘

∑

𝑖=0

‖
‖𝑓𝑟 ↾bd(𝐵𝑘(𝑟))

‖
‖
2
≥

𝑘

∑

𝑖=0
(
1 −

12
√
𝑑)

𝑘

= (𝑘 + 1)
(
1 −

12
√
𝑑)

𝑘

.
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Lemma 39 (see [Srivastava and Trevisan, 2018, Equation (4)]). Let 𝐺 = (𝑉 , 𝐸, 𝑤) be

a connected weighted graph of average combinatorial degree 𝑑 ∶= 2|𝐸|/|𝑉 | ≥ 144 such

that (2.16) holds. Set 𝑘 ∶= ⌊𝑑1/8⌋. Suppose that girth(𝐺) ≥ 2𝑑1/8 + 5. Let 𝑟 ∈ 𝑉 and define

𝑓𝑟 ∶ 𝑉 → ℝ as in (2.17). Then

‖Proj{1}⟂𝑓𝑟 ‖
2
≥ ‖𝑓𝑟 ‖

2

(
1 −

50

𝑑2)
.

Proof. Since Projspan{1} = 11
𝑇/1𝑇1, we have that

‖Projspan{1}𝑓𝑟 ‖
2
= (Projspan{1}𝑓𝑟)

𝑇
Projspan{1}𝑓𝑟 = 𝑓

𝑇
𝑟 Proj

𝑇
span{1}Projspan{1}𝑓𝑟

= 𝑓
𝑇
𝑟 Projspan{1}𝑓𝑟 = 𝑓

𝑇
𝑟

11
𝑇

1𝑇1
𝑓𝑟 =

(𝑓 𝑇𝑟 1)
2

𝑛
.

Furthermore, one has that 𝑓𝑟(𝑖) = ‖𝑓𝑟 ↾{𝑖}‖ ≤ ‖𝑓𝑟 ‖ for each 𝑖 ∈ 𝑉 . So,

(𝑓 𝑇𝑟 1)
2

𝑛
=

1

𝑛(
∑

𝑖∈𝑉

𝑓𝑟(𝑖))

2

=
1

𝑛(
∑

𝑖∈supp(𝑓𝑟 )

𝑓𝑟(𝑖))

2

=
1

𝑛
(1

𝑇
supp(𝑓𝑟 )

𝑓𝑟)
2
.

By Cauchy-Schwarz inequality,

1
𝑇
supp(𝑓𝑟 )

𝑓𝑟 ≤ ‖𝑓𝑟 ‖‖1
𝑇
supp(𝑓𝑟 )

‖ = ‖𝑓𝑟 ‖|supp(𝑓𝑟)|
1/2
,

which implies that

(1
𝑇
supp(𝑓𝑟 )

𝑓𝑟)
2
≤ ‖𝑓𝑟 ‖

2
|supp(𝑓𝑟)|.

Hence,

(𝑓 𝑇𝑟 1)
2

𝑛
=

1

𝑛
(1

𝑇
supp(𝑓𝑟 )

𝑓𝑟)
2
≤

1

𝑛
‖𝑓𝑟 ‖

2
|supp(𝑓𝑟)|.

Since girth(𝐺) ≥ 2𝑑1/8+5 ≥ 2𝑑1/8+1 and 𝑘 ≤ 𝑑1/8, we have that girth(𝐺) ≥ 2𝑘+1, which

implies that 𝑘 ≤ (girth(𝐺) − 1)/2. Note that, for each 𝑣 ∈ 𝑉 , one has that 𝑓𝑟(𝑣) ≠ 0 if and

only if 𝑣 ∈ 𝐵𝑘(𝑟). Hence 𝐵𝑘(𝑟) = supp(𝑓𝑟). By Lemma 37,

|supp(𝑓𝑟)| ≤
2𝑛

(
𝑑

4
− 1

)

girth(𝐺)−1

2
−𝑘
.

By hypotheses, we have that girth(𝐺) ≥ 2𝑘 + 5. Hence,

girth(𝐺) ≥ 2𝑘 + 5 = 2(𝑘 + 2) + 1

⇒girth(𝐺) − 1 ≥ 2(𝑘 + 2)

⇒
girth(𝐺) − 1

2
≥ 2.

So,

|supp(𝑓𝑟)| ≤
2𝑛

(
𝑑

4
− 1

)

girth(𝐺)−1

2
−𝑘

≤
2𝑛

(
𝑑

4
− 1

)

2
.
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For 𝑑 ≥ 20, we have that 𝑑/4 − 1 ≥ 𝑑/5. So,

|supp(𝑓𝑟)| ≤
2𝑛

(
𝑑

4
− 1

)

2
≤

50𝑛

𝑑2
.

Hence,

‖Projspan{1}𝑓𝑟 ‖
2
=

(𝑓 𝑇𝑟 1)
2

𝑛
≤

1

𝑛
‖𝑓𝑟 ‖

2
|supp(𝑓𝑟)| ≤

1

𝑛
‖𝑓𝑟 ‖

2 50𝑛

𝑑2
= ‖𝑓𝑟 ‖

2 50

𝑑2
.

By Lemma 17, we have that ‖Proj{1}⟂𝑓𝑟 ‖
2 = ‖𝑓𝑟 ‖

2 − ‖Projspan{1}𝑓𝑟 ‖
2
. So,

‖Proj{1}⟂𝑓𝑟 ‖
2
= ‖𝑓𝑟 ‖

2
− ‖Projspan{1}𝑓𝑟 ‖

2
≥ ‖𝑓𝑟 ‖

2
− ‖𝑓𝑟 ‖

2 50

𝑑2
= ‖𝑓𝑟 ‖

2

(
1 −

50

𝑑2)
.

Consider a random walk ⟨𝑋0,… , 𝑋𝑘⟩ of 𝑘-steps on the graph 𝐺, we denote the event of

moving from a vertex 𝑢 to a vertex 𝑣 as𝑋𝑥𝑋𝑥+1 = 𝑢𝑣. Note that this random walk considered

induces a tree, so the walk backtracks at step 𝑖 ∈ [𝑘 − 1] if 𝑋𝑖−1𝑋𝑖 = 𝑋𝑖𝑋𝑖+1. Denote the

event of the walk backtracking at step 𝑖 ∈ [𝑘−1] as backtrack(𝑖). Define 𝜋 ∶ 𝑉 → 𝑅 as

𝜋(𝑟) =
𝑤𝑟

21𝑇𝑤
for each 𝑟 ∈ 𝑉 .

The above function is the stationary distribution, so if the distribution of 𝑋0 is 𝜋 and

Pr(𝑋𝑥𝑋𝑥+1 = 𝑢𝑣) = 𝑤𝑢𝑣/𝑤𝑢, for each 𝑢𝑣 ∈ 𝐸,

Pr(𝑋𝑖 = 𝑟) = 𝜋(𝑟) for each 𝑖 ∈ {0,… , 𝑘} and for each 𝑣 ∈ 𝑉 .

For the following propositions we also will consider the following hypothesis. Let

⟨𝑋0,… , 𝑋𝑘⟩ be a random walk such that

Pr(𝑋𝑥𝑋𝑥+1 = 𝑢𝑣) =
𝑤𝑢𝑣

𝑤𝑢
for each 𝑢𝑣 ∈ 𝐸, (2.20a)

the distribution of 𝑋0 is 𝜋. (2.20b)

Proposition 40 (see [Srivastava and Trevisan, 2018, Proposition 3.2]). Let𝐺 = (𝑉 , 𝐸, 𝑤)

be a connected weighted graph of average combinatorial degree 𝑑 ∶= 2|𝐸|/|𝑉 | ≥ 16 such

that (2.16) holds. Let 𝑘 ∈ ℤ++ such that 𝑘 < (girth(𝐺) − 1)/2. Let ⟨𝑋0,… , 𝑋𝑘⟩ be a random

walk such that (2.20) holds. Then

𝔼
(

𝑘

∑

𝑖=1

√
𝑤(𝑋𝑖−1, 𝑋𝑖)

)
≥

𝑘
√
𝑑
−
2𝑘

𝑑
.

Proof. By (2.20),

Pr(𝑋𝑖 = 𝑢) = Pr(𝑋0 = 𝑢) = 𝜋(𝑢) for each 𝑢 ∈ 𝑉 and for each 𝑖 ∈ {0,… , 𝑘}.
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So,

𝔼
(
∑

𝑖∈[𝑘]

√
𝑤(𝑋𝑖−1, 𝑋𝑖)

)
= ∑

𝑖∈[𝑘]

∑

𝑢𝑣∈𝐸

√
𝑤𝑢𝑣Pr(𝑋𝑖−1𝑋𝑖 = 𝑢𝑣)

= ∑

𝑖∈[𝑘]

∑

𝑢𝑣∈𝐸

√
𝑤𝑢𝑣(Pr(𝑋𝑖−1 = 𝑢, 𝑋𝑖 = 𝑣) + Pr(𝑋𝑖−1 = 𝑣, 𝑋𝑖 = 𝑢))

= ∑

𝑖∈[𝑘]

∑

𝑢𝑣∈𝐸

√
𝑤𝑢𝑣(𝜋(𝑢)Pr(𝑋𝑥𝑋𝑥+1 = 𝑢𝑣) + 𝜋(𝑣)Pr(𝑋𝑥𝑋𝑥+1 = 𝑣𝑢))

= 𝑘∑

𝑢𝑣∈𝐸

√
𝑤𝑢𝑣(

𝑤𝑢

21𝑇𝑤

𝑤𝑢𝑣

𝑤𝑢
+

𝑤𝑣

21𝑇𝑤

𝑤𝑢𝑣

𝑤𝑣
)

= 𝑘∑

𝑢𝑣∈𝐸

√
𝑤𝑢𝑣(

2𝑤𝑢𝑣

21𝑇𝑤)
= 𝑘

∑
𝑢𝑣∈𝐸

𝑤3/2
𝑢𝑣

1𝑇𝑤
.

Note that 𝑥3/2 is a convex function. So ∑
𝑢𝑣∈𝐸

𝑤3/2
𝑢𝑣 is minimized, while maintaining the sum

∑
𝑢𝑣∈𝐸

𝑤𝑢𝑣 constant, when all the edges has the same weight, i.e., when

𝑤𝑒 ∶=
1
𝑇𝑤

𝑑𝑛/2
for each 𝑒 ∈ 𝐸.

So,

∑

𝑢𝑣∈𝐸

𝑤
3/2
𝑢𝑣 ≥ ∑

𝑢𝑣∈𝐸
(

1
𝑇𝑤

𝑑𝑛/2)

3/2

=
𝑑𝑛

2 (

1
𝑇𝑤

𝑑𝑛/2)

3/2

=
(1𝑇𝑤)3/2

(𝑑𝑛/2)1/2
. (2.21)

By (2.16c),

1
𝑇
𝑤 =

1

2
∑

𝑣∈𝑉

𝑤𝑣 ≥
1

2
∑

𝑣∈𝑉
(
1 −

4
√
𝑑)

=
𝑛

2(
1 −

4
√
𝑑)
. (2.22)

From (2.22),

21𝑇𝑤

𝑛
≥
(
1 −

4
√
𝑑)
. (2.23)

Hence by (2.21) and (2.23),

∑
𝑢𝑣∈𝐸

𝑤3/2
𝑢𝑣

1𝑇𝑤
≥

1

1𝑇𝑤

(1𝑇𝑤)3/2

(𝑑𝑛/2)1/2
=
(

1
𝑇𝑤

𝑑𝑛/2)

1/2

=
(

21𝑇𝑤

𝑑𝑛 )

1/2

≥
(
1 −

4
√
𝑑)

1/2 1
√
𝑑
.

Since 0 ≤ (1 − 4/
√
𝑑) ≤ 1, we have that (1 − 4/

√
𝑑)1/2 ≥ 1 − 4/

√
𝑑. So,

∑
𝑢𝑣∈𝐸

𝑤3/2
𝑢𝑣

1𝑇𝑤
≥
(
1 −

4
√
𝑑)

1/2 1
√
𝑑
≥
(
1 −

4
√
𝑑)

1
√
𝑑
=

1
√
𝑑
−

4

𝑑
.

Finally,

𝔼
(
∑

𝑖∈[𝑘]

√
𝑤(𝑋𝑖−1, 𝑋𝑖)

)
= 𝑘

∑
𝑢𝑣∈𝐸

𝑤3/2
𝑢𝑣

1𝑇𝑤
≥ 𝑘

(

1
√
𝑑
−

4

𝑑)
=

𝑘
√
𝑑
−
4𝑘

𝑑
.

Proposition 41 (see [Srivastava and Trevisan, 2018, Proposition 3.3]). Let𝐺 = (𝑉 , 𝐸, 𝑤)
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be a connected weighted graph of average combinatorial degree 𝑑 ∶= 2|𝐸|/|𝑉 | ≥ 25 such

that (2.16) holds. Let 𝑘 ∈ ℤ++ such that 𝑘 < (girth(𝐺) − 1)/2. Let ⟨𝑋0,… , 𝑋𝑘⟩ be a random

walk such that (2.20) holds. Then

𝔼
(
[the walk backtracks]

𝑘

∑

𝑖=1

√
𝑤(𝑋𝑖−1, 𝑋𝑖)

)
≤

80
√
2𝑘2

𝑑3/4
.

Proof. By (2.16d),

𝑘

∑

𝑖=1

√
𝑤(𝑋𝑖−1, 𝑋𝑖) ≤

𝑘

∑

𝑖=1

(
8
√
𝑑
)
1/2

=
2
√
2𝑘

𝑑1/4
.

Hence,

𝔼
(
[the walk backtracks]

𝑘

∑

𝑖=1

√
𝑤(𝑋𝑖−1, 𝑋𝑖)

)
≤ 𝔼

(
[the walk backtracks]

2
√
2𝑘

𝑑1/4 )

=
2
√
2𝑘

𝑑1/4
𝔼([the walk backtracks]).

For all 𝑖 ∈ [𝑘 − 1], the probability of the event 𝑋𝑖−1𝑋𝑖 = 𝑋𝑖𝑋𝑖+1 is the probability of going

from the vertex 𝑋𝑖 to the vertex 𝑋𝑖−1. So,

Pr(backtrack(𝑖)) = Pr(𝑋𝑥𝑋𝑥+1 = 𝑋𝑖𝑋𝑖−1) =
𝑤𝑋𝑖𝑋𝑖−1

𝑤𝑋𝑖
.

By (2.16d) and (2.16c),

Pr(backtrack(𝑖)) =
𝑤𝑋𝑖𝑋𝑖−1

𝑤𝑋𝑖
≤

8/
√
𝑑

1 − 4/
√
𝑑
.

The event of the walk backtracking is equal to the event ⋃
𝑖∈[𝑘−1]

backtrack(𝑖). Hence,

Pr(the walk backtracks) = Pr
(

⋃

𝑖∈[𝑘−1]

backtrack(𝑖)
)

≤

𝑘−1

∑

𝑖=1

Pr(backtrack(𝑖))

≤

𝑘−1

∑

𝑖=1

8/
√
𝑑

1 − 4/
√
𝑑
= (𝑘 − 1)

8/
√
𝑑

1 − 4/
√
𝑑
= (𝑘 − 1)

8
√
𝑑 − 4

≤
8𝑘

√
𝑑 − 4

=
40𝑘
√
𝑑
+
160𝑘 − 32𝑘

√
𝑑

√
𝑑(
√
𝑑 − 4)

.

