
Tackling Business Complexity in Enterprise
Application’s Development

A survey about methodologies to construct maintainable systems for complex
business scenarios

Capstone Project by
Renê Eduardo Pereira Cardozo

Supervisor
Daniel Macêdo Batista

In Partial Fulfillment of the Requirements for the
Bachelor’s Degree of

Computer Science

UNIVERSITY OF SÃO PAULO
São Paulo

2023

ii

ABSTRACT

This work aims to summarize approaches and techniques to model and implement
a software application that addresses complex enterprise business necessities. It
presents well-established processes for effectively extracting requirements and dis-
tilling the main problems from complex domains. It also justifies the necessity of
delineating a domain model and advocates against using Transaction Scripts and
a procedural approach in those scenarios. Lastly, a series of design patterns and
abstractions are described and associated with the main goal of reducing complexity
and isolating the core domain code from other concerns.

iii

TABLE OF CONTENTS

Abstract . ii
Table of Contents . iii
List of Illustrations . iv
Chapter I: Introduction . 1
Chapter II: Making Sense of Complexity . 3

2.1 The Cynefin framework . 3
2.2 The abstraction layer . 4
2.3 Achieving order . 5

Chapter III: Knowledge Crunching . 7
3.1 Binding business and implementation 7
3.2 Ubiquitous language . 8
3.3 How to aggregate domain knowledge 9
3.4 Bounded contexts . 12

Chapter IV: The Necessity of Domain Modeling 14
4.1 Layered architecture . 14
4.2 The domain layer . 15

Chapter V: Tactical Patterns . 18
5.1 Domain object representation . 18
5.2 The life of a domain object . 23
5.3 Working with domain events . 25

Chapter VI: Conclusion . 29
Bibliography . 30

iv

LIST OF ILLUSTRATIONS

Number Page
2.1 Cynefin diagram by Dave Snowden c 3
3.1 Example of a story map [14] . 10
3.2 Event Storming canvas of a shopping cart system where the associa-

tion of events revealed bounded contexts [17] 13
5.1 Example of two aggregates composing the domain objects of a credit

card application [22] . 23
5.2 Example of a CQRS and Event Sourcing architecture [25] 28

1

C h a p t e r 1

INTRODUCTION

The fast-paced business environment of enterprises results in their systems being
faced with complex and rapidly changing requirements. This makes it challenging
to create software that can keep pace with business needs while maintaining high
reliability and scalability levels.

One of the main challenges in this context is how to avoid the software complexity
rising exponentially as the system reflects complicated business rules, exceptions,
and even conflicting requirements from different stakeholders. Also, as all big
companies today have a digital infrastructure as their backbone, many changes in
how their business is done are reflected as software changes. Integrating the internal
system with many external services is also necessary.

Without proper care, the stacking effect of system changes can span a massive
quantity of branching in the flow of information. It can build a gigantic net of
possible paths that can make the system essentially unpredictable for any developer.
It also can generate a coupled architecture where a change in one module of the
system can require changes in many other modules.

The system can become unmaintainable, and a fear of changing the application could
quickly spread over the development team. As this happens, the system’s abstractions
become incompatible with the actual business activities. The productivity of the
technical staff may dump, bug quantity can start to rise, and their work may become
inconsistent, promoting distrust between them and the rest of the company. A
culture of distrust is appointed by the book Accelerate [1] as a significant indicator
of low-performing technology organizations.

Different techniques can be used to avoid those problems. One is agile software
development, which embodies change as a certainty rather than something sporadic.
Others include using a high quantity of tests and pipelines of continuous integra-
tion and continuous development (CI/CD) to allow faster feedback cycles between
developers and stakeholders.

This work is about another approach, focusing on the software architectural decisions
that allow a system to evolve consistently and how to avoid coupling its different

2

modules. Its objective is to compile different techniques and common decisions in
the architectural process of high-scale enterprise applications. Those decisions need
to reflect the business rules, terminology, and expectation in the software system
and define technical abstractions about organizing a complex application.

The main topics of this text are derived from the book Domain-Driven Design
(DDD) [2] written by Eric Evans in 2003, as well as complementary ideas that have
been born around its work. It also uses the main architectural concepts delineated
by Martin Fowler in Patterns of Enterprise Application Architecture (PoEAA) [3]
from 2002.

The code examples are presented in Go, due to the simplicity of the language,
common use in systems programming, and the similarity of its syntax with C-like
languages.

