
Tackling Business Complexity in Enterprise
Application’s Development

Author: Renê Eduardo Pereira Cardozo
Supervisor: Prof. Dr. Daniel Macêdo Batista

Department of Computer Science — University of São Paulo

Introduction

The art of doing business requires constant
negotiation and adjustments to cope with the
different needs of clients.

These needs require flexility that leads to rules
that are not so clearly defined and could be full
of exceptions.

What are Enterprise Applications?

Martin Fowler, in Patterns of Enterprise
Application Architecture, describes Enterprise
Applications as:

▶ ”Enterprise applications are about the
display, manipulation, and storage of large
amounts of often complex data and the
support or automation of business
processes with that data”.

Examples of Enterprise Applications are:

▶ Enterprise Resource Planning (ERP)

▶ Customer Relationship Management
(CRM)

▶ Payroll Management Systems and Financial
Systems

▶Mail Systems

Making Sense of Complexity

The Cynefin Framework was created by Dave
Snowden at IBM to help leaders understand the
context in which they are inserted.

The knowledge obtained from this analysis
helps to establish strategies to deal with
problems in different realities.

Figure: The Cynefin Framework

Objectives

Enterprise businesses are inherently complex.
They are built aiming to support a myriad of
requirements that arise from a business activity.

The objective of this work is to aggregate
different techniques to manage complexity in
those scenarios, especially involving domain
modeling and patterns of Domain Driven
Design (DDD).

The programming world is ordered, so to treat a
complex problem, we need to be able to extract
its relevant parts to the complicated or simple
Cynefin’s realms to establish a model.

Knowledge Crunching

To derive a satisfactory model, constant
collaboration between domain experts and
technical staff is required. Workshops can be
used to extract the main requirements of the
system.

Figure: User Story Mapping Workshop

Figure: Event Storming Canvas

Figure: Event Modeling Online Canvas

Through this analysis it is possible to recognize
bounded contexts:

Figure: Bounded Contexts of an Insurance System

DDD Patterns

Aggregates are clusters of domain objects
that establish a single consistent unit of data
storage.

Figure: Aggregates are Always in a consistent state

Domain events are published by Aggregate
methods and delivered to subscribers that can
react to those events.

Figure: Domain Events from a Change to an Aggregate

Domain events allow the state of a business
entity to be persisted as a sequence of state-
changing events.

Figure: Event Sourcing and CQRS Basic Flow

Conclusions

To describe the complex reality of enterprise
business as a software system it is necessary
to establish a domain model through constant
collaboration between domain experts and the
technical staff.

Patterns from DDD and the use of an
architecture based on Domain Events
provide a loosely-coupled system that can
be programmed reactively.

Those characteristics enable a better handling
of the transient nature of business, real-time
operations, better scalability, and match the
microservices architecture.

Capstone Project - Computer Science rene.cardozo@usp.br www.linux.ime.usp.br/∼reneepc/mac0499

(Bibliography available in the capstone project)