Since 𝑑 ≥ 25 and 𝑘 ≥ 0, we have that 160𝑘 − 32𝑘
√
𝑑 ≤ 160𝑘 − 160𝑘 = 0 and√

𝑑 (
√
𝑑 − 4) ≥ 5(5 − 4) = 5 ≥ 0. So,

Pr(the walk backtracks) ≤
40𝑘
√
𝑑
+
160𝑘 − 32𝑘

√
𝑑

√
𝑑(
√
𝑑 − 4)

≤
40𝑘
√
𝑑
.
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Since [the walk backtracks] ∈ {0, 1},

𝔼([the walk backtracks]) = Pr([the walk backtracks]).

So,

𝔼
(
[the walk backtracks]

𝑘

∑

𝑖=1

√
𝑤(𝑋𝑖−1, 𝑋𝑖)

)
≤

2
√
2𝑘

𝑑1/4
𝔼([the walk backtracks])

=
2
√
2𝑘

𝑑1/4
Pr([the walk backtracks])

≤
2
√
2𝑘

𝑑1/4

40𝑘
√
𝑑

=
80
√
2𝑘2

𝑑3/4
.

Lemma 42 (see [Srivastava and Trevisan, 2018, Lemma 3.1]). Let 𝑑 ≥ 144. Set 𝑘 ∶= 𝑑1/8.

There is 𝛾 ∈ ℝ++ satisfying the following. If 𝐺 = (𝑉 , 𝐸, 𝑤) is a connected weighted

graph of average combinatorial degree 𝑑 = 2|𝐸|/|𝑉 | such that (2.16) holds. Suppose that

girth(𝐺) ≥ 2𝑑1/8 + 5. Define 𝑓𝑟 ∶ 𝑉 → ℝ as in (2.17) for each 𝑟 ∈ 𝑉 . Then there is a vertex

𝑟 ∈ 𝑉 such that

𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 ≥

2𝑘
√
𝑑
− 𝛾

𝑘2

𝑑3/4
.

Proof. Set 𝛾 ∶= 𝛾1(12 + 160
√
2), where

𝛾1 ∶=

3

∑

𝑖=0

𝑒𝑖

𝑖𝑖

1

25𝑖/8
+

2

2 − 23/8
.

Let 𝑟 ∈ 𝑉 . Set 𝑇 ∶= 𝐺[𝐵𝑘(𝑟)]. Since 𝑘 ≤ 𝑑1/8 and girth(𝐺) ≥ 2𝑑1/8 + 5, we have that

𝑘 < (girth(𝐺) − 1)/2. By Lemma 35, the graph 𝑇 is a tree. Take 𝑇 to be rooted at 𝑟 . Denote

the parent of each vertex 𝑣 ∈ 𝑉 (𝑇 ) ⧵ {𝑟} in 𝑇 as 𝑝(𝑣). Since 𝑇 is a tree rooted at 𝑟 we have

that 𝐸(𝑇 ) = ⋃
𝑣∈𝑉 (𝑇 )⧵{𝑟}

𝑝(𝑣)𝑣. By (2.17), we have that 𝑓𝑟(𝑣) =
√
𝑤𝑝(𝑣)𝑣𝑓𝑟(𝑝(𝑣)), also 𝑓𝑟(𝑣) = 0

for each 𝑣 ∈ 𝑉 ⧵ 𝑉 (𝑇 ). So,

𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 = 2 ∑

𝑢𝑣∈𝐸(𝑇 )

𝑤𝑢𝑣𝑓𝑟(𝑢)𝑓𝑟(𝑣) = 2 ∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

𝑤𝑝(𝑣)𝑣𝑓𝑟(𝑝(𝑣))𝑓𝑟(𝑣) = 2 ∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

√
𝑤𝑝(𝑣)𝑣𝑓𝑟(𝑣)

2
.

Let ⟨𝑋0,… , 𝑋𝑘⟩ be a random walk such that (2.20) holds. By (2.16c) and (2.20a),

𝑤𝑢𝑣 = 𝑤𝑢Pr(𝑋𝑥𝑋𝑥+1 = 𝑢𝑣) ≥ (
1 −

4
√
𝑑)

Pr(𝑋𝑥𝑋𝑥+1 = 𝑢𝑣). (2.24)

Let 𝑣 ∈ 𝑉 be a vertex such that 𝓁 ∶= dist(𝑟, 𝑣) ≤ 𝑘. Note that 𝑣 ∈ 𝑉 (𝑇 ). So there is a unique

path between 𝑟 and 𝑣 in𝐺, in particular in 𝑇 , denote this path as 𝑃 ∶= ⟨ 𝑟 = 𝑣0, … , 𝑣𝓁 = 𝑣⟩.

Using (2.24),

𝑓𝑟(𝑣)
2
= ∏

𝑖∈[𝓁]

𝑤𝑣𝑖−1𝑣𝑖 ≥ ∏

𝑖∈[𝓁]
(
1 −

4
√
𝑑)

Pr(𝑋𝑥𝑋𝑥+1 = 𝑣𝑖−1𝑣𝑖) = (
1 −

4
√
𝑑)

𝓁

Pr(𝑋𝓁 = 𝑣),



30

2 | WEIGHTED EXPANDERS

where in the last equality we are using the fact that 𝑃 is the unique path between 𝑟

and 𝑣. Hence, to reach 𝑣 in 𝓁 steps one has to choose exactly the edges of 𝑃 . Note that

the event 𝑋𝓁 = 𝑣 is either 1, when the event happen, or 0, when it does not happen, so

Pr(𝑋𝓁 = 𝑣) = 𝔼([𝑋𝓁 = 𝑣]). Hence,

𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 = 2 ∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

√
𝑤𝑝(𝑣)𝑣𝑓𝑟(𝑣)

2

≥ 2 ∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

√
𝑤𝑝(𝑣)𝑣(

1 −
4
√
𝑑)

dist(𝑟,𝑣)

Pr(𝑋dist(𝑟,𝑣) = 𝑣)

≥ 2 ∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

√
𝑤𝑝(𝑣)𝑣(

1 −
4
√
𝑑)

𝑘

Pr(𝑋dist(𝑟,𝑣) = 𝑣)

= 2
(
1 −

4
√
𝑑)

𝑘

∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

√
𝑤𝑝(𝑣)𝑣𝔼𝑟([𝑋dist(𝑟,𝑣) = 𝑣])

= 2
(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(

∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

√
𝑤𝑝(𝑣)𝑣[𝑋dist(𝑟,𝑣) = 𝑣]

)
.

Let 𝑖 ∈ [𝑘] and let 𝑢 ∈ 𝑉 (𝑇 ) such that dist(𝑟, 𝑢) = 𝑖. Note that 𝑋𝑖 = 𝑢 if and only if

dist(𝑟, 𝑋𝑖) = 𝑖. So, we have that [𝑋𝑖 = 𝑢] = [dist(𝑟, 𝑋𝑖) = 𝑖]. Also, for every 𝑗 ∈ [𝑘] there is

only one vertex 𝑧 ∈ 𝑉 (𝑇 ) such that 𝑋𝑖 = 𝑧. Hence,

𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 ≥ 2

(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(

∑

𝑣∈𝑉 (𝑇 )⧵{𝑟}

√
𝑤𝑝(𝑣)𝑣[𝑋dist(𝑟,𝑣) = 𝑣]

)

= 2
(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(
∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖[dist(𝑟, 𝑋𝑖) = 𝑖])

Note that if the event dist(𝑟, 𝑋𝑖) = 𝑖 happens, then the walk does not backtrack up to step

𝑖. Also, the probability of the walk not backtracking is smaller than the probability of the

walk not backtracking up to the step 𝑖 for 𝑖 ∈ [𝑘]. So,

𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 ≥ 2

(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(
∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖[dist(𝑟, 𝑋𝑖) = 𝑖])

= 2
(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(
∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖[the walk does not backtracks up to step 𝑖]

)

≥ 2
(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(
∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖[the walk does not backtracks up to step 𝑘]

)

≥ 2
(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(
[the walk does not backtracks]∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖)

.

Using the complementary event of the walk does not backtracks,

𝔼𝑟([the walk does not backtracks]) = 1 − 𝔼𝑟([the walk backtracks]).
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Hence,

𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 ≥ 2

(
1 −

4
√
𝑑)

𝑘

𝔼𝑟
(
[the walk does not backtracks]∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖)

= 2
(
1 −

4
√
𝑑)

𝑘

(
𝔼𝑟
(
∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖)

− 𝔼𝑟
(
[the walk backtracks]∑

𝑖∈[𝑘]

√
𝑤𝑋𝑖−1𝑋𝑖))

.

Using (2.20b), we can average over all possible roots. By Proposition 40 and Proposi-

tion 41,

∑

𝑟∈𝑉

𝜋(𝑟)𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 ≥ 2

(
1 −

4
√
𝑑)

𝑘

(

𝑘
√
𝑑
−
2𝑘

𝑑
−
80
√
2𝑘2

𝑑3/4 )

Define the sets

Even ∶= {𝑖 ∈ {0,… , 𝑘} ∶ 𝑖 is even} and Odd ∶= {𝑖 ∈ {0,… , 𝑘} ∶ 𝑖 is odd}.

Expanding the expression,

2
(
1 −

4
√
𝑑)

𝑘

(

𝑘
√
𝑑
−
2𝑘

𝑑
−
80
√
2𝑘2

𝑑3/4 )

= 2
𝑘
√
𝑑

𝑘

∑

𝑖=0
(

𝑘

𝑖)
(−1)

𝑖 4
𝑖

𝑑𝑖/2
− 2

2𝑘

𝑑

𝑘

∑

𝑖=0
(

𝑘

𝑖)
(−1)

𝑖 4
𝑖

𝑑𝑖/2
− 2

80
√
2𝑘2

𝑑3/4

𝑘

∑

𝑖=0
(

𝑘

𝑖)
(−1)

𝑖 4
𝑖

𝑑𝑖/2

≥
2𝑘
√
𝑑
−

2𝑘
√
𝑑

∑

𝑖∈Odd
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2
−
4𝑘

𝑑
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2
−
160

√
2𝑘2

𝑑3/4
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2

=
2𝑘
√
𝑑
−

2𝑘
√
𝑑

4

𝑑1/2
∑

𝑖∈Even⧵{𝑘}
(

𝑘 − 1

𝑖 )

4𝑖

𝑑𝑖/2
−
4𝑘

𝑑
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2
−
160

√
2𝑘2

𝑑3/4
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2

=
2𝑘
√
𝑑
−
8𝑘

𝑑
∑

𝑖∈Even⧵{𝑘}
(

𝑘 − 1

𝑖 )

4𝑖

𝑑𝑖/2
−
4𝑘

𝑑
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2
−
160

√
2𝑘2

𝑑3/4
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2
.

(2.25)

Note that

𝑘−1

∑

𝑖=0
(

𝑘 − 1

𝑖 )

22𝑖

𝑑𝑖/2
≤

𝑘

∑

𝑖=0
(

𝑘

𝑖)

22𝑖

𝑑𝑖/2
≤

𝑘

∑

𝑖=0

𝑒𝑖𝑘𝑖

𝑖𝑖

22𝑖

𝑑𝑖/2
=

𝑘

∑

𝑖=0

𝑒𝑖

𝑖𝑖
𝑑
𝑖/8 2

2𝑖

𝑑𝑖/2
=

𝑘

∑

𝑖=0

𝑒𝑖

𝑖𝑖

22𝑖

𝑑3𝑖/8
.

Since 𝑑 ≥ 144, we have that 𝑑 ≥ 128 = 27,

𝑘

∑

𝑖=0
(

𝑘

𝑖)

22𝑖

𝑑𝑖/2
≤

𝑘

∑

𝑖=0

𝑒𝑖

𝑖𝑖

22𝑖

𝑑3𝑖/8
≤

𝑘

∑

𝑖=0

𝑒𝑖

𝑖𝑖

22𝑖

221𝑖/8
=

𝑘

∑

𝑖=0

𝑒𝑖

𝑖𝑖

1

25𝑖/8
.

Note that for 𝑖 ≥ 4, one has that 𝑒𝑖/𝑖𝑖 ≤ 1. Hence,

𝑘

∑

𝑖=0
(

𝑘

𝑖)

22𝑖

𝑑𝑖/2
≤

𝑘

∑

𝑖=0

𝑒𝑖

𝑖𝑖

1

25𝑖/8
≤

3

∑

𝑖=0

𝑒𝑖

𝑖𝑖

1

25𝑖/8
+

𝑘

∑

𝑖=4

1

25𝑖/8
.
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We have that

𝑘

∑

𝑖=0

1

25𝑖/8
=

2

2 − 23/8
.

Hence,

𝑘−1

∑

𝑖=0
(

𝑘 − 1

𝑖 )

22𝑖

𝑑𝑖/2
≤

𝑘

∑

𝑖=0
(

𝑘

𝑖)

22𝑖

𝑑𝑖/2
≤

3

∑

𝑖=0

𝑒𝑖

𝑖𝑖

1

25𝑖/8
+

𝑘

∑

𝑖=4

1

25𝑖/8
≤ 𝛾1.

Thus,

−𝛾1 ≤ −

𝑘

∑

𝑖=0
(

𝑘

𝑖)

22𝑖

𝑑𝑖/2
≤ − ∑

𝑖∈Odd
(

𝑘

𝑖)

22𝑖

𝑑𝑖/2
,

and

−𝛾1 ≤ −

𝑘−1

∑

𝑖=0
(

𝑘 − 1

𝑖 )

22𝑖

𝑑𝑖/2
≤ − ∑

𝑖∈Even⧵{k}
(

𝑘 − 1

𝑖 )

22𝑖

𝑑𝑖/2
.

Going back to the expanded expression (2.25),

2
(
1 −

4
√
𝑑)

𝑘

(

𝑘
√
𝑑
−
2𝑘

𝑑
−
80
√
2𝑘2

𝑑3/4 )

2𝑘
√
𝑑
−
8𝑘

𝑑
∑

𝑖∈Even⧵{𝑘}
(

𝑘 − 1

𝑖 )

4𝑖

𝑑𝑖/2
−
4𝑘

𝑑
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2
−
160

√
2𝑘2

𝑑3/4
∑

𝑖∈Even
(

𝑘

𝑖)

4𝑖

𝑑𝑖/2

≥
2𝑘
√
𝑑
−
8𝑘

𝑑
𝛾1 −

4𝑘

𝑑
𝛾1 −

160
√
2𝑘2

𝑑3/4
𝛾1 =

2𝑘
√
𝑑
− 𝛾1(

12𝑘

𝑑
+
160

√
2𝑘2

𝑑3/4 )
.