The rest of this document is organized as follows: Chapter 2 presents the definition
of complexity in the business context considered in this work. Chapter 3 and
Chapter 4 discuss an approach to designing an effective and specific solution for
a complex business problem using knowledge crunching techniques and domain
modeling. Chapter 5 gives examples of code and system abstractions that allow the
implementation to be flexible and to cope with the complexity of the domain model
and changing business requirements. Chapter 6 concludes the monography.

3

C h a p t e r 2

MAKING SENSE OF COMPLEXITY

Foreseeing future events and outcomes in a rapidly changing environment becomes
quite tricky. The systems that emerge from those environments aren’t ordered and
cannot easily predict their outcomes. A slight variation in initial conditions yields
a drastically different output.

2.1 The Cynefin framework
The Cynefin Framework splits problems into four domains: simple, complicated,
complex, and chaotic. The diagram in Figure 2.1 depicts the Framework.

Figure 2.1: Cynefin diagram by Dave Snowden c

A disorder represents the inability to classify a problem into the four aforementioned
categories. A little fold at the bottom of the diagram indicates that simplicity can
quickly become chaotic [4].

The right-hand side of the diagram represents the ordered domains. Simple (or
clear) problems can have their cause and effect instantly associated. The problem
is sensed, categorized in a strict category, and treated following a well-established
solution. A typical forms-over-data application, where the user interface is a thin
interface of forms to be persisted, is a simple problem. The CRUD solution is

4

considered the best practice for this situation; every operation needs to fall into the
create, read, update and delete schemes.

The complicated domain is predictable, but the path between cause and effect is
not as straightforward as for simple domains. It demands some analysis before
responding to the problem. One example of a complicated system is a relational
database management system (RDBMS). Building such an application requires
much effort and analysis; some trade-offs must be assessed, and choices must be
made. But there are well-known good practices such as B-trees, indexes, and whole
decades-old theory that backs relational models. Therefore, the decisions are guided
by principles [5] [6].

The complex domain is characterized to be highly composite, with a multitude of
interactions between its subunits. A feedback property and an emergent behavior
characterize those systems. Cause and effect can be perceived in retrospect but not
in advance. To assess these problems, it is necessary to experiment and observe
(probe) and see what kinds of patterns and behaviors they exhibit before coming up
with a response.

The chaotic domain looks random from the outside because there is no relationship
between cause and effect at a systems level. It’s always out-of-equilibrium, so
emergency action is needed to derive some coherent state to stabilize the situation
in one of the other three domains.

2.2 The abstraction layer
Given the right granularity level and interpretation depth, the four domains from
Fig. 2.1 could be used to classify many problems. The heating exchange between
two metal plates can be simple from a real-life scale and ordinary temperatures,
described by an accurate mathematical solution. It can be complicated in the
context of thermodynamics, complex from a statistical mechanics perspective, and
chaotic in quantum mechanics, where randomness is an inherent factor.

So the level of abstraction is essential to contextualize the mean of complexity
used by this text. The concerns of this monography are in the level of software
architecture and software design, in the layers between the global requirements,
such as infrastructure, architectural patterns, and integration patterns; the local
requirements that govern a solution, namely design patterns, OOP principles, and
project folder structure.

More specifically, the problems treated here are those of enterprise software,

5

business-based systems built to fulfill an organization’s necessities. The kinds
of systems that belong to this classification are inventory management, payment,
customer relationship management, enterprise resource planning, human resources
management, networking, and a plethora of systems dedicated to managing business
concerns.

Martin Fowler describes it as:" Enterprise applications are about the display, ma-
nipulation, and storage of large amounts of often complex data and the support or
automation of business processes with that data"[3].

Enterprise businesses are inherently complex. They are built aiming to support a
myriad of requirements that arise from business activity. The art of doing business
requires constant negotiation and adjustments to cope with the different necessities
of clients. This flexibility leads to rules that are not so clearly defined and could be
full of exceptions.

A situation where we need to parse and identify fields of commercial contracts –
including contractor names, due dates, locations, or signatures – needs to deal with
a large variety of contract templates that could be used. Even though they follow a
standard template to not only parse this information but interpret the logic associated
with it, it is probable to become lost in the exceptional agreements and clauses made
to achieve a deal.

The programming world is ordered, so to treat a complex problem, we need to be
able to extract its relevant parts to the complicated or simple Cynefin’s domains. To
describe something complex programmatically is to describe the observed emergent
patterns from it in an ordered way.

2.3 Achieving order
Humans typically use patterns to force a degree of ordering into complex scenarios.
Patterns are actively extracted, not passively discovered. As the anthropologist Mary
Douglas described:

"...whatever we perceive is organized into patterns for which we the perceivers are
largely responsible. . . . As perceivers we select from all the stimuli falling on our
senses only those which interest us, and our interests are governed by a pattern-
making tendency, sometimes called a schema. In a chaos of shifting impressions,
each of us constructs a stable world in which objects have recognizable shapes, are
located in depth, and have permanence. . . . As time goes on and experience builds

6

up, we make greater investments in our systems of labels. So a conservative bias is
built in. It gives us confidence" [7].