Note that 𝑘2/𝑑3/4 = 1/𝑑4/8 ≥ 1/𝑑7/8 = 𝑘/𝑑. Hence,

2
(
1 −

4
√
𝑑)

𝑘

(

𝑘
√
𝑑
−
2𝑘

𝑑
−
80
√
2𝑘2

𝑑3/4 )

≥
2𝑘
√
𝑑
− 𝛾1(

12𝑘

𝑑
+
160

√
2𝑘2

𝑑3/4 )
≥

2𝑘
√
𝑑
− 𝛾1(

12𝑘2

𝑑3/4
+
160

√
2𝑘2

𝑑3/4 )

=
2𝑘
√
𝑑
−
𝑘2

𝑑3/4
𝛾1(12 + 160

√
2) =

2𝑘
√
𝑑
−
𝑘2

𝑑3/4
𝛾 .

Finally, we can prove the main result of this chapter.

Theorem 43. (see [Srivastava and Trevisan, 2018, Theorem 1.1]) Let 𝜀 > 0. Let

𝑑 ≥ 144 ≥ 16 + 𝜀 . Set 𝐶𝜀 ∶=
√
16 + 𝜀/(

√
16 + 𝜀 − 4) and set 𝐶𝑑 ∶= 1 + 4/

√
𝑑.

There is 𝛾 ∈ ℝ++ satisfying the following. If 𝐺 = (𝑉 , 𝐸, 𝑤) is a connected weighted graph

with 𝑛 vertices and 𝑑𝑛/2 edges such that girth(𝐺) > 2𝑑1/8 + 1. Then

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
− 𝛾

1

𝑑5/8
− max{𝐶𝜀 , 𝐶𝑑 , 4}

1
√
𝑛
.

Proof. Set 𝛾 ∶= (102𝛾1 + 254), where 𝛾1 is the constant of Lemma 42. If (2.16a) does

not hold, one can use the multiple (Δ𝑤(𝐺))
−1
𝐺 of 𝐺 since the ratio between the largest

eigenvalue of the laplacian matrix and the second smallest eigenvalue of the laplacian
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matrix is the same for 𝐺 and its multiple, hence we can assume (2.16a).

If (2.16b) does not hold, then by Corollary 32,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
−
4
√
𝑑

𝑛
.

Since 𝑑 is the average combinatorial degree, one has that 𝑑 ≤ 𝑛 − 1 ≤ 𝑛 since each vertex

has at most 𝑛 − 1 neighbors. Hence,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
−
4
√
𝑑

𝑛
≥ 1 +

4
√
𝑑
−
4
√
𝑛

𝑛
= 1 +

4
√
𝑑
−

4
√
𝑛

≥ 1 +
4
√
𝑑
− max{𝐶𝜀 , 𝐶𝑑 , 4}

1
√
𝑛
− 𝛾

1

𝑑5/8
.

Therefore, we can assume (2.16b).

If (2.16c) does not hold, then by Lemma 33,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
4
√
𝑑
− 𝐶𝜀

1

𝑛
≥ 1 +

4
√
𝑑
− 𝐶𝜀

1
√
𝑛
≥ 1 +

4
√
𝑑
− max{𝐶𝜀 , 𝐶𝑑 , 4}

1
√
𝑛
− 𝛾

1

𝑑5/8
.

Hence, we can assume (2.16c).

If (2.16d) does not hold, then by Lemma 34,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥ 1 +
1
√
4
− max{𝐶𝜀 , 𝐶𝑑}

1

𝑛
≥ 1 +

1
√
4
− max{𝐶𝜀 , 𝐶𝑑}

1
√
𝑛

≥ 1 +
4
√
𝑑
− max{𝐶𝜀 , 𝐶𝑑 , 4}

1
√
𝑛
− 𝛾

1

𝑑5/8
.

Hence, we can assume (2.16d). Therefore, we may assume the hypoteses in (2.16).

Set 𝑘 ∶= 𝑑1/8 and note that 𝑘 < (girth(𝐺) − 1)/2. For each 𝑟 ∈ 𝑉 define 𝑓𝑟 ∶ 𝑉 → ℝ as

in (2.17). Let 𝑟 ∈ 𝑉 be a vertex that satisfies Lemma 42. Define 𝑓 ′
𝑟 ∶ 𝑉 → ℝ as

𝑓
′
𝑟 (𝑣) =

{

𝑓𝑟(𝑣) if dist(𝑟, 𝑣) is even,

−𝑓𝑟(𝑣) otherwise.

(2.26)

Note that for each 𝑢𝑣 ∈ 𝑉 such that dist(𝑟, 𝑢) ≤ 𝑘 and dist(𝑟, 𝑣) ≤ 𝑘, we have that either

𝑓𝑟(𝑢) > 0 and 𝑓𝑟(𝑣) < 0, or 𝑓𝑟(𝑢) < 0 and 𝑓𝑟(𝑣) > 0, because, by Lemma 35, the subgraph

induced by 𝐵𝑘(𝑟) is a tree. Hence, one has that 𝑓 ′𝑇
𝑟 𝐴𝐺𝑓

′
𝑟 = −𝑓 𝑇𝑟 𝐴𝐺𝑓𝑟 . Recall that 𝛾1 satisfies:

𝑓
𝑇
𝑟 𝐴𝐺𝑓𝑟 ≥

2𝑘
√
𝑑
− 𝛾1

𝑘2

𝑑3/4
,

and

𝑓
′𝑇
𝑟 𝐴𝐺𝑓

′
𝑟 = −𝑓

𝑇
𝑟 𝐴𝐺𝑓𝑟 ≤ −

(

2𝑘
√
𝑑
− 𝛾1

𝑘2

𝑑3/4)
.
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Note that 𝑓 ′𝑇
𝑟 𝐷𝐺𝑓

′
𝑟 = ∑

𝑣∈𝑉

𝐷𝐺(𝑣, 𝑣)𝑓𝑟(𝑣)
2 = 𝑓 𝑇𝑟 𝐷𝐺𝑓𝑟 . So,

𝑓
𝑇
𝑟 𝐿𝐺𝑓𝑟 = 𝑓

𝑇
𝑟 (𝐷𝐺 − 𝐴𝐺)𝑓𝑟 ≤ 𝑓

𝑇
𝑟 𝐷𝐺𝑓𝑟 − (

2𝑘
√
𝑑
− 𝛾1

𝑘2

𝑑3/4)
,

and

𝑓
′𝑇
𝑟 𝐿𝐺𝑓

′
𝑟 = 𝑓

′𝑇
𝑟 (𝐷𝐺 − 𝐴𝐺)𝑓

′
𝑟 ≥ 𝑓

′𝑇
𝑟 𝐷𝐺𝑓

′
𝑟 +

2𝑘
√
𝑑
− 𝛾1

𝑘2

𝑑3/4
= 𝑓

𝑇
𝑟 𝐷𝐺𝑓𝑟 +

2𝑘
√
𝑑
−𝑀1

𝑘2

𝑑3/4
.

By (2.16a), we have that 𝐷𝐺(𝑣, 𝑣) ≤ 1 for each 𝑣 ∈ 𝑉 . Hence, using Lemma 38,

𝑓
𝑇
𝑟 𝐷𝐺𝑓𝑟 = ∑

𝑣∈𝑉

𝐷𝐺(𝑣, 𝑣)𝑓𝑟(𝑣)
2
≤ ∑

𝑣∈𝑉

𝑓𝑟(𝑣)
2
= ‖𝑓𝑟 ‖

2
≤ 𝑘 + 1.

Now we can bound the ratio

𝑓 ′𝑇
𝑟 𝐿𝐺𝑓

′
𝑟

𝑓 𝑇𝑟 𝐿𝐺𝑓𝑟
≥

𝑓 𝑇𝑟 𝐷𝐺𝑓𝑟 +
2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4

𝑓 𝑇𝑟 𝐷𝐺𝑓𝑟 − (
2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)

=

𝑓 𝑇𝑟 𝐷𝐺𝑓𝑟 − (
2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)
+ 2

(
2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)

𝑓 𝑇𝑟 𝐷𝐺𝑓𝑟 − (
2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)

= 1 +

2
(

2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)

𝑓 𝑇𝑟 𝐷𝐺𝑓𝑟 − (
2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)

≥ 1 +

2
(

2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)

𝑓 𝑇𝑟 𝐷𝐺𝑓𝑟

≥ 1 +

2
(

2𝑘√
𝑑
− 𝛾1

𝑘2

𝑑3/4)

𝑘 + 1
= 1 +

2𝑘 2√
𝑑(

1 − 𝛾1
𝑘

2𝑑1/4)

𝑘 + 1

= 1 +

4𝑘
(
1 − 𝛾1

𝑘

2𝑑1/4)
√
𝑑(𝑘 + 1)

= 1 +
4
√
𝑑

𝑘

𝑘 + 1(
1 − 𝛾1

𝑘

2𝑑1/4)

≥ 1 +
4
√
𝑑

𝑘 − 1

𝑘 (
1 − 𝛾1

𝑘

2𝑑1/4)
= 1 +

4
√
𝑑(

1 −
1

𝑘)(
1 − 𝛾1

𝑘

2𝑑1/4)
.

(2.27)

By Lemma 29,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥

𝑓 ′𝑇𝑟 Proj
{1}⟂

𝐿𝐺Proj{1}⟂ 𝑓
′
𝑟

‖Proj
{1}⟂

𝑓 ′𝑟 ‖
2

𝑓 𝑇𝑟 Proj
{1}⟂

𝐿𝐺Proj{1}⟂ 𝑓𝑟

‖Proj
{1}⟂

𝑓𝑟 ‖
2

=
𝑓 ′𝑇
𝑟 𝐿𝐺𝑓

′
𝑟

𝑓 𝑇𝑟 𝐿𝐺𝑓𝑟

‖Proj{1}⟂𝑓𝑟 ‖
2

‖Proj{1}⟂𝑓
′
𝑟 ‖

2

Note that ‖Proj{1}⟂𝑓
′
𝑟 ‖

2 ≤ ‖𝑓 ′
𝑟 ‖

2 = ‖𝑓𝑟 ‖
2
. So, using Lemma 39,

‖Proj{1}⟂𝑓𝑟 ‖
2

‖Proj{1}⟂𝑓
′
𝑟 ‖

2
≥

‖𝑓𝑟 ‖
2

(
1 − 50

𝑑2)

‖𝑓𝑟 ‖
2

=
(
1 −

50

𝑑2)
. (2.28)
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Combining (2.27), (2.28) and 𝑘 = 𝑑1/8,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥
(
1 +

4
√
𝑑(

1 −
1

𝑘)(
1 − 𝛾1

𝑘

2𝑑1/4))(
1 −

50

𝑑2)
.

=
(
1 +

4
√
𝑑(

1 −
1

𝑑1/8)(
1 − 𝛾1

1

2𝑑1/8))(
1 −

50

𝑑2)
.

One can show by expanding the expression that,

𝜆↑𝑛(𝐿𝐺)

𝜆
↑
2(𝐿𝐺)

≥
(
1 +

4
√
𝑑(

1 −
1

𝑑1/8)(
1 − 𝛾1

1

2𝑑1/8))(
1 −

50

𝑑2)
≥ 1 +

4
√
𝑑
− 𝛾

1

𝑑5/8
.
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Chapter 3

Irregular Expanders

3.1 Introduction

Another generalization of expander graphs uses the normalized Laplacian matrix. The

result proved in this section uses the notion of Weak Ramanujan graphs, which satisfy

some expander properties.

Definition 44. Let 𝐺 = (𝑉 , 𝐸) be a graph. Set

𝜎𝐺 ∶= 2

∑
𝑣∈𝑉

deg𝐺(𝑣)
√
deg𝐺(𝑣) − 1

∑
𝑣∈𝑉

deg𝐺(𝑣)
2

.

We call 𝐺 a weak Ramanujan graph if

𝜆
↑
2(𝐺) ≥ 1 − 𝜎𝐺 ≥

1

2
.

Note that for weak Ramanujan graphs that are 𝑑-regular graphs, one has

𝜆
↑
2(𝐺) ≥ 1 − 𝜎𝐺 = 1 − 2

∑
𝑣∈𝑉

𝑑
√
𝑑 − 1

∑
𝑣∈𝑉

𝑑2
= 1 − 2

√
𝑑 − 1

𝑑
.

Hence,

𝜆
↓
2(𝐴𝐺) = 𝑑 − 𝑑𝜆

↑
2() ≤ 2

√
𝑑 − 1,

which is one of the conditions on the definition of Ramanujan graphs (Definition 21).

In this chapter the graphs considered, unlike in chapter 2, are unweighted but can

be irregular, as in chapter 2.
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3.2 Preliminaries

Lemma 45. Let 𝐺 = (𝑉 , 𝐸) be a connected graph. Then

𝜆
↑
2(𝐺) = min

𝑓 ⟂𝐷𝐺1

𝑓 𝑇𝐿𝐺𝑓

𝑓 𝑇𝐷𝐺𝑓
.

Proof. By Lemma 13 and Theorem 4,

𝜆
↑
2(𝐺) = min

𝑔⟂𝐷1/21

𝑔𝑇𝐺𝑔
𝑔𝑇𝑔

.

Let 𝜓 ∈ ℝ𝑉 such that 𝜓 ⟂ 𝐷
1/2

𝐺 1. Set 𝜑 ∶= 𝐷
−1/2

𝐺 𝜓. Note that 𝐷
1/2

𝐺 = 𝐷𝐺𝐷
−1/2

𝐺 . So,

0 = 1
𝑇
𝐷

1/2

𝐺 𝜓 = 1
𝑇
𝐷𝐺𝐷

−1/2

𝐺 𝜓 = 1
𝑇
𝐷𝐺𝑓 = 𝜑

𝑇
𝐷𝐺1.

Hence, one has that 𝜑 ⟂ 𝐷𝐺1. So,

𝜆
↑
2(𝐺) = min

𝑔⟂𝐷1/21

𝑔𝑇𝐺𝑔
𝑔𝑇𝑔

= min
𝑔⟂𝐷

1/2

𝐺 1

𝑔𝑇𝐷
−1/2

𝐺 𝐿𝐺𝐷
−1/2

𝐺 𝑔

𝑔𝑇𝑔

= min
𝑓 ⟂𝐷𝐺1

𝑓 𝑇𝐿𝐺𝑓

𝑓 𝑇𝐷
1/2

𝐺 𝐷
1/2

𝐺 𝑓

= min
𝑓 ⟂𝐷𝐺1

𝑓 𝑇𝐿𝐺𝑓

𝑓 𝑇𝐷𝐺𝑓
.

Lemma 46. If 𝐺 = (𝑉 , 𝐸) is a graph such that 𝐺 ≠ 𝐾𝑉 , then

𝜆
↑
2(𝐺) ≤ 1.

Proof. Let 𝐺 = (𝑉 , 𝐸) be a graph such that 𝐺 ≠ 𝐾𝑉 . Then there exist 𝑢, 𝑣 ∈ 𝑉 such that

𝑢 ∉ 𝑁 (𝑣). Hence, define the vector 𝑓 ∶= deg𝐺(𝑣)𝑒𝑢 − deg𝐺(𝑢)𝑒𝑣. Note that

deg
𝑇

𝐺 𝑓 = deg𝐺(𝑢) deg𝐺(𝑣) − deg𝐺(𝑣) deg𝐺(𝑢) = 0.

By Lemma 45,

𝜆
↑
2(𝐺) ≤

𝑓 𝑇𝐿𝐺𝑓

𝑓 𝑇𝐷𝐺𝑓
=

deg𝐺(𝑣) deg𝐺(𝑢)
2 + deg𝐺(𝑢) deg𝐺(𝑣)

2

deg𝐺(𝑣) deg𝐺(𝑢)
2 + deg𝐺(𝑣) deg𝐺(𝑢)

2
= 1.

Lemma 47. Let 𝐺 = (𝑉 , 𝐸) be a graph. Let 𝑆 ⊆ 𝑉 . Then

1
𝑇
𝐷𝐺1𝑆 = vol(𝑆).
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Proof. We have that

1
𝑇
𝐷𝐺 = ∑

𝑣∈𝑉

𝑒
𝑇
𝑣 deg𝐺(𝑣).

So,

1
𝑇
𝐷𝐺1𝑆 = ∑

𝑣∈𝑉

𝑒
𝑇
𝑣 deg𝐺(𝑣)1𝑆 = ∑

𝑣∈𝑆

𝑒
𝑇
𝑣 deg𝐺(𝑣) = vol(𝑆).

Lemma 48. ([Chung Graham, 2016, Lemma 1]) Let 𝐺 = (𝑉 , 𝐸) be a graph such that

𝐺 ≠ 𝐾𝑉 . Let 𝑆 ⊆ 𝑉 . Then

|𝛿𝐺(𝑆)|

vol(𝑆)
≥ 𝜆

↑
2(𝐺)(1 −

vol(𝑆)

vol(𝑉 ))
.

Proof. Set 𝑆 ∶= 𝑉 ⧵ 𝑆 and

𝑓 ∶=
1𝑆

vol(𝑆)
−

1𝑆

vol(𝑆)
∈ ℝ

𝑉
.

By Lemma 47,

1
𝑇
𝐷𝐺𝑓 =

1
𝑇𝐷𝐺1𝑆

vol(𝑆)
−
1
𝑇𝐷𝐺1𝑆

vol(𝑆)
=

vol(𝑆)

vol(𝑆)
−
vol(𝑆)

vol(𝑆)
= 1 − 1 = 0.

So, we conclude that 𝑓 ⟂ 𝐷𝐺1. By Lemma 45,

𝜆
↑
2(𝐺) ≤

𝑓 𝑇𝐿𝐺𝑓

𝑓 𝑇𝐷𝐺𝑓
.

Note that if 𝑣 ∈ 𝑆 then 𝑓𝑣 = 1/vol(𝑆), otherwise 𝑓𝑣 = 1/vol(𝑆). Hence,

𝑓
𝑇
𝐿𝐺𝑓 = ∑

𝑢𝑣∈𝐸

(𝑓𝑢 − 𝑓𝑣)
2
= ∑

𝑒∈𝛿(𝑆)
(

1

vol(𝑆)
+

1

vol(𝑆))
2 = |𝛿(𝑆)|

(

1

vol(𝑆)
+

1

vol(𝑆))

2

,

and

𝑓
𝑇
𝐷𝐺𝑓 = ∑

𝑣∈𝑉

𝑑𝑣𝑓
2
𝑣 = ∑

𝑣∈𝑆

𝑑𝑣𝑓
2
𝑣 +∑

𝑣∈𝑆

𝑑𝑣𝑓
2
𝑣 =

∑
𝑣∈𝑆

𝑑𝑣

vol(𝑆)2
+

∑
𝑣∈𝑆

𝑑𝑣

vol(𝑆)2
=

1

vol(𝑆)
+

1

vol(𝑆)
.

So,

𝑓 𝑇𝐿𝐺𝑓

𝑓 𝑇𝐷𝐺𝑓
=

𝛿(𝑆)
(

1

vol(𝑆)
+ 1

vol(𝑆))

2

1

vol(𝑆)
+ 1

vol(𝑆)

= 𝛿(𝑆)
(

1

vol(𝑆)
+

1

vol(𝑆))
= 𝛿(𝑆)

vol(𝑆) + vol(𝑆)

vol(𝑆)vol(𝑆)
.

Note that vol(𝑆) + vol(𝑆) = vol(𝑉 ). So,

𝜆
↑
2(𝐺) ≤

𝑓 𝑇𝐿𝐺𝑓

𝑓 𝑇𝐷𝐺𝑓
= 𝛿(𝑆)

vol(𝑆) + vol(𝑆)

vol(𝑆)vol(𝑆)
= 𝛿(𝑆)

vol(𝑉 )

vol(𝑆)vol(𝑆)
.
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Rearranging the terms,

𝛿(𝑆)

vol(𝑆)
≥ 𝜆

↑
2(𝐺)

vol(𝑆)

vol(𝑉 )
,

but vol(𝑆) = vol(𝑉 ) − vol(𝑆). So,

𝛿(𝑆)

vol(𝑆)
≥ 𝜆

↑
2(𝐺)

vol(𝑆)

vol(𝑉 )
= 𝜆

↑
2(𝐺)

vol(𝑉 ) − vol(𝑆)

vol(𝑉 )
= 𝜆

↑
2(𝐺)(1 −

vol(𝑆)

vol(𝑉 ))
.

Lemma 49. Let 𝐺 = (𝑉 , 𝐸) be a graph such that 𝐺 ≠ 𝐾𝑉 . Let 𝑆 ⊆ 𝑉 . Then 𝛿(𝑆 ∪ 𝑁 (𝑆))

and 𝛿(𝑆) are disjoint, and 𝛿(𝑁 (𝑆)) = 𝛿(𝑆 ∪ 𝑁 (𝑆)) ∪ 𝛿(𝑆).

Proof. Suppose that there is 𝑒 ∈ 𝐸 such that 𝑒 ∈ 𝛿(𝑆 ∪ 𝑁 (𝑆)) and 𝑒 ∈ 𝛿(𝑆). Since 𝑢𝑣 ∈ 𝛿(𝑆),

one of its end is in 𝑆 and the other one is in 𝛿(𝑆). Hence both ends of 𝑒 are in 𝑆 ∪ 𝑁 (𝑆), a

contradiction since 𝑒 ∈ 𝛿(𝑆 ∪ 𝑁 (𝑆)).

Let 𝑢𝑣 ∈ 𝛿(𝑁 (𝑆)). We may assume that 𝑢 ∈ 𝑁 (𝑆), because either 𝑢 ∈ 𝑁 (𝑆) or 𝑣 ∈ 𝑁 (𝑆)

and if 𝑣 ∈ 𝑁 (𝑆) we can relabel the vertices. So either 𝑣 ∈ 𝑉 ⧵ (𝑆 ∪ 𝑁 (𝑆)) or 𝑣 ∈ 𝑆. If

𝑣 ∈ 𝑉 ⧵ (𝑆 ∪ 𝑁 (𝑆)), then 𝑢𝑣 ∈ 𝛿(𝑆 ∪ 𝑁 (𝑆), otherwise 𝑣 ∈ 𝑆. So, one has that 𝑢𝑣 ∈ 𝛿(𝑆).

Hence, we conclude that 𝛿(𝑁 (𝑆)) ⊆ 𝛿(𝑆 ∪ 𝑁 (𝑆)) ∪ 𝛿(𝑆).

Let 𝑢𝑣 ∈ 𝛿(𝑆 ∪ 𝑁 (𝑆)). We may assume that 𝑢 ∈ 𝛿(𝑆 ∪ 𝑁 (𝑆)). Note that 𝑢 ∈ 𝑁 (𝑆),

otherwise 𝑣 ∈ 𝑁 (𝑆) because we would have 𝑢 ∈ 𝑆, which would lead to 𝑢𝑣 ∉ 𝛿(𝑆 ∪ 𝑁 (𝑆)).

Hence 𝑢 ∈ 𝑁 (𝑆) and 𝑢𝑣 ∈ 𝛿(𝑁 (𝑆)).

Let 𝑢𝑣 ∈ 𝛿(𝑆). We may assume that 𝑢 ∈ 𝛿(𝑆). Hence, one has that 𝑣 ∈ 𝑁 (𝑆), where it

follows that 𝑢𝑣 ∈ 𝑁 (𝑆). So we conclude that 𝛿(𝑆 ∪ 𝑁 (𝑆)) ∪ 𝛿(𝑆) ⊆ 𝛿(𝑁 (𝑆)).

Lemma 50. ([Chung Graham, 2016, Lemma 4]) Let𝐺 = (𝑉 , 𝐸) be a connected graph such

that𝐺 ≠ 𝐾𝑉 . Let 𝜀 ∈ ℝ++ such that 𝜀 ≤ 1/2. Let 𝑆 ⊆ 𝑉 such that vol𝐺(𝑆∪𝑁 (𝑆)) ≤ 𝜀vol𝐺(𝑉 ).

Then

vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)
≥

2𝜆
↑
2(𝐺)

1 − 𝜆
↑
2(𝐺) + 2𝜀

, (3.1)

and, if 1/2 ≤ 𝜆
↑
2(𝐺) ≤ 1 − 2𝜀, then

vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)
≥

1

(1 − 𝜆
↑
2(𝐺) + 2𝜀)2

. (3.2)

Proof. We first prove (3.1). Note that vol𝐺(𝑁 (𝑆)) ≥ |𝛿(𝑁 (𝑆))|, because each edge in 𝑁 (𝑆)

has one of its end in 𝑆. So, each edge is counted once in vol𝐺(𝑁 (𝑆)). By Lemma 49, we

have that 𝛿(𝑁 (𝑆)) = 𝛿(𝑆 ∪ 𝑁 (𝑆)) ∪ 𝛿(𝑆), and that 𝛿(𝑆 ∪ 𝑁 (𝑆)) and 𝛿(𝑆) are disjoint. So

|𝛿(𝑆 ∪ 𝑁 (𝑆)) ∪ 𝛿(𝑆)| = |𝛿(𝑆 ∪ 𝑁 (𝑆))| + |𝛿(𝑆)|. Hence,

vol𝐺(𝑁 (𝑆)) ≥ |𝛿(𝑁 (𝑆))| = |𝛿(𝑆 ∪ 𝑁 (𝑆))| + |𝛿(𝑆)|. (3.3)

Applying Lemma 48 with the set 𝑆 ∪ 𝑁 (𝑆),

|𝛿(𝑆 ∪ 𝑁 (𝑆))|

vol𝐺(𝑆 ∪ 𝑁 (𝑆))
≥ 𝜆

↑
2(𝐺)(1 −

vol𝐺(𝑆 ∪ 𝑁 (𝑆))

vol𝐺(𝑉 )
)
.
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By hypothesis, we have that 𝜀 ≥ vol𝐺(𝑆 ∪ 𝑁 (𝑆))/ vol𝐺(𝑉 ). So,

|𝛿(𝑆 ∪ 𝑁 (𝑆))|

vol𝐺(𝑆 ∪ 𝑁 (𝑆))
≥ 𝜆

↑
2(𝐺)(1 −

vol𝐺(𝑆 ∪ 𝑁 (𝑆))

vol𝐺(𝑉 )
)
≥ 𝜆

↑
2(𝐺)(1 − 𝜀).

Hence, we have that |𝛿(𝑆 ∪ 𝑁 (𝑆))| ≥ 𝜆
↑
2(𝐺)(1 − 𝜀) vol𝐺(𝑆 ∪ 𝑁 (𝑆)). Since 𝑆 and 𝑁 (𝑆) are

disjoint, we have that vol𝐺(𝑆 ∪ 𝑁 (𝑆)) = vol𝐺(𝑆) + vol𝐺(𝑁 (𝑆)). So,

|𝛿(𝑆 ∪ 𝑁 (𝑆))| ≥ 𝜆
↑
2(𝐺)(1 − 𝜀)(vol𝐺(𝑆) + vol𝐺(𝑁 (𝑆)). (3.4)

Applying Lemma 48 with the set 𝑆,

|𝛿(𝑆)|

vol𝐺(𝑆)
≥ 𝜆

↑
2(𝐺)(1 −

vol𝐺(𝑆)

vol𝐺(𝑉 )
)
.

Since 𝑆 ⊆ 𝑆 ∪ 𝑁 (𝑆), we have that vol𝐺(𝑆) ≤ vol𝐺(𝑆 ∪ 𝑁 (𝑆)). Hence, we have that 𝜀 ≥

vol𝐺(𝑆)/ vol𝐺(𝑉 ). So,

|𝛿(𝑆)| ≥ 𝜆
↑
2(𝐺)(1 − 𝜀) vol𝐺(𝑆). (3.5)

Combining (3.3), (3.4) and (3.5),

vol𝐺(𝑁 (𝑆)) ≥ |𝛿(𝑆 ∪ 𝑁 (𝑆))| + |𝛿(𝑆)|

≥ 𝜆
↑
2(𝐺)(1 − 𝜀)(vol𝐺(𝑆) + vol𝐺(𝑁 (𝑆)) + 𝜆

↑
2(𝐺)(1 − 𝜀) vol𝐺(𝑆)

= 2𝜆
↑
2(𝐺)(1 − 𝜀) vol𝐺(𝑆) + 𝜆↑2(𝐺)(1 − 𝜀) vol𝐺(𝑁 (𝑆)).

Rearranging the terms,

vol𝐺(𝑁 (𝑆))(1 − 𝜆
↑
2(𝐺)(1 − 𝜀)) ≥ 2𝜆

↑
2(𝐺)(1 − 𝜀) vol𝐺(𝑆).

Since 𝜆
↑
2(𝐺) ≤ 1 and 𝜀 > 0, we have that 1 − 𝜆

↑
2(𝐺)(1 − 𝜀) > 0. So,

vol𝐺(𝑁 (𝑆)) ≥
2𝜆

↑
2(𝐺)(1 − 𝜀) vol𝐺(𝑆)
1 − 𝜆

↑
2(𝐺)(1 − 𝜀)

.

Hence,

vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)
≥

2𝜆
↑
2(𝐺)(1 − 𝜀)

1 − 𝜆
↑
2(𝐺)(1 − 𝜀)

≥
2𝜆

↑
2(𝐺)

1 − 𝜆
↑
2(𝐺) + 2𝜀

,

where the last inequality holds if 𝜀 ∈ (0, 1/2]. Thus, (3.1) is proved.

Set 𝛾 ∶= 1 − 𝜆
↑
2(𝐺) ≥ 0, set 𝑓 ∶= 1𝑆 + 𝛾1𝑁 (𝑆) ∈ ℝ𝑉+ , set 𝑐 ∶= deg

𝑇

𝐺𝑓 /vol𝐺(𝑉 ) ≥ 0 and

set 𝑔 ∶= 𝑓 − 𝑐1 ∈ ℝ𝑉 . We have that

𝑐
2
=

(deg
𝑇

𝐺𝑓 )
2

vol𝐺(𝐺)
2
=

(
∑
𝑣∈𝑉

𝑓 (𝑣)deg𝐺(𝑣))

2

vol𝐺(𝑉 )
2

=
(
∑
𝑣∈𝑉

𝑓 (𝑣)
√
deg𝐺(𝑣)

√
deg𝐺(𝑣))

2

vol𝐺(𝑉 )
2

.
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Using Cauchy-Schwartz inequality,

𝑐
2
=

(
∑
𝑣∈𝑉

𝑓 (𝑣)
√
deg𝐺(𝑣)

√
deg𝐺(𝑣))

2

vol𝐺(𝑉 )
2

≤
1

vol𝐺(𝑉 )
2
∑

𝑣∈𝑉

𝑓 (𝑣)
2
√
deg𝐺(𝑣)

2

∑

𝑣∈𝑉

√
deg𝐺(𝑣)

2

=
1

vol𝐺(𝑉 )
2
∑

𝑣∈𝑉

𝑓 (𝑣)
2
deg𝐺(𝑣)∑

𝑣∈𝑉

deg𝐺(𝑣).