It is, therefore, crucial to "distillate" the primary concepts pertinent to the problem
discussed in the same manner. Crude oil is heated to separate the products rele-
vant to each necessity. Only the essential elements of the problem are extracted
from the complex reality. This way, the assortment of relationships between the
domain entities can be restricted, and we can adequately describe the domain logic
algorithmically.

In the previous paragraph and hereafter, the meaning of domain will differ from
Cynefin’s attribution. It will be considered that the domain is the "...sphere of
knowledge, influence, or activity. The subject area to which the user applies a
program is the domain of the software" [8].

7

C h a p t e r 3

KNOWLEDGE CRUNCHING

Effective application designers are essentially "knowledge crunchers" in the way that
they can transform the torrent of information and associations into abstract concepts.
This conversion, although, can never be obtained by oneself. Cooperation between
business experts, developers, and architects is the key to properly describing the
domain.

Domain experts are the ones that truly understand the domain. They are effectively
the advanced users of the applications to be developed, and typically have years of
experience in the area. However, the developers and architects have the technical
knowledge to translate requirements into implementation and assess a solution’s
viability.

3.1 Binding business and implementation
Suppose an application is modeled without proper alignment with business experts.
In that case, the developers will converge to the faster-to-built system that can solve
the subject, trying to guess the real necessities of its users and achieving abstractions
that do not necessarily correspond to real entities.

The issue with this approach is tied to the fact that business necessities will continu-
ally change due to innovation, competition, change of mentality, or anything related
to the volatility of human behavior. To cope with this transient nature of enterprise
business, the system must have its abstraction intimately related to the business rules
that govern the field. To accomplish that, it’s necessary to establish a model for the
domain, that describes the business. This model will never be completed, though.

The nature of constant change is intimately related to the principles of Agile method-
ologies [9] [10] and Continuous Improvement in the way that the model will always
be discussed and refined between developers and business specialists to capture
alterations in business rules and entities. The team that defines the products and
develops the solution will not be segregated, and a shift in mentality is required.
The system must no longer be perceived as a project with an end in its development
but as a product that is constantly evolving and adapting to the business necessities
[11].

8

The team, from now on, will be defined as composed of technical and domain-
specific staff. The whole group will constantly communicate and review the model,
so the system can properly reflect the problem that is trying to be solved.

3.2 Ubiquitous language
A critical aspect of knowledge crunching is creating a common language, known as
the "ubiquitous language," used throughout the development process to ensure that
everyone speaks the same language and works towards the same goals.

The goal of the ubiquitous language is to create a shared understanding of the domain
among the team members and to ensure that the software is being developed accu-
rately. The system must reflect the common language in its software abstractions,
so changes in business rules could be directly related to changes in the respective
software correspondence.

It is important not to underestimate the importance of the ubiquitous language in
software development and domain modeling. Having a shared understanding of
the domain is critical to the success of a software development project. It helps to
ensure that the model accurately reflects the underlying complexities of the domain
and that it can be effectively used to inform the design of the software.

Without a common language to describe the domain, it can be harder to identify the
root causes of problems and find solutions. The abstractions used in the technical
field can differ from the concepts used by domain experts, and changes in the
business domain are trickier to reflect on the system.

As the team gains a deeper understanding of the domain and as the model evolves,
it is important to refine and update the ubiquitous language continuously. This
will help to ensure that the language remains accurate and relevant as the project
progresses. It can be helpful to make the ubiquitous language visible to the team
by creating a glossary or reference document that defines the terms and concepts
used within the domain. This can help ensure that everyone on the team uses the
language consistently.

Establishing a ubiquitous language requires gathering and synthesizing information
about the domain, and identifying key concepts and terminology. Those details are
best obtained by mobilizing the team to aggregate domain knowledge as a model.

9

3.3 How to aggregate domain knowledge
The discussions to describe the domain in terms of a model can be formulated in
various ways, typically involving interactive meetings or workshops. Two examples
of those meetings are User Story Mapping and Event Storming:

User story mapping
User stories are an agile way of describing requirements that focus on a narrative
way of reporting the user journey throughout the system to operate some function-
ality [12]. They are designed to shift the emphasis from writing about features
to discussing them. Ron Jeffries, one of the founders of Extreme Programming,
separates user stories into three aspects, the three C’s [13]:

• Card: user stories are written in cards, that contain just enough text to serve
as a reminder to the team of what the requirement is. The card is a token that
represents a requirement.