Since 𝑓 (𝑣) ≠ 0 if 𝑣 ∈ 𝑆 ∪ 𝑁 (𝑆),

𝑐
2
≤

1

vol𝐺(𝑉 )
2
∑

𝑣∈𝑉

𝑓 (𝑣)
2
deg𝐺(𝑣)∑

𝑣∈𝑉

deg𝐺(𝑣) =
vol𝐺(𝑆 ∪ 𝑁 (𝑆))

vol𝐺(𝑉 )
2

∑

𝑣∈𝑉

𝑓 (𝑣)
2
deg𝐺(𝑣).

By hypothesis, one has that 𝜀 ≥ vol𝐺(𝑆 ∪ 𝑁 (𝑆))/ vol𝐺(𝑉 ). So,

𝑐
2
≤

vol𝐺(𝑆 ∪ 𝑁 (𝑆))

vol𝐺(𝑉 )
2

∑

𝑣∈𝑉

𝑓 (𝑣)
2
deg𝐺(𝑣)

≤
𝜀

vol𝐺(𝑉 )
∑

𝑣∈𝑉

𝑓 (𝑣)
2
deg𝐺(𝑣)

=
𝜀

vol𝐺(𝑉 )
𝑓
𝑇
𝐷𝐺𝑓 .

(3.6)

Note that (1
𝑇𝐴𝐺)𝑣

= ∑
𝑢∈𝑉

𝐴𝐺(𝑢, 𝑣) = ∑
𝑢∈𝑉

[𝑢𝑣 ∈ 𝐸] = deg(𝑣) for each 𝑣 ∈ 𝑉 . Whence

1
𝑇𝐴𝐺 = deg

𝑇

𝐺. Also, since 𝑐 = deg
𝑇

𝐺𝑓 /vol𝐺(𝑉 ), we have that deg
𝑇

𝐺𝑓 = 𝑐 vol𝐺(𝑉 ). So,

𝑔
𝑇
𝐴𝐺𝑔 = (𝑓 − 𝑐1)

𝑇
𝐴𝐺(𝑓 − 𝑐1) = 𝑓

𝑇
𝐴𝐺𝑓 − 2𝑐1

𝑇
𝐴𝐺𝑓 + 𝑐

2
1
𝑇
𝐴𝐺1

= 𝑓
𝑇
𝐴𝐺𝑓 − 2𝑐deg

𝑇

𝐺𝑓 + 𝑐
2
deg

𝑇

𝐺1 = 𝑓
𝑇
𝐴𝐺𝑓 − 2𝑐

2
vol𝐺(𝑉 ) + 𝑐

2
vol𝐺(𝑉 )

= 𝑓
𝑇
𝐴𝐺 − 𝑐

2
vol𝐺(𝑉 ).

Hence, we have that 𝑓 𝑇𝐴𝐺𝑓 = 𝑔𝑇𝐴𝐺𝑔 + 𝑐
2 vol𝐺(𝑉 ). Note that

𝑔
𝑇
𝐷𝐺1 = 𝑓

𝑇
deg𝐺−𝑐1

𝑇
deg𝐺 = 𝑓

𝑇
deg𝐺−vol𝐺(𝑉 )deg

𝑇

𝐺𝑓 /vol𝐺(𝑉 ) = 𝑓
𝑇
deg𝐺−𝑓

𝑇
deg𝐺 = 0.

By Lemma 45,

𝜆
↑
2(𝐺) ≤ 𝑔𝑇𝐿𝐺𝑔/𝑔𝑇𝐷𝐺𝑔 = (𝑔

𝑇
𝐷𝐺𝑔 − 𝑔

𝑇
𝐴𝐺𝑔)/𝑔

𝑇
𝐷𝐺𝑔.

Rearranging the terms, we have that 𝑔𝑇𝐴𝐺𝑔 ≤ (1 − 𝜆
↑
2(𝐺))𝑔𝑇𝐷𝐺𝑔 = 𝛾𝑔𝑇𝐷𝐺𝑔 . Hence,

𝑓
𝑇
𝐴𝐺𝑓 = 𝑔

𝑇
𝐴𝐺𝑔 + 𝑐

2
vol𝐺(𝑉 ) ≤ 𝛾𝑔

𝑇
𝐷𝐺𝑔 + 𝑐

2
vol𝐺(𝑉 ).
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Note that

𝑔
𝑇
𝐷𝐺𝑔 = (𝑓 − 𝑐1)

𝑇
𝐷𝐺(𝑓 − 𝑐1) = 𝑓

𝑇
𝐷𝐺𝑓 − 2𝑐𝑓

𝑇
𝐷𝐺1 + 𝑐

2
1
𝑇
𝐷𝐺1

= 𝑓
𝑇
𝐷𝐺𝑓 − 2𝑐𝑓

𝑇
deg𝐺 + 𝑐

2
vol𝐺(𝑉 ) = 𝑓

𝑇
𝐷𝐺𝑓 − 2𝑐

2
vol𝐺(𝑉 ) + 𝑐

2
vol𝐺(𝑉 )

= 𝑓
𝑇
𝐷𝐺𝑓 − 𝑐

2
vol𝐺(𝑉 ).

So,

𝑓
𝑇
𝐴𝐺𝑓 ≤ 𝛾𝑔

𝑇
𝐷𝐺𝑔 + 𝑐

2
vol𝐺(𝑉 )

= 𝛾(𝑓
𝑇
𝐷𝐺𝑓 − 𝑐

2
vol𝐺(𝑉 )) + 𝑐

2
vol𝐺(𝑉 )

= 𝛾𝑓
𝑇
𝐷𝐺𝑓 + (1 − 𝛾 )𝑐

2
vol𝐺(𝑉 ).

Using (3.6),

𝑓
𝑇
𝐴𝐺𝑓 ≤ 𝛾𝑓

𝑇
𝐷𝐺𝑓 + (1 − 𝛾 )𝑐

2
vol𝐺(𝑉 ) ≤ 𝛾𝑓

𝑇
𝐷𝐺𝑓 + (1 − 𝛾 )𝜀𝑓

𝑇
𝐷𝐺𝑓 .

Since 𝛾 ≥ 0, we have that 1 − 𝛾 ≤ 1. So,

𝑓
𝑇
𝐴𝐺𝑓 ≤ 𝛾𝑓

𝑇
𝐷𝐺𝑓 + (1 − 𝛾 )𝜀𝑓

𝑇
𝐷𝐺𝑓 ≤ 𝛾𝑓

𝑇
𝐷𝐺𝑓 + 𝜀𝑓

𝑇
𝐷𝐺𝑓 = (𝛾 + 𝜀)𝑓

𝑇
𝐷𝐺𝑓 .

Note that

𝑓
𝑇
𝐷𝐺𝑓 = ∑

𝑣∈𝑉

deg𝐺(𝑣)𝑓 (𝑣)
2
= ∑

𝑣∈𝑆

deg𝐺(𝑣)𝑓 (𝑣)
2
+ ∑

𝑣∈𝑁 (𝑆)

deg𝐺(𝑣)𝑓 (𝑣)
2

= ∑

𝑣∈𝑆

deg𝐺(𝑣) + ∑

𝑣∈𝑁 (𝑆)

deg𝐺(𝑣)𝛾
2
= vol𝐺(𝑆) + 𝛾

2
vol𝐺(𝑁 (𝑆)).

Hence,

𝑓
𝑇
𝐴𝐺𝑓 ≤ (𝛾 + 𝜀)𝑓

𝑇
𝐷𝐺𝑓 = (𝛾 + 𝜀)( vol𝐺(𝑆) + 𝛾

2
vol𝐺(𝑁 (𝑆))). (3.7)

Let 𝐻 ∶= 𝐺[𝑆]. So,

𝑓
𝑇
𝐴𝐺𝑓 = 2∑

𝑢𝑣∈𝐸

𝑓 (𝑢)𝑓 (𝑣) = 2
(

∑

𝑢𝑣∈𝐸[𝐻 ]

𝑓 (𝑢)𝑓 (𝑣) + ∑

𝑢𝑣∈𝛿𝐺(𝑆)

𝑓 (𝑢)𝑓 (𝑣)
)

= 2
(

∑

𝑢𝑣∈𝐸[𝐻 ]

+ ∑

𝑢𝑣∈𝛿𝐺(𝑆)

𝛾
)
= 2(|𝐸[𝐻 ]| + 𝛾 |𝛿𝐺(𝑆)|).

Since 𝜆
↑
2(𝐺) ≥ 1/2, we have that 1 − 2𝛾 = 1 − 2 + 2𝜆

↑
2(𝐺) = 2𝜆

↑
2(𝐺) − 1 ≥ 0. Note that

vol𝐺(𝑆) = |𝛿𝐺| + 2|𝐸[𝐻 ]|. So,

𝑓
𝑇
𝐴𝐺𝑓 = 2(|𝐸[𝐻 ]| + 𝛾 |𝛿𝐺(𝑆)|) = 2(|𝐸[𝐻 ]| + 𝛾 vol𝐺(𝑆) − 𝛾2|𝐸[𝐻 ]|)

= 2(|𝐸[𝐻 ]|(1 − 2𝛾 ) + 𝛾 vol𝐺(𝑆)) ≥ 2𝛾 vol𝐺(𝑆).
(3.8)

Combining (3.7) and (3.8),

2𝛾 vol𝐺(𝑆) ≤ (𝛾 + 𝜀)( vol𝐺(𝑆) + 𝛾
2
vol𝐺(𝑁 (𝑆))).
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Rearranging the terms,

2𝛾

𝛾 + 𝜀
≤ 1 + 𝛾

2vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)

⇒
2𝛾

𝛾 + 𝜀
− 1 ≤ 𝛾

2vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)

⇒
2𝛾 − 𝛾 − 𝜀

𝛾 + 𝜀
≤ 𝛾

2vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)

⇒
𝛾 − 𝜀

𝛾 2(𝛾 + 𝜀)
≤

vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)
.

Since 𝜆
↑
2(𝐺) ≤ 1 − 2𝜀, we have that 𝛾 = 1 − 𝜆

↑
2(𝐺) ≥ 1 − 1 + 2𝜀 = 2𝜀. We claim that

(𝛾 − 𝜀)/𝛾 2(𝛾 + 𝜀) ≥ 1/(𝛾 + 2𝜀)2. So,

𝛾 − 𝜀

𝛾 2(𝛾 + 𝜀)
≥

1

(𝛾 + 2𝜀)2

⇒(𝛾 − 𝜀)(𝛾 + 2𝜀)
2
≥ 𝛾

2
(𝛾 + 𝜀)

⇒(𝛾 − 𝜀)(𝛾
2
+ 4𝛾𝜀 + 4𝜀

2
) ≥ 𝛾

3
+ 𝛾

2
𝜀

⇒𝛾
3
+ 4𝛾

2
𝜀 + 4𝛾𝜀

2
− 𝜀𝛾

2
− 4𝛾𝜀

2
− 4𝜀

3
≥ 𝛾

3
+ 𝛾

2
𝜀

⇒4𝛾
2
𝜀 − 𝜀𝛾

2
− 4𝜀

3
≥ 𝛾

2
𝜀

⇒2𝛾
2
𝜀 ≥ 4𝜀

3

⇒𝛾
2
≥ 2𝜀

2
.

Which is true because 𝛾 ≥ 2𝜀 ⇒ 𝛾 2 ≥ 4𝜀2 ≥ 2𝜀2. So,

vol𝐺(𝑁 (𝑆))

vol𝐺(𝑆)
≥

𝛾 − 𝜀

𝛾 2(𝛾 + 𝜀)
≥

1

(𝛾 + 2𝜀)2
=

1

(1 − 𝜆
↑
2(𝐺) + 2𝜀)2

,

and (3.2) is proved.

3.2.1 Weak Ramanujan Graphs

Theorem 51. ([Chung Graham, 2016, Theorem 6]) Let 𝜀 > 0. Set 𝑐 ∶= 1/ ln(1.5). Let

𝐺 = (𝑉 , 𝐸) be a weak Ramanujan connected graph. Suppose that vol𝐺(𝑉 ) ≥ 𝑐𝜎
ln(𝜎𝐺)

𝐺 /𝜀.

Then

diam(𝐺) ≤
⌈
(1 + 𝜀)

2 ln(vol𝐺(𝑉 ))

ln(𝜎−1
𝐺 ) ⌉

Proof. Set

𝑡 ∶=
⌈
(1 + 𝜀)

ln(vol𝐺(𝑉 ))

ln(𝜎−1
𝐺 ) ⌉

.

Suppose that for every vertex 𝑣 ∈ 𝑉 , one has that vol𝐺(𝐵𝑡(𝑣)) > vol𝐺(𝑉 )/2 . Let 𝑢, 𝑣 ∈ 𝑉 .

Note that vol𝐺(𝐵𝑡(𝑣)) + vol𝐺(𝐵𝑡(𝑢) > 𝑣𝑜𝑙𝐺(𝑉 ). Hence, there is a vertex 𝑥 ∈ vol𝐺(𝐵𝑡(𝑣)) and
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𝑥 ∈ vol𝐺(𝐵𝑡(𝑢)). Using the vertex 𝑥 , we have a path from 𝑢 to 𝑣 with length at most

2
⌈
(1 + 𝜀)

ln(vol𝐺(𝑉 ))

ln(𝜎−1
𝐺 ) ⌉

.

So, it suffices to prove that for every vertex 𝑣 ∈ 𝑉 , one has that vol𝐺(𝐵𝑡(𝑣)) > vol𝐺(𝑉 )/2.

Suppose for the sake of contradiction that there exists 𝑣 ∈ 𝑉 such that

vol𝐺(𝐵𝑡(𝑣)) ≤ vol𝐺(𝑉 )/2. Set

𝑠𝑗 ∶=
vol𝐺(𝐵𝑗(𝑣))

vol𝐺(𝑉 )
, for each 𝑗 ∈ ℕ.

In particular, we have that 𝑠𝑡 ≤ 1/2, by assumption. Let 𝑗 ≤ 𝑡 − 1 be a nonnegative integer.

Since 𝐵𝑗(𝑣) ⊆ 𝐵𝑡(𝑣),

𝑠𝑗+1 =
vol𝐺(𝐵𝑗+1(𝑣))

vol𝐺(𝑉 )
≤

vol𝐺(𝐵𝑡(𝑣))

vol𝐺(𝑉 )
= 𝑠𝑡 ≤

1

2
.

Recall that 𝐺 is a weak Ramanujan graph. Hence, we have that 𝜆
↑
2(𝐺) ≥ 1/2. Since

𝐵𝑗+1(𝑣) = 𝐵𝑗(𝑣) ∪ 𝑁 (𝐵𝑗(𝑣)), we can apply (3.1) of Lemma 50 with 𝜀 = 1/2 and 𝑆 = 𝐵𝑗(𝑣).

So,

vol𝐺(𝑁 (𝐵𝑗(𝑣)))

vol𝐺(𝐵𝑗(𝑣))
≥

2𝜆
↑
2(𝐺)

1 − 𝜆
↑
2(𝐺 + 2𝜀)

≥
2 1

2

1 − 1

2
+ 2 1

2

=
2

3
≥ 1/2.

Hence, one has that vol𝐺(𝑁 (𝐵𝑗(𝑣))) ≥ 1/2 vol𝐺(𝐵𝑗(𝑣)). Whence

𝑠𝑗+1 =
vol𝐺(𝐵𝑗+1(𝑣))

vol𝐺(𝑉 )
=

vol𝐺(𝐵𝑗(𝑣) ∪ 𝑁 (𝐵𝑗(𝑣)))

vol𝐺(𝑉 )
=

vol𝐺(𝐵𝑗(𝑣)) + vol𝐺(𝑁 (𝐵𝑗(𝑣)))

vol𝐺(𝑉 )

≥
vol𝐺(𝐵𝑗(𝑣)) + 1/2 vol𝐺(𝐵𝑗(𝑣))

vol𝐺(𝑉 )
= 3/2

vol𝐺(𝐵𝑗(𝑣))

vol𝐺(𝑣)
= 3/2𝑠𝑗 .

Set 𝑐1 ∶= 4(ln(3/2))−1. If 𝑗 ≤ 𝑡 − 𝑐1 ln(𝜎
−1
𝐺 ), then 1 ≥ 𝑠𝑡 ≥ (3/2)𝑐1 ln(𝜎

−1
𝐺 )𝑠𝑗 . Note that

𝑐1 ln(𝜎
−1
𝐺 ) = 4(ln(3/2))

−1
ln(𝜎

−1
𝐺 ) = 4

ln(𝜎−1
𝐺 )

ln(3/2)
= 4 log3/2(𝜎

−1
𝐺 ) = log3/2(𝜎

−4
𝐺 ).

Hence, one has that 1 ≥ 𝑠𝑡 ≥ (3/2)𝑐1 ln(𝜎
−1
𝐺 )𝑠𝑗 = (3/2)log3/2(𝜎

−4
𝐺 )𝑠𝑗 = 𝜎

−4
𝐺 𝑠𝑗 , whence

𝜎
4
𝐺 ≥ 𝑠𝑗 . (3.9)

[Chung Graham, 2016, page 9] claims that (3.2) of Lemma 50 can be applied for

𝑗 ≤ 𝑡 − 𝑐1 ln(𝜎
−1
𝐺 ) (although it is not obvious if the conditions for applying this lemma

were met). So, take 𝜀 = 𝑠𝑗+1 and 𝑆 = 𝐵𝑗(𝑣),

𝑠𝑗+1

𝑠𝑗
=

vol𝐺(𝐵𝑗+1(𝑣))

vol𝐺(𝐵𝑗(𝑣))
≥

vol𝐺(𝑁 (𝐵𝑗(𝑣)))

vol𝐺(𝐵𝑗(𝑣))
≥

1

(1 − 𝜆
↑
2(𝐺) + 2𝑠𝑗+1)

2
.

Since𝐺 is weak Ramanujan, we have that 1−𝜆
↑
2(𝐺) ≤ 𝜎𝐺. By (3.9), we have that 𝑠𝑗+1 ≤ 𝜎

4
𝐺
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for each 𝑗 ≤ 𝑡 − 𝑐1 ln(𝜎
−1
𝐺 ) − 1. Hence,

𝑠𝑗+1

𝑠𝑗
≥

1

(1 − 𝜆
↑
2(𝐺) + 2𝑠𝑗+1)

2
≥

1

(𝜎𝐺 + 𝜎4
𝐺)

2
.

Let 𝓁 ≤ 𝑡 − 𝑐1 ln(𝜎
−1
𝐺 ) − 1. We have that

𝑠𝓁

𝑠0
≥ ∏

0≤𝑗<𝓁

1

(𝜎𝐺 + 𝜎4
𝐺)

2
≥

1

(𝜎𝐺 + 𝜎4
𝐺)

2𝓁
.

[Chung Graham, 2016, page 9] claims that, since 𝑠0 = 𝐵0(𝑢)/ vol𝐺(𝑉 ) = 1/ vol𝐺(𝑉 )

and 𝑠𝓁 ≤ 𝑠𝑡 ≤ 1/2 one can prove that

vol𝐺(𝑉 ) ≥
1

𝜎2𝓁
𝐺 (1 + 2𝜎4

𝐺)
2𝓁
,

which implies that

𝓁 ≤
log(vol𝐺(𝑉 ))

ln(𝜎−1
𝐺 ) + 2𝜎4

𝐺

.

[Chung Graham, 2016, page 9] claims that, using the inequality

(1 + 𝜀)
log(vol𝐺(𝑉 ))

log(𝜎−1
𝐺 )

≤ 𝑡 ≤ 𝑐1 log(𝜎
−1
𝐺 ) +

log(vol𝐺(𝑉 ))

log(𝜎−1
𝐺 ) + 2𝜎4

and with vol𝐺(𝑉 ) ≥ 𝜎
2𝑐1 log(𝜎𝐺)

𝐺 /𝜀, ones has a contradiction. Hence 𝑠𝑡 ≥ 1/2.

Theorem 52. ([Chung Graham, 2016, Theorem 7]) Let 𝜀 ∈ [0, 1/2]. Set 𝑐 ∶= 4/ ln(1.5).

Let 𝐺 = (𝑉 , 𝐸) be a connected weak Ramanujan graph. Let 𝑙 ≤ diam(𝐺)/4. If diam(𝐺) ≥

𝑐 ln(𝜀−1). Then, for every 𝑣 ∈ 𝑉 ,

𝐵𝑙(𝑣) ≤ 𝜀 vol𝐺(𝑉 ).

Proof. Set 𝑘 ∶= diam(𝐺). Suppose for the sake of contradiction that for 𝑗0 ∶= ⌈𝑘/4⌉, there

is a vertex 𝑣 ∈ 𝑉 such that vol𝐺(𝐵𝑣(𝑗0)) > 𝜀 vol𝐺(𝑉 ). Denote

𝑠𝑗 ∶=
vol𝐺(𝐵𝑣(𝑟))

vol𝐺(𝑉 )
for each 𝑗 ∈ ℤ.

Hence, we have that 𝑠𝑗0 > 𝜀. Let 𝑟 denote the least integer such that 𝑠𝑟 > 1/2. [Chung

Graham, 2016, page 9] claims that, by assumption, one has 𝑟 > 𝑘/4.

Suppose that 𝑟 ≥ 𝑘/2. Note that 𝑠𝑟−1 ≤ 1/2. So, for each 𝑗 ≤ 𝑟 −1 one has that 𝑠𝑗 ≤ 1/2.

So, we can apply (3.1) of Lemma 50 for each 𝑗 ≤ 𝑘/2−2 ≤ 𝑟 −2 with 𝜀 = 1/2 and 𝑆 = 𝐵𝑣(𝑗).

Hence,

vol𝐺(𝑁 (𝐵𝑣(𝑗)))

vol𝐺(𝐵𝑣(𝑗))
≥

2𝜆
↑
2(𝐺)

1 − 𝜆
↑
2(𝐺) + 2𝜀

≥
2

3
≥ 1/2.
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So 𝑠𝑗+1 ≥ 1.5𝑠𝑗 for each 𝑗 ≤ 𝑘/2 − 2. If 𝑗 ≤ 𝑘/2 − 𝑐1 ln(𝜀
−1) with 𝑐1 ∶= 1/ ln(1.5), then

1 ≥ 𝑠𝑘/2 ≥ (1.5)
𝑐1 ln(𝜀

−1)
𝑠𝑗 = (1.5)

ln(𝜀−1)/ ln(1.5)
𝑠𝑗 = (1.5)

log1.5(𝜀
−1)
𝑠𝑗 = 𝜀

−1
𝑠𝑗 .

Whence 𝑠𝑗 ≤ 𝜀. Since 𝑘/4 ≤ 𝑘/2 − 𝑐1 ln(𝜀
−1), we have a contradiction because 𝑠𝑗0 > 𝜀 and

𝑠𝑗0 ≤ 𝑠𝑘/2−𝑐1 ln(𝜀−1).

Suppose 𝑟 < 𝑘/2. Define

𝑠𝑗+1 ∶=
vol𝐺(𝑉 ⧵ 𝐵𝑗(𝑣))

vol𝐺(𝑉 )
for each 𝑗 ∈ ℤ++.

Since 𝑟 < 𝑘/2, for each 𝑗 ≥ 𝑘/2, we have that 𝑠𝑗 > 1/2. So, one has 𝑠𝑗+1 < 1/2, for each

𝑗 ≥ 𝑘/2, because vol𝐺(𝑉 ⧵ 𝐵𝑗(𝑣)) = vol𝐺(𝑉 ) − vol𝐺(𝐵𝑗(𝑣)).

Suppose that 𝑠𝑗 ≥ 𝜀 for each 𝑗 ≤ 𝑘/2. Using (3.1) of Lemma 50, for each 𝑗 ∈ ℤ++ such

that 𝑟 ≤ 𝑗 ≤ 𝑘/2, with 𝜀 = 1/2 and 𝑆 = 𝑉 ⧵ 𝐵𝑗(𝑣),

vol𝐺(𝑁 (𝑉 ⧵ 𝐵𝑗(𝑣)))

vol𝐺(𝑉 ⧵ 𝐵𝑗(𝑣))
≥

2𝜆
↑
2(𝐺)

1 − 𝜆
↑
2(𝐺) + 2𝜀

≥ 2/3 ≥ 1/2.

Note that 𝑁 (𝑉 ⧵𝐵𝑗(𝑣)) = 𝑉 ⧵𝐵𝑗−1(𝑣). Hence, one has 𝑠𝑗 ≥ 1.5𝑠𝑗+1. Let 𝑗1 ≥ 𝑘/2− 𝑐1 ln(𝜀
−1).

Hence,

𝑠𝑗1+1 ≥ 𝑠𝑘/2(1.5)
𝑐1 ln(𝜀

−1/2)
= 𝑠𝑘/2(1.5)

log1.5(𝜀
−1/2)

= 𝑠𝑘/2𝜀
−1
.

By assumption, we have that 𝑠𝑘/2 ≥ 𝜀. So, one has 𝑠𝑗1+1 ≥ 𝜀𝜀
−1 = 1 ≥ 1/2. Hence, one has

𝑠𝑗1 ≤ 1/2 for 𝑗1 ≥ 𝑘/2− 𝑐1 ln(𝜀
−1). We can apply (3.1) of Lemma 50, for 𝑗 ≥ 𝑗1, with 𝜀 = 1/2

and 𝑆 = 𝐵𝑗(𝑣),

vol𝐺(𝑁 (𝐵𝑗(𝑣)))

vol𝐺(𝐵𝑗(𝑣))
≥

2𝜆
↑
2(𝐺)

1 − 𝜆
↑
2(𝐺) + 2𝜀

≥ 2/3 ≥ 1/2.

So, we conclude that 𝑠𝑗+1 ≥ 1.5𝑠𝑗 . Let 𝑗2 ≤ 𝑗1 − 𝑐1 ln(𝜀
−1). Hence,

1 ≥ 𝑠𝑗1 ≥ 𝑠𝑗(1.5)
𝑐1 ln(𝜀

−1)
= 𝑠𝑗𝜀

−1
.

Whence 𝑠𝑗 ≤ 𝜀. Note that 𝑗1 − 𝑐1 ln(𝜀
−1) ≥ 𝑘/2 − 2𝑐1 ln(𝜀

−1) ≥ 𝑘/4, so we have a contradic-

tion because 𝑠𝑗0 > 𝜀 and 𝑠𝑗0 ≤ 𝑠𝑗1−𝑐1 ln(𝜀−1).

Now, suppose that 𝑠𝑗 < 𝜀 for 𝑗 ≥ 𝑘/2. [Chung Graham, 2016, page 10] claims that

one can apply (3.2) of Lemma 50 for 𝑗 ≥ 𝑘/2. So, take 𝑆 = 𝑉 ⧵ 𝐵𝑗(𝑣)

vol𝐺(𝑁 (𝑉 ⧵ 𝐵𝑗(𝑣)))

vol𝐺(𝑉 ⧵ 𝐵𝑗(𝑣))
≥

1

(1 − 𝜆
↑
2(𝐺) + 2𝜀)2

≥
1

(𝜎 + 2𝜀)2
.

Hence,

𝑠𝑗

𝑠𝑗+1
≥

1

(𝜎 + 2𝜀)2
.

Let 𝑗3 = ⌈𝑘/2⌉. So,

𝑠𝑗3

𝑠𝑘
≥ ∏

𝑘/2<𝑗≤𝑘

1

(𝜎𝐺 + 2𝜀)2
≥

1

(𝜎𝐺 + 2𝜀)𝑘
.
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Note that 𝑠𝑘 ≥ 1/ vol𝐺(𝑉 ). So,

𝑠𝑗3 ≥
1

vol𝐺(𝑉 )(𝜎𝐺 + 2𝜀)𝑘
.

[Chung Graham, 2016, page 10] claims that, using the inequality

𝑠𝑗3 ≥
1

vol𝐺(𝑉 )(𝜎𝐺 + 2𝜀)𝑘
,

and the fact that 𝑠𝑗3 < 𝜀, one can prove that

𝑘 ≥
log(𝑛) + log(𝜀−1)

log(𝜎−1
𝐺 )

.

Also, [Chung Graham, 2016, page 10] claims that, using Lemma 50, for 𝑗 = 𝑘/2 − 𝑗 ′ ≥ 𝑟

one has that

𝑠𝑗 ≥
1

vol𝐺(𝑉 )(𝜎𝐺 + 2𝜀)𝑘+2𝑗
′
,

which implies that, for some 𝑗 ≤ 𝑘/2 − log(𝜀−1)/ log(𝜎−1
𝐺 ), one has 𝑠𝑗 ≥ 1/2, and so

𝑟 ≥ 𝑘/2 − log(𝜀−1)/ log(𝜎−1).

Finally, [Chung Graham, 2016, page 10] claims that, for some 𝑗 ≤ 𝑟 − 𝑐1 log(𝜀
−1) ≤

𝑘/2−log(𝜀−1)/ log(𝜎−1)−𝑐1 log(𝜀
−1), one has 𝑠𝑗 ≤ 𝜀. Since log(𝜀−1)/ log(𝜎−1)+𝑐1 log(𝜀

−1) <

𝑘/4, we have a contradiction.