• Conversation: using the cards just as the basis for the discussion, it is in the
conversation that the team ultimately communicates business requirements.
Documents can be used as an auxiliary, but verbal communication properly
defines the features.

• Confirmation: to assess that the features make sense and are consistent with
the problem space, examples usually describe a specific user’s journey. These
examples can then be transformed into acceptance tests that, not only, give
shape and justify abstract ideas, but also give a definition of done to the
features to be implemented.

User Story Mapping [14] is a visual exercise idealized by Jeff Patton to help the
team describe the different possible user journeys as user stories. Mapping the
interactions as user stories help to find out what is really necessary for the system
and which features should be prioritized. Figure 3.1 portrays an example story map.

The workshop is organized with the team using a big canvas, where different sticky
notes will be the cards that define the story.

First, the team writes the major user activities that will be performed in the system
and the type of user that will do it, without details of how this task should be done
or alternative paths it could take. At the same time, the team organizes the tasks,

10

Figure 3.1: Example of a story map [14]

trying to establish a priority between them. Once a substantial number of tasks –
relative to the system’s complexity – are delineated, the team should start to outline
a primary function of the system, a simple story describing the most crucial feature
the system must implement. The objective at this stage is to find functionality that
can aggregate the most value to its customers. The process steps are not linear at
any point, so if the team finds out that the story lacks middle steps to make sense,
they must add this activity to the story.

Once the story is established, its cards are stuck in the canvas from left to right
in chronological order. Those cards set out the backbone of the story map. This
backbone provides a functional description of the feature aggregating the most value
to the business. The users will be represented above the backbone to highlight which
customers will be affected by the functionality and to which part they are related.

11

The design strategy is iterative and incremental. Based on the backbone, the details
necessary to accomplish the functionality are outlined. They are sliced out vertically
into sections that increase in granularity and decrease in priority. In the first segment,
there will be the minimum number of features necessary to see it working below the
part of the backbone that needs it; this is the minimum viable product (MVP). Below
are the features that could improve the product or are nice to have, decreasing the
level of importance at every division. Every section, following horizontally, must
depict a proper functional product that could be used by the users illustrated on the
top of the canvas.

The major benefit of this approach is that it enables the team to discover the product as
it tries to describe visually the customer journey based on a real situation, providing
a good model of the problem’s domain. As Gene Kim highlights:"When engineers
think of "the customer" in the abstract instead of as a real person, you rarely get the
right outcomes" [15].

Once a discussion over a specific story map is completed, a new story could be
selected from those written previously. It continues until the team is satisfied with
the number of functionalities described. The meeting is repeated as new demands
emerge.

Event storming
A different workshop on extracting requirements from the business domain is Event
Storming [16]. The method was invented by Alberto Brandolini, based on the prin-
ciples of Domain-Driven Design, aiming to extract all relevant events of the domain
and to establish a common language between domain experts and the technical staff.

This approach uses the same materials as the User Story Mapping: a big canvas
and colored sticky notes. The meeting is guided by a facilitator that ensures that
it’s following the proper steps and the discussion is not diverting from its objective.
The process usually involves the following steps:

1. Identify the focus of the event storming session: The first step is to define
the scope of the event storming session. This might be a specific business
process, a customer journey, or some other aspect of the domain.

2. Gather the necessary participants: To be effective, an event storming session
should include domain experts, developers, and other relevant stakeholders. It

12

is essential to have a diverse group of people to get a wide range of perspectives
and ideas.

3. Set the stage: Event storming sessions typically take place on a large wall
or whiteboard, with sticky notes or other visual aids to represent events and
processes. The group should also decide on the rules and conventions for the
session, such as how to identify different types of events and how to represent
them on the wall.

4. Start brainstorming: The group should begin by listing all of the events within
the scope of the event storming session. These events might be actions taken
by users, system events, or other types of occurrences.

5. Organize the events: Once the group has identified a list of events, they
should work together to organize them into a logical flow. This might involve
grouping related events or creating sub-flows for different parts of the process.

6. Identify relationships: As the group organizes the events, they should also
look for relationships and dependencies between the events. For example,
one event might trigger another, or specific events might be conditional on the
completion of other events.

7. Refine and iterate: As the group works through the Event Storming process,
they will likely uncover new insights and ideas. They should use this in-
formation to refine and iterate on the model, adding or removing events as
needed.

8. Overall, the goal of event storming is to create a comprehensive and holistic
view of the domain, which can help to identify opportunities for improvement
and inform the design of the software being developed.