3.2.2 Non-Backtracking Walks
Let 𝐺 = (𝑉 , 𝐸) be a graph. Recall that a non-backtracking walk is a sequence of vertices

𝑝 ∶= {𝑣𝑖}
𝑡
𝑖=0 ⊆ 𝑉 for some 𝑡 ∈ ℤ+ such that 𝑣𝑖−1 ∈ 𝑁 (𝑣𝑖), for each 𝑖 ∈ [𝑡 − 1], and 𝑣𝑖−1 ≠ 𝑣𝑖+1,

for each 𝑖 ∈ [𝑡 − 2]. So if we consider a walk, at each step we want to go from a vertex

to its neighbor without repeating the vertex at the previous step. Denote by  (𝑘)
𝑢,𝑣 the

set of non-backtracking walks from 𝑢 to 𝑣 with length 𝑘. Define the modified transition
probability matrix 𝑃𝑘, for each 𝑘 ∈ {0,… , 𝑡 − 1}, as

𝑃𝑘(𝑢, 𝑣) ∶=

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝐼 if 𝑘 = 0

∑

𝑝∈ (𝑘)
𝑢,𝑣

�̃�(𝑝) if 𝑘 ≥ 1, for each 𝑢, 𝑣 ∈ 𝑉 , (3.10)

where we define the weight function �̃�(𝑝) of a non-backtracking walk 𝑝 ∶= {𝑣𝑖}
𝑡
𝑖=0 ⊆ 𝑉

with 𝑡 ≥ 1 as

�̃�(𝑝) ∶=
1

deg𝐺(𝑣0)
𝑡−1

∏
𝑖=1

(deg𝐺(𝑣𝑖) − 1)

. (3.11)

If the non-backtracking walk 𝑝 is a sequence with a single vertex, i.e., its length is

equal to 0, we define �̃�(𝑝) ∶= 1. Define �̂� as the set of directed edges obtained from
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the original edge set 𝐸, where for each undirected edge 𝑢𝑣 ∈ 𝐸, we create two directed

arcs: (𝑢, 𝑣) and (𝑣, 𝑢). Formally, �̂� ∶= ⋃
𝑢𝑣∈𝐸

{
(𝑢, 𝑣), (𝑣, 𝑢)

}
. Also, we define the transition

probability matrix 𝑃 for a random walk in �̂� as

𝑃((𝑢, 𝑣), (𝑢
′
, 𝑣

′
)) = [𝑣 = 𝑢

′
][𝑢 ≠ 𝑣

′
]

1

deg𝐺(𝑣) − 1
.

The matrix 𝑃 is indexed by the edges because we want to retain the information of the

vertex of the previous step to avoid backtracking walks.

Note that, from the definition of 𝑃 , one has that 𝑃𝑇1 = 1 ∈ ℝ�̂�. Additionally, we define

the matrices 𝑇𝐷, 𝐻𝐷 ∈ {0, 1}𝑉×�̂�

𝐻𝐷 ∶= ∑

𝑢𝑣∈�̂�

𝑒𝑣𝑒
𝑇
𝑢𝑣 and 𝑇𝐷 ∶= ∑

𝑢𝑣∈�̂�

𝑒𝑢𝑒
𝑇
𝑢𝑣.

The matrix 𝑇𝐷 is the tails matrix, so for each 𝑥𝑦 ∈ �̂� and for each 𝑢 ∈ 𝑉 we have that

(𝑇𝐷)𝑢,𝑥𝑦 = [𝑢 = 𝑥]. Similarly, we have thar 𝐻𝐷 is the head matrix, so for each 𝑥𝑦 ∈ �̂� and

for each 𝑢 ∈ 𝑉 we have that (𝐻𝐷)𝑢,𝑥𝑦 = [𝑢 = 𝑦]. Note that

𝑇
𝑇
𝐷1 = 1 ∈ ℝ

�̂�
, (3.12)

and

𝐻
𝑇
𝐷1 = 1 ∈ ℝ

�̂�
. (3.13)

Also, note that

𝑇𝐷1 = deg𝐺, (3.14)

and

𝐻𝐷1 = deg𝐺 . (3.15)

One has that for 𝑙 ≥ 1,

𝑃𝑙 = 𝐷
−1
𝐺 𝑇𝐷𝑃

𝑙
𝐻
𝑇
𝐷 , (3.16)

which implies that

𝑃𝑙1 = 𝐷
−1
𝐺 𝑇𝐷𝑃

𝑙
𝐻
𝑇
𝐷1 = 𝐷

−1
𝐺 𝑇𝐷𝑃

𝑙
1 = 𝐷

−1
𝐺 𝑇𝐷1 = 𝐷

−1
𝐺 𝐷𝐺1 = 1. (3.17)

Combining (3.15) and (3.16),

1
𝑇
𝐷𝐺𝑃𝑙 = 1

𝑇
𝐻
𝑇
𝐷 = 1

𝑇
𝐷𝐺 = deg

𝑇

𝐺. (3.18)

Lemma 53. ([Chung Graham, 2016, Lemma 8]) Let 𝐺 = (𝑉 , 𝐸) be a connected graph.

Then

(i) for each integer 𝑗 ≥ 0

𝑃
𝑇
𝑗 deg𝐺 = deg𝐺;
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(ii) For each vertex 𝑥 and any integer 𝑗 ≥ 0

∑

𝑢∈𝑉

deg𝐺(𝑢) ∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝) = deg𝐺(𝑥);

(iii) For each vertex 𝑢 and for any 𝑙 ≥ 0

𝑙

∑

𝑗=0

∑

𝑥∈𝑉

∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝) = 𝑒
𝑇
𝑢 (𝐼 + 𝑃1 +⋯ + 𝑃𝑙)1 = 𝑙 + 1.

Proof. We have that for any vertices 𝑢, 𝑥 ∈ 𝑉 and for any integer 𝑗 ≥ 0

(𝑃
𝑇
𝑗 )𝑥𝑢 = 𝑒

𝑇
𝑢𝑃𝑗𝑒𝑥 = ∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝).

Let 𝑥 ∈ 𝑉 and let 𝑗 ≥ 0 be an integer. Using (3.13), (3.16), (3.18), and (3.15), one has that

1
𝑇
𝐷𝐺𝑃𝑗𝑒𝑥 = 1

𝑇
𝐷𝐺(𝐷

−1
𝐺 𝑇𝐷𝑃

𝑗
𝐻
𝑇
𝐷 )𝑒𝑥 = 1

𝑇
𝑃
𝑗
𝐻
𝑇
𝐷 𝑒𝑥 = 1

𝑇
𝐻
𝑇
𝐷 𝑒𝑥 = 1

𝑇
𝐷𝐺𝑒𝑥 = deg𝐺(𝑥),

whence 𝑃𝑇𝑗 deg𝐺 = deg𝐺 and item (i) is proved. Hence

∑

𝑢∈𝑉

deg𝐺(𝑢) ∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝) = ∑

𝑢∈𝑉

deg𝐺(𝑢)𝑒
𝑇
𝑢𝑃𝑗𝑒𝑥 = deg

𝑇

𝐺𝑃𝑗𝑒𝑥 = 1
𝑇
𝐷𝐺𝑃𝑗𝑒𝑥 = deg𝐺(𝑥),

and item (ii) is proved. Using (3.17), we have that

𝑒
𝑇
𝑢 (𝐼 + 𝑃1 +⋯ + 𝑃𝑗)1 = (𝑗 + 1)𝑒

𝑇
𝑢1 = 𝑗 + 1.

Also, we have that

𝑗

∑

𝑖=0

∑

𝑢∈𝑉

∑

𝑝∈ (𝑖)
𝑥,𝑢

�̃�(𝑝) =

𝑗

∑

𝑖=0

∑

𝑢∈𝑉

𝑒
𝑇
𝑥 𝑃𝑖𝑒𝑢 =

𝑗

∑

𝑖=0

𝑒
𝑇
𝑥 𝑃𝑖1 = 𝑒

𝑇
𝑢 (𝐼 + 𝑃1 +⋯ + 𝑃𝑗)1 = 𝑗 + 1,

and item (iii) is proved.

3.3 Main Result

Let 𝐺 = (𝑉 , 𝐸) be a graph. Throughout this section , for each 𝑢 ∈ 𝑉 , we consider

the function 𝑔𝑢 ∶ 𝑉 → ℝ+ defined as

𝑔𝑢(𝑥) ∶= (𝑒
𝑇
𝑢 (𝐼 + 𝑃1 +⋯ + 𝑃𝓁)(𝑥))

1/2
=
(

𝑙

∑

𝑗=0

∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝)
)

1/2

, (3.19)

for each 𝑥 ∈ 𝑉 , where 𝓁 ∶= ⌊diam(𝐺)/4⌋, and where 𝑃 and �̃� are defined in (3.10) and

(3.11), respectively.
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Lemma 54. ([Chung Graham, 2016, Claim A]) Let 𝐺 = (𝑉 , 𝐸) be a connected weak

Ramanujan graph. Set 𝓁 ∶= ⌈diam(𝐺)/4⌉. Define the function 𝑔𝑢 ∶ 𝑉 → ℝ+, for each

𝑢 ∈ 𝑉 , as in (3.19). Then

∑

𝑢∈𝑣

deg𝐺(𝑢)∑

𝑥∈𝑉

𝑔
2
𝑢(𝑥)deg𝐺(𝑥) = (𝓁 + 1)‖deg𝐺‖

2
.

Proof. Note that

∑

𝑢∈𝑣

deg𝐺(𝑢)∑

𝑥∈𝑉

𝑔
2
𝑢(𝑥)deg𝐺(𝑥) = ∑

𝑢∈𝑉

𝓁

∑

𝑗=0

∑

𝑥∈𝑉

∑

𝑝∈ (𝑗)
𝑢,𝑥

deg𝐺(𝑢)�̃�(𝑝)deg𝐺(𝑥),

by the definition of the function 𝑔𝑢. Since (𝑃𝑗)𝑢,𝑥 = ∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝) for each 𝑢, 𝑥 ∈ 𝑉 and for

each integer 𝑗 ≥ 0,

∑

𝑢∈𝑉

𝓁

∑

𝑗=0

∑

𝑥∈𝑉

∑

𝑝∈ (𝑗)
𝑢,𝑥

deg𝐺(𝑢)�̃�(𝑝)deg𝐺(𝑥) = ∑

𝑢∈𝑉

∑

𝑥∈𝑉

deg𝐺(𝑢)deg𝐺(𝑥)

𝓁

∑

𝑗=0

∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝)

= ∑

𝑢∈𝑉

∑

𝑥∈𝑉

deg𝐺(𝑢)deg𝐺(𝑥)

𝓁

∑

𝑗=0

(𝑃𝑗)𝑢,𝑥

=

𝓁

∑

𝑗=0

deg
𝑇

𝐺𝑃𝑗deg𝐺.

Using item (i) of Lemma 53,

𝓁

∑

𝑗=0

deg
𝑇

𝐺𝑃𝑗deg𝐺 =

𝓁

∑

𝑗=0

deg
𝑇

𝐺deg𝐺 = (𝓁 + 1)‖deg𝐺‖
2
.

Lemma 55. ([Chung Graham, 2016, Claim B]) Let 𝐺 = (𝑉 , 𝐸) be a connected weak

Ramanujan graph. Set 𝓁 ∶= ⌊diam(𝐺)/4⌋. Define the function 𝑔𝑢 ∶ 𝑉 → ℝ+, for each

𝑢 ∈ 𝑉 , as in (3.19). Then

∑

𝑢∈𝑉

deg𝐺(𝑢) ∑

𝑥𝑦∈𝐸

(𝑔𝑢(𝑥) − 𝑔𝑢(𝑦))
2
≤ (𝓁 + 1 − 𝓁𝜎𝐺)‖deg𝐺‖

2
.

Proof. By the definition of the family of function 𝑔𝑢,

∑

𝑥𝑦∈𝐸

(𝑔𝑢(𝑥) − 𝑔𝑢(𝑦))
2
= ∑

𝑥𝑦∈𝐸
(

√
𝓁

∑

𝑗=0

∑

𝑝∈ (𝑗)
𝑢,𝑥

𝑤(𝑝) −

√
𝓁

∑

𝑗=0

∑

𝑝∈ (𝑗)
𝑢,𝑦

�̃�(𝑝)
)

2

.

[Chung Graham, 2016, page 14] claims that, by using the inequality

(

√

∑

𝑖

𝑎𝑖 −

√

∑

𝑖

𝑏𝑖
)

2

≤ ∑

𝑖

(
√
𝑎𝑖 −

√
𝑏𝑖)

2
,
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one can prove that

∑

𝑥𝑦∈𝐸

(𝑔𝑢(𝑥) − 𝑔𝑢(𝑦))
2
= ∑

𝑥𝑦∈𝐸
(

√
𝓁

∑

𝑗=0

∑

𝑝∈ (𝑗)
𝑢,𝑥

�̃�(𝑝) −

√
𝓁

∑

𝑗=0

∑

𝑝∈ (𝑗)
𝑢,𝑦

�̃�(𝑝)
)

2

≤ ∑

𝑡≤𝓁−1

∑

𝑟∈𝑉

∑

𝑝∈ (𝑡)
𝑢,𝑟

𝑝′=𝑝∪𝑠∈ (𝑡+1)
𝑢,𝑠

(

√
�̃�(𝑝) −

√
�̃�(𝑝′))

2
+∑

𝑥∈𝑉

∑

𝑝∈ (𝓁)
𝑢,𝑥

�̃�(𝑝)(deg𝐺(𝑥) − 1).

Note that 𝑝′
is equal to 𝑝 concatenated with 𝑠, hence 𝑤(𝑝′) = 𝑤(𝑝)/deg𝐺(𝑟) − 1, where 𝑟

is the last vertex of 𝑝. So

∑

𝑡≤𝓁−1

∑

𝑟∈𝑉

∑

𝑝∈ (𝑡)
𝑢,𝑟

𝑝′=𝑝∪𝑠∈ (𝑡+1)
𝑢,𝑠

(

√
�̃�(𝑝) −

√
�̃�(𝑝′))

2
≤ ∑

𝑡≤𝓁−1

∑

𝑥∈𝑉

∑

𝑝∈ (𝑡)
𝑢,𝑥

(

√
�̃�(𝑝) −

√

�̃�(𝑝)

deg𝐺(𝑥) − 1)

2

(deg𝐺(𝑥) − 1)

Expanding the quadratic term,

∑

𝑡≤𝓁−1

∑

𝑟∈𝑉

∑

𝑝∈ (𝑡)
𝑢,𝑟

𝑝′=𝑝∪𝑠∈ (𝑡+1)
𝑢,𝑠

(

√
�̃�(𝑝) −

√
�̃�(𝑝′))

2
≤ ∑

𝑡≤𝓁−1

∑

𝑥∈𝑉

∑

𝑝∈ (𝑡)
𝑢,𝑥

�̃�(𝑝)(deg𝐺(𝑥) − 2
√
deg𝐺(𝑥) − 1).

Note that

∑

𝑥∈𝑉

∑

𝑝∈ (𝓁)
𝑢,𝑥

�̃�(𝑝)(deg𝐺(𝑥) − 1) ≤ ∑

𝑥∈𝑉

∑

𝑝∈ (𝓁)
𝑢,𝑥

�̃�(𝑝)deg𝐺(𝑥).