3.4 Bounded contexts
In Domain-Driven Design, bounded contexts divide a domain, or subject area, into
smaller, self-contained parts. Each bounded context has its own language and model
and operates independently of the others within the domain. Bounded contexts can
help manage complexity and ensure that the model accurately reflects the underlying
domain.

During an event storming session, one way to identify bounded contexts is to look
for clusters of events related to a specific part of the domain. Those events’ spatial

13

Figure 3.2: Event Storming canvas of a shopping cart system where the association
of events revealed bounded contexts [17]

separation and adjacency give us a clue about which parts of the system can be
treated as a bigger abstraction unit.

In Figure 3.2, there is a canvas obtained after a session of event storming of a
shopping cart system. The events were associated organically in the workshop and
slowly started to create clusters that could be identified as bounded contexts.

In the contemporary context of microservices architecture, bounded contexts can
help identify the boundaries between different services. Each microservice or group
of microservices can be designed to handle a specific bounded context. This can
help to ensure that each microservice has a clear purpose and is focused on a specific
use case of the domain.

14

C h a p t e r 4

THE NECESSITY OF DOMAIN MODELING

Enterprise applications are particular because they usually do not involve CPU-
intensive tasks but are primarily data-driven. Those information-rich systems mainly
consist of data processing pipelines with generally simple operations.

4.1 Layered architecture
Seeking reduced cognitive load, better reusability, modularity, and testing capacity,
the industry converged to divide the application responsibilities following a layered
architecture. The essential principle is that elements of the layers depend exclusively
on their components or from the layer beneath them. It embodies the separation of
concerns design rule [18]. Usually, the application is divided into four layers [2]:

• User Interface: render views used to interact with the application, responsible
for associating user inputs with application commands.

• Application Layer: orchestrate the required calls to business objects based on
the instructions given by the user interface. It acts as the public API of the
system. However, it doesn’t contain business logic.

• Domain Layer: enforce the business rules of the domain. It’s the heart of the
application, including a collection of domain objects, their specific operations,
and dynamics.

• Infrastructure Layer: wraps up the system-to-system interactions of the ap-
plication. Controls input and output operations besides those originating
from the user interface. Examples are abstractions over database interactions,
messaging systems, and third-party APIs.

Variations of this structure exist in many forms, but a central piece of a layered
architecture is separating the domain logic from other application concerns. The
domain objects remain free of presentation, persistence, or technology-specific
concerns. This way, the business rules could evolve at their pace without being
affected by technical decisions and focusing on business demands.

15

Embedding business logic into presentation elements or persistence concerns into
business objects is sometimes the fastest way to build software. Still, it leads to a
dangerous path of domino effects that span all application layers for even the slightest
change in business rules, called the ripple effect [19]. Testing logic becomes difficult,
and changes to the UI or database can influence how business rules are implemented,
yielding hard-to-trace bugs and tightly coupled code.

4.2 The domain layer
The core layer of an enterprise application is the domain layer, which contains
the main business rules of the system, representing the domain problems through
abstract entities.

There are two dominant approaches to organizing the domain layer: transaction
scripts and domain model [3].

Transaction scripts
Each request from the user interface or other system can be modeled as a query for
some data or a command to perform some action. Those interactions are imple-
mented as transactions, where each is handled by a different procedure containing
the whole logic of a specific use case. The transaction scripts provide a thin service
layer between the user interface and the data layer, usually making direct calls to the
storage system or through a simple Data Access Object.

In a simple example, a transfer between two bank accounts can be described by the
following procedure:

func transferFunds(fromAccountNumber string,

toAccountNumber string, amount Money) error {

from, err = AccountDAO.findByAccountNumber(fromAccountNumber)

if err != nil {

return fmt.Errorf("couldn't find account number: %s",

fromAccountNumber)

}

to, err = AccountDAO.findByAccountNumber(toAccountNumber)

if err != nil {

return fmt.Errorf("couldn't find account number: %s",

toAccountNumber)

16

}

if from.balance < amount:

return errors.New("insufficient Funds");

from.balance = Money.Sub(from.balance, amount)

to.balance = Money.Add(to.balance, amount)

return nil

}

This approach may be ideal if the system only requires a small amount of logic
once its linear and procedural style allows for easy code comprehension by other
developers and fast pace feature development.

The downsides of this approach show up when business complexity starts to rise.
In those contexts, the transaction scripts’ lack of reusability and flexibility becomes
evident. A financial application may not only have a transferFunds procedure
but a lot of different operations related to the account’s balance, like billPayment,
creditCardPayment, and withdraw. To apply validation to input data and bal-
ance state, each one of those procedures may duplicate the code to implement it.
Moreover, the scattering of common logic among various procedures can lead to
inconsistencies between them, generating a lot of possible sources of bugs.

Domain modeling
The domain modeling pattern uses a more object-oriented way of modeling logic to
avoid the drawbacks of the procedural approach of transaction scripts. The domain
is divided among entities from the domain represented as objects. Those domain
objects not only store data in memory but also include the behaviors related to
domain logic, which include validation, calculations, and business rules.

Incorporating behaviors into domain objects is essential to the benefits of domain
modeling. The absence of behavior to implement business rules and the delegation
of this logic to a service layer’s external procedures will generate Transactions
Scripts without the advantages of a procedural approach. This anti-pattern receives
the name of Anemic Domain Model [20], in contrast to the Rich Domain Model
that binds data and behavior.

The previous example of a transfer between two bank accounts can be modeled in

17

conformance with domain modeling this way:

type Account struct {

balance Money

}

func (from *Account) transferTo(to Account, amount Money)

error {

if from.balance < amount:

return errors.New("insufficient Funds");

from.balance -= Money.Sub(from.balance, amount)

to.balance += Money.Add(from.balance, amount)

}

The encapsulation of data and behavior in the class Account helps to ensure that
the Account object domain always maintains a valid state regarding the operation. It
also complies with the Separation of Concerns principle, once the only items present
in the method are the business rules and the entities involved in the operation are
abstracted as real Domain Entities, such as Account instead of an account number.
The data access layer is separated from the domain logic and focuses on representing
the domain’s concepts rather than on specific use cases.

Effective domain modeling does not come without costs. It requires previous
knowledge crunching to design the domain objects correctly. Moreover, the concerns
about data storage and communication with external systems are not gone. They are
just abstracted to new layers of patterns such as Repositories, Ports, and Adapters
[21]. With more patterns to follow comes a more complex architecture at first hand,
with more classes and layers, but overall, with changes in business rules and the
addition of features, domain modeling tends to pay off fast.

The great triumph of Domain Modeling is to isolate domain logic from all other
concerns, creating a solid core that could be easily modified, extended, and used in
different contexts and infrastructures.

18

C h a p t e r 5

TACTICAL PATTERNS

The domain model obtained from the workshops describes the bounded contexts,
events, and main domain objects, as well as the business processes associated with
them. Establishing a common language contributes to the correspondence between
domain objects and their real implemented objects in the system. The question that
remains is: "Who about the implementation?". The alignment between business
experts and the technical staff is an important step toward the consistency of the
application with the real world. Still, the effective realization of those concepts as
code involves another variety of technical challenges.

Tactical patterns are a series of design patterns from Domain-Driven design that pro-
vide specific solutions to common technical problems while modeling the domain.
These patterns help developers to implement the domain model in the codebase, and
make it more maintainable, flexible, and extensible.

They include different forms of organization of the codebase through abstraction
layers, encapsulating complexity into smaller and more manageable pieces, helping
to maintain consistency and integrity of data, and improving the scalability of
development by adding new functionality without having to change existing code.

5.1 Domain object representation
In the enterprise world, business processes typically involve some flow of informa-
tion. Different components of the system request and give commands to each other;
they are associated. In an object-oriented approach, this translates to relationships
between different objects. Those relations must describe a behavior that is consistent
with the association in the model.

There are two essential types of domain objects: Entities (Reference objects) and
Value Objects.

Entities
To represent a person in an application, it is not possible to describe it only with
name or birthdate. A person is not defined by their attributes. Two persons can have
the same name and age, or even the same person could adopt a different name. Each

19

person has an identity associated with it. Even in the case of a description through a
social security number, this number is essentially the correspondent of the person’s
identity in a government system.

An object that needs to be distinguishable from others even though it has the same
attributes is called an entity. An interesting characteristic of those objects is that
they have a lifetime associated with them. The objects’ state and attributes could
change over time but remain with the same identity. Examples are customers and
orders in e-commerce, university students, and social media posts.

In OOP languages, an identity operation typically identifies the same object in mem-
ory. Still, that form of identity tracking is too fragile when considering persistence
and a distributed system. Establishing a property that correlates to the object’s entity
is necessary. For a person, it could be the SSN, a government-backed identifier.
Nevertheless, instead of relying on external identifiers, each system typically dele-
gates its own internal ID to its entities, which is guaranteed to be unique among all
instances, generally an increasing sequence of integer IDs or a random UUID.