Hence, using item (ii) of Lemma 53,

∑

𝑢∈𝑉

deg𝐺(𝑢)∑

𝑥∈𝑉

∑

𝑝∈ (𝓁)
𝑢,𝑥

�̃�(𝑝)deg𝐺(𝑥) = ∑

𝑥∈𝑉

deg𝐺(𝑥)
2
. (3.20)

Also, using item (ii) of Lemma 53,

∑

𝑢∈𝑉

deg𝐺(𝑢) ∑

𝑡≤𝓁−1

∑

𝑥∈𝑉

∑

𝑝∈ (𝑡)
𝑢,𝑥

�̃�(𝑝)(deg𝐺(𝑥) − 2
√
deg𝐺(𝑥) − 1)

= ∑

𝑡≤𝓁−1

∑

𝑥∈𝑉

deg𝐺(𝑥)(deg𝐺(𝑥) − 2
√
deg𝐺(𝑥) − 1)

= ∑

𝑡≤𝓁−1

∑

𝑥∈𝑉

deg𝐺(𝑥)
2
(1 − 𝜎𝐺)

= 𝓁(1 − 𝜎𝐺)∑

𝑥∈𝑉

deg𝐺(𝑥)
2
.

(3.21)
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Hence, by (3.21) and (3.20),

∑

𝑢∈𝑉

deg𝐺(𝑢) ∑

𝑥𝑦∈𝐸

(𝑔𝑢(𝑥) − 𝑔𝑢(𝑦))
2
≤ 𝓁(1 − 𝜎𝐺)∑

𝑥∈𝑉

deg𝐺(𝑥)
2
+∑

𝑥∈𝑉

deg𝐺(𝑥)
2

= (𝓁 + 1 + 𝓁𝜎𝐺)∑

𝑥∈𝑉

deg𝐺(𝑥)
2
.

Lemma 56. ([Chung Graham, 2016, Claim C]) Let 𝐺 = (𝑉 , 𝐸) be a connected weak

Ramanujan graph. Set 𝓁 ∶= ⌊diam(𝐺)/4⌋. Define the function 𝑔𝑢 ∶ 𝑉 → ℝ+, for each

𝑢 ∈ 𝑉 , as in (3.19). Then there exist a vertex �̃� ∈ 𝑉 such that

𝑔𝑇�̃� 𝐿𝐺𝑔�̃�

𝑔𝑇
�̃�
𝐷𝐺𝑔�̃�

≤ 1 − 𝜎𝐺(
1 −

1

𝑙 + 1)

Proof. By Lemma 55,

∑

𝑢∈𝑉

deg𝐺(𝑢)𝑔
𝑇
𝑢 𝐿𝐺𝑔𝑢 = ∑

𝑢∈𝑉

deg𝐺(𝑢) ∑

𝑥𝑦∈𝐸

(𝑔𝑢(𝑥) − 𝑔𝑢(𝑦))
2
≤ (𝓁 + 1 − 𝓁𝜎𝐺)‖deg𝐺‖

2
.

Using Lemma 54,

(𝓁 + 1 − 𝓁𝜎𝐺)‖deg𝐺‖
2
= (𝓁 + 1 − 𝓁𝜎𝐺)(

1 −
1

𝑙 + 1)
∑

𝑢∈𝑉

deg𝐺(𝑢)∑

𝑥∈𝑉

𝑔𝑢(𝑥)
2
deg𝐺(𝑥).

Note that

(𝓁 + 1 − 𝓁𝜎𝐺)(
1 −

1

𝓁 + 1)
=
(

𝓁 + 1

𝓁 + 1
−

𝓁𝜎𝐺

𝓁 + 1)
=
(
1 −

𝓁𝜎𝐺

𝓁 + 1)
,

and that

∑

𝑢∈𝑉

deg𝐺(𝑢)∑

𝑥∈𝑉

𝑔𝑢(𝑥)
2
deg𝐺(𝑥) = ∑

𝑢∈𝑉

deg𝐺(𝑢)𝑔
𝑇
𝑢𝐷𝐺𝑔𝑢.

Hence,

∑

𝑢∈𝑉

deg𝐺(𝑢)𝑔
𝑇
𝑢 𝐿𝐺𝑔𝑢 ≤ (

1 −
𝓁𝜎𝐺

𝓁 + 1)
∑

𝑢∈𝑉

deg𝐺(𝑢)𝑔
𝑇
𝑢𝐷𝐺𝑔𝑢.

Which implies that

∑

𝑢∈𝑉

deg𝐺(𝑢)((
1 −

𝓁𝜎𝐺

𝓁 + 1)
𝑔
𝑇
𝑢𝐷𝐺𝑔𝑢 − 𝑔

𝑇
𝑢 𝐿𝐺𝑔𝑢)

≥ 0.

So, there must exist a vertex �̃� such that

(
1 −

𝓁𝜎𝐺

𝓁 + 1)
𝑔
𝑇
�̃�𝐷𝐺𝑔�̃� − 𝑔

𝑇
�̃� 𝐿𝐺𝑔�̃� ≥ 0,

otherwise the sum over all the vertices would be negative. Let �̃� ∈ 𝑉 such that

(
1 −

𝓁𝜎𝐺

𝓁 + 1)
𝑔
𝑇
�̃�𝐷𝐺𝑔�̃� − 𝑔

𝑇
�̃� 𝐿𝐺𝑔�̃� ≥ 0.
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Hence,

(
1 −

𝓁𝜎𝐺

𝓁 + 1)
𝑔
𝑇
�̃�𝐷𝐺𝑔�̃� − 𝑔

𝑇
�̃� 𝐿𝐺𝑔�̃� ≥ 0

⇒
(
1 −

𝓁𝜎𝐺

𝓁 + 1)
𝑔
𝑇
�̃�𝐷𝐺𝑔�̃� ≥ 𝑔

𝑇
�̃� 𝐿𝐺𝑔�̃�

⇒1 −
𝓁𝜎𝐺

𝓁 + 1
≥
𝑔𝑇�̃� 𝐿𝐺𝑔�̃�

𝑔𝑇
�̃�
𝐷𝐺𝑔�̃�

.

Note that

𝜎𝐺(
1 −

1

𝓁 + 1)
= 𝜎𝐺(

𝓁 + 1

𝓁 + 1
−

1

𝓁 + 1)
= 𝜎𝐺

𝓁

𝓁 + 1
.

Hence,

1 − 𝜎𝐺(
1 −

1

𝓁 + 1)
≥
𝑔𝑇�̃� 𝐿𝐺𝑔�̃�

𝑔𝑇
�̃�
𝐷𝐺𝑔�̃�

.

Theorem 57. ([Chung Graham, 2016, Theorem 9]) Let 𝐺 = (𝑉 , 𝐸) be a connected graph

such that 𝛿(𝐺) ≥ 2 and 𝐺 ≠ 𝐾𝑉 . Suppose that 𝜎𝐺 ≤ 1/2 and diam(𝐺)(1.5)diam(𝐺) ≥ 𝜎−1
.

Then

𝜆
↑
2(𝐺) ≤ 1 − 𝜎𝐺(

1 −
5

diam(𝐺))
.

Proof. We may assume that 𝐺 is weak Ramanujan, otherwise we would have

𝜆
↑
2(𝐺) ≤ 1 − 𝜎𝐺 and the result is trivial. Set 𝓁 ∶= ⌊diam(𝐺)/4⌋ and define the

function 𝑔𝑢 ∶ 𝑉 → ℝ+, for each 𝑢 ∈ 𝑉 , as in (3.19). By Lemma 56, there exists a vertex �̃�

which satifies

𝑔𝑇�̃� 𝐿𝐺𝑔�̃�

𝑔𝑇
�̃�
𝐷𝐺𝑔�̃�

≤ 1 − 𝜎𝐺(
1 −

1

𝓁 + 1)
.

Set 𝑔 ∶= 𝑔�̃�. Define

𝛽 ∶=

∑
𝑥∈𝑉

𝑔(𝑥) deg𝐺(𝑥)

∑
𝑥∈𝑉

deg𝐺(𝑥)
=
𝑔𝑇 deg𝐺

1𝑇 deg𝐺
,

and define the function ℎ ∶ 𝑉 → ℝ𝑉 as

ℎ ∶= 𝑔 − 𝛽1.

Note that

deg
𝑇

𝐺 ℎ = deg
𝑇

𝐺 𝑔 −
𝑔𝑇 deg𝐺

1𝑇 deg𝐺
deg

𝑇

𝐺 1 = deg
𝑇

𝐺 𝑔 − 𝑔
𝑇
deg𝐺 = 0,

whence ℎ ⟂ deg𝐺. Also, note that

ℎ
𝑇
𝐿𝐺ℎ = (𝑔 − 𝛽1)

𝑇
𝐿𝐺(𝑔 − 𝛽1) = 𝑔

𝑇
𝐿𝐺𝑔 − 2𝛽1

𝑇
𝐿𝐺𝑔 + 𝛽

2
1
𝑇
𝐿𝐺1 = 𝑔

𝑇
𝐿𝐺𝑔,
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and

ℎ
𝑇
𝐷𝐺ℎ = (𝑔 − 𝛽1)

𝑇
𝐷𝐺(𝑔 − 𝛽1) = 𝑔

𝑇
𝐷𝐺𝑔 − 2𝛽1

𝑇
𝐷𝐺𝑔 + 𝛽

2
1
𝑇
𝐷𝐺1

= 𝑔
𝑇
𝐷𝐺𝑔 − 2

(𝑔𝑇 deg𝐺)
2

vol𝐺(𝑉 )
+ 𝛽

2
vol𝐺(𝑉 ) = 𝑔

𝑇
𝐷𝐺𝑔 − 2

(𝑔𝑇 deg𝐺)
2

vol𝐺(𝑉 )

vol𝐺(𝑉 )

vol𝐺(𝑉 )
+ 𝛽

2
vol𝐺(𝑉 )

= 𝑔
𝑇
𝐷𝐺𝑔 − 2𝛽

2
vol𝐺(𝑉 ) + 𝛽

2
vol𝐺(𝑉 ) = 𝑔

𝑇
𝐷𝐺𝑔 − 𝛽

2
vol𝐺(𝑉 ).

Using Lemma 45,

𝜆
↑
2(𝐺) ≤

ℎ𝑇𝐿𝐺ℎ

ℎ𝑇𝐷𝐺ℎ
=

𝑔𝑇𝐿𝐺𝑔

𝑔𝑇𝐷𝐺𝑔 − 𝛽
2 vol𝐺(𝑉 )

. (3.22)

Since supp(𝑔) ⊆ 𝐵�̃�(𝓁),

(𝑔
𝑇
deg𝐺)

2
=
(
∑

𝑥∈𝑉

𝑔(𝑥) deg𝐺(𝑥))

2

=
(

∑

𝑥∈𝐵�̃�(𝓁)

𝑔(𝑥) deg𝐺(𝑥))

2

.

Hence, by Cauchy-Schwarz inequality,

(
∑

𝑥∈𝐵�̃�(𝓁)

𝑔(𝑥) deg𝐺(𝑥))

2

≤ ∑

𝑥∈𝐵�̃�(𝓁)

deg𝐺(𝑥) ∑

𝑥∈𝐵�̃�(𝓁)

𝑔
2
(𝑥) deg𝐺(𝑥)

= vol𝐺(𝐵�̃�(𝓁)) ∑

𝑥∈𝐵�̃�(𝓁)

𝑔
2
(𝑥) deg𝐺(𝑥)

= vol𝐺(𝐵�̃�(𝓁))𝑔
𝑇
𝐷𝐺𝑔.

So,

𝛽
2
=

(𝑔𝑇 deg𝐺)
2

vol𝐺(𝑉 )
2

≤
vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )
2
𝑔
𝑇
𝐷𝐺𝑔. (3.23)

By combining (3.22) and (3.23),

𝜆
↑
2(𝐺) ≤

𝑔𝑇𝐿𝐺𝑔

𝑔𝑇𝐷𝐺𝑔 − 𝛽
2 vol𝐺(𝑉 )

≤
𝑔𝑇𝐿𝐺𝑔

𝑔𝑇𝐷𝐺𝑔(
1 −

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 ) )

.

By assumption,

𝑔𝑇𝐿𝐺𝑔

𝑔𝑇𝐷𝐺𝑔
≤ 1 − 𝜎𝐺(

1 −
1

𝓁 + 1)
.

So,

𝜆
↑
2(𝐺) ≤

𝑔𝑇𝐿𝐺𝑔

𝑔𝑇𝐷𝐺𝑔(
1 −

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 ) )

≤

1 − 𝜎𝐺(
1 − 1

𝓁+1)

1 −
vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )

.

By Theorem 52 with 𝜀 = 𝜎𝐺/diam(𝐺),

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )
≤ 𝜀.
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Note that diam(𝐺) ≥ (𝓁 + 1)/𝓁, otherwise 𝐺 would be the complete graph. Hence,

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )
≤ 𝜎𝐺

𝓁

𝓁 + 1
.

So,

1 − 𝜎𝐺(1 −
1

𝓁 + 1
) +

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )
≤ 1.

One can check that

1 − 𝜎𝐺(1 −
1

𝓁 + 1
) +

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )
≤ 1,

implies that

1 − 𝜎𝐺(
1 − 1

𝓁+1)

1 −
vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )

≤ 1 − 𝜎𝐺(1 −
1

𝓁 + 1
) +

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )
.

Hence,

𝜆
↑
2(𝐺) ≤

1 − 𝜎𝐺(
1 − 1

𝓁+1)

1 −
vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )

≤ 1 − 𝜎𝐺(1 −
1

𝓁 + 1
) +

vol𝐺(𝐵�̃�(𝓁))

vol𝐺(𝑉 )

≤ 1 − 𝜎𝐺(1 −
1

𝓁 + 1
) + 𝜀 = 1 − 𝜎𝐺(1 −

1

𝓁 + 1
) +

𝜎𝐺

diam(𝐺)
.

Note that 𝓁 ≥ diam(𝐺)/4 − 1. Hence, one has 𝓁 + 1 ≥ diam(𝐺)/4. So,

𝜆
↑
2(𝐺) ≤ 1 − 𝜎𝐺(

1 −
1

𝓁 + 1)
+

𝜎𝐺

diam(𝐺)

≤ 1 − 𝜎𝐺(
1 −

4

diam(𝐺))
+

𝜎𝐺

diam(𝐺)

= 1 − 𝜎𝐺(
1 −

5

diam(𝐺))
.
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Chapter 4

Conclusion

In this monograph, generalizations of expander graphs and Alon-Boppana-type bounds

for each generalization were studied. The first generalization uses the notion of spectral

sparsifiers of complete graphs, which are strongly related to the ratio of the largest eigen-

value of the Laplacian matrix to the second smallest eigenvalue of the Laplacian matrix.

During the proof of the Alon Boppana bound in chapter 2, random non-backtracking

walks were used to prove the existence of a vertex 𝑟 that could produce a function 𝑓𝑟 ,

which was then used in a Rayleigh quotient to bound the ratio of the largest eigenvalue of

the Laplacian matrix and the second smallest eigenvalue of the Laplacian matrix.

The second generalization uses the normalized Laplacian matrix. During the proof

of the Alon Boppana bound in chapter 3, the notion of weak Ramanujan graphs was

used along with non backtracking walks. However, in this case, a matrix 𝑃 , indexed by

the edges of the graph, was employed to store the previous step of the walk, thereby

avoiding backtracks.

The proofs of both Alon-Boppana bounds involve several interesting methods and

concepts that may be useful in other contexts. Furthermore, expander graphs have already

proven to be useful in their own right.
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