A bank account in a financial system would be an entity, once it could not only
be identified by its attributes, and it has a lifecycle defined by the transactions
executed from or to it, changing the object state. An example of a bank account
implementation is presented below:

type Account struct {

ID uuid.UUID

Balance float64

Owner string

}

func (a *Account) Deposit(amount float64) {

a.Balance += amount

}

func (a *Account) Withdraw(amount float64) error {

if a.Balance < amount {

return fmt.Errorf("Insufficient funds")

}

a.Balance -= amount

20

return nil

}

func (a *Account) Transfer(toAccount *Account,

amount float64) error {

if a.Balance < amount {

return fmt.Errorf("Insufficient funds")

}

a.Balance -= amount

toAccount.Balance += amount

return nil

}

Value objects
Although entities are an important aspect of domain objects, there are objects which
do not need an identity. Even if instantiated as different memory objects, those
objects are considered equal if they have the same attributes. They are concerned
only with what they are, not who or which they are. This kind of object is called a
Value Object.

The nature of value objects is intrinsically transient in the application’s runtime.
They are rapidly created, transmitted, and discarded. One important point in mod-
eling value objects is that they must be immutable. The only way to change an
attribute that contains a value object is to replace it with a newly constructed value
object. In the OOP world, value objects don’t have a setter; they only have full
constructors. It follows copy-on-write semantics.

The immutability of value objects prevents problems related to aliasing. Aliasing
happens when two or more variables or attributes access the same memory-allocated
object. Modifying data from the perspective of one variable implies a change in
the state of another variable. This could happen when an object is passed as an
argument to be processed by other functions, or two entities share the same object
as its attributes. By being immutable, a change in a variable storing a value object
would necessarily incur the instantiation of another value object derived from it,
avoiding the risk of an inconsistent state in the system.

When space is critical, and the system has a huge memory footprint, the numerous
redundant value objects could be reduced to a reference to just one object shared

21

between different entities without much concern about aliasing.

For the most part, when declaring entities’ attributes, the use of value objects is
encouraged in contrast to the use of primitive types. Value objects allow for easy
property extension and permit attributes to implement their validations and have a
consistent state.

The previous Account struct uses a float64 to store balance and amounts. Rep-
resenting them as a Money value object would be better. One potential extension
to a financial system is for it to accept different currencies when it evolves. When
the attribute Balance is wrapped in a value object declaration, the concerns of
checking the validity of operations, and internal state consistency are encapsulated
inside the Money, instead of being scattered through the different procedures of the
entity using it.

An example of a Money value object would be:

type Money struct {

amount float64

currency string

}

func NewMoney(amount float64, currency string) *Money {

return &Money{amount: amount, currency: currency}

}

func (m *Money) Add(money *Money) (*Money, error) {

if m.currency != money.currency {

return nil,

fmt.Errorf("Cannot operate with different currencies")

}

return &Money{amount: m.amount + money.amount,

currency: m.currency}, nil

}

func (m *Money) Subtract(money *Money) (*Money, error) {

if m.currency != money.currency {

22

return nil,

fmt.Errorf("Cannot operate with different currencies")

}

return &Money{amount: m.amount - money.amount,

currency: m.currency}, nil

}

func (m *Money) Multiply(multiplier float32) *Money {

return &Money{amount: m.amount * float64(multiplier),

currency: m.currency}

}

func (m *Money) String() string {

return fmt.Sprintf("%.2f %s", m.amount, m.currency)

}

Aggregates
A domain object is represented by associating multiple entities and value objects.
Each object has references to the other, and the state of the overall system must
remain consistent.

Invariants are business constraints that must apply to the system to be a reliable
model of the domain. One example is that purchases on a credit card should never
surpass an established limit, independent if the operation is paid by installments or
on sight.

In a relational context, it’s common to use transactions to maintain the data’s con-
sistency. In this manner, every change to the database is treated as an encapsulated
unit of work, either totally applied or not.

Aggregates are a pattern that clusters associated objects as a unit for data operations.

The aggregate has a root entity object that spans a tree of referenced objects. Those
objects could be value objects or entities with a local identity concept. But the
only manner of referring and making changes to all objects pertaining to some
aggregate is to do it by the root object. Outside references to the data contained in
the aggregate could only be made through the root entity. This includes database
operations, references in other aggregates, and use as a dependency by other system
modules. When a change to any component of the aggregate is committed, all

23

business invariants must be verified and satisfied. Figure 5.1 shows the example of
two aggregates.

Figure 5.1: Example of two aggregates composing the domain objects of a credit
card application [22]

5.2 The life of a domain object
One of the intrinsic characteristics of an entity is that its identity gives it a lifecycle.
An object is created, modified, and eventually deleted. Those processes could be
quite complex, and many options and possible configurations can be adopted for
each situation. In those situations, two useful abstractions could better manage the
object’s lifecycle: factories and repositories.

Factories
The creation of complex objects could encompass a variety of configurations and
different options for their attributes and concrete dependencies. This creation logic
could quickly clutter the business rules and the effective state change operations of
the domain. Moreover, the responsibility of object creation shouldn’t be delegated
to the client code, as it could obscure the client’s logic. The responsibility of object
creation remains at the domain layer. Still, this task could be passed on to a new
element of the domain, a factory.

A factory encapsulates all logic and options involved in the domain object instan-

24

tiation. It isolates the creation logic from the core domain object and the client
code. This abstraction is described by the Gang of Four as three types of creational
patterns: factory method, abstract factory, and builder [23]. Independently from the
implementation strategy adopted, the factory must only allow the creation of an ag-
gregate in a valid state and is responsible for enforcing that inconsistent parameters
are rejected.

Repositories
To avoid muddling the domain code with persistency concerns and effectively en-
forcing that access to any object internal to an aggregate must be done through the
root, a repository could be used. A repository abstracts the storage concerns as a
collection in which objects are added and removed, and the machinery behind the
repository hides the implementation concerns of those operations. The client code
uses only terms of the domain model to retrieve aggregates, the number of objects,
or even statistics about objects that meet some criteria.

Repositories can be implemented using hard-coded queries with specific parameters,
like:

type AccountRepository interface {

AddAccount(account Account) error

GetAccount(id uuid.UUID) (Account, error)

UpdateAccount(id uuid.UUID, account Account) error

RemoveAccount(id uuid.UUID) error

GetAccounts() ([]Account, error)

GetAccountsByName(name string) ([]Account, error)

GetAccountsWithBalanceGreaterThan(balance Money)

([]Account, error)

}

A specification-based approach can be used if many queries are necessary, and the
hard-coded queries could generate a cluttered interface. It requires more code to
describe each possible specification but allows for a very high level of flexibility
and extensibility of the repository. An example of a repository that allows many
different filter criteria to retrieve objects is:

25

type AccountRepository interface {

Find(spec Specification) ([]Account, error)

}

type Specification interface {

IsSatisfiedBy(account Account) bool

}

type NameSpecification struct {

Name string

}

func (n NameSpecification) IsSatisfiedBy(account Account)

bool {

return account.Name == n.Name

}

type BalanceSpecification struct {

MinBalance Money

}

func (b BalanceSpecification) IsSatisfiedBy(account Account)

bool {

return account.Balance >= b.MinBalance

}

5.3 Working with domain events
The brainstorming workshops presented in Chapter 3 allow the team to discover
the events characteristic of the problem domain. Event storming models the domain
flow of information as a series of discrete events, that is, changes in the domain
state.

One of the main advantages of modeling domain events is the ability to decouple
system components. By modeling domain events, the components of the system
can react to changes in the domain state without having to be directly connected to
the source of the change. It leads to a more flexible and scalable system, as new
components can be added without changing existing components.

26

Domain events can be used as a source of reactive data as the principles of Reactive
Programming [24]. In a reactive system, changes in the system’s state can be stated
as a fact to the rest of the system. Other parts of the system can then monitor these
changes, allowing the system to respond to those events dynamically and efficiently.

When a purchase is made in a specific account, suppose an event is published to
other parts of the system with this information. In that case, notification systems can
send the information via e-mail, SMS, or push notifications to the account holder.
Moreover, credit analysis, anti-fraud, or recommendation services can be triggered
depending on the value of the transaction. Any system that needs to react to this
purchase event must only register itself as a listener to this event, decoupling the
system’s modules.

The observer pattern can be used to implement this schema. It can be an in-memory
publish subscriber system or a messaging system with Kafka, RabbitMQ, or AWS
SQS, depending on the scale of the application. Different bounded-context can
communicate and exchange information in the form of immutable units (domain
events). Domain events are essentially value objects.

Adopting domain events as stating facts about the system allows using two interesting
techniques for state storage: event sourcing and CQRS.

Event sourcing
Event sourcing is a software design pattern that involves storing a log of changes
made to an application’s data rather than storing the current state of the data itself
[21]. This log of changes, known as an event store, can be used to reconstruct the
data’s current state at any given time.

This pattern is particularly efficient for data-intensive applications because writing
single units of immutable domain events require minimal locking mechanisms. The
system always updates the state by appending information to the database, never
updating or deleting it, so many concurrency problems can be avoided.

There are several technical benefits of using event sourcing in application design:

• Auditability: Provides a clear, chronological record of all changes made to
an application’s data. This can be useful for audit purposes, as it allows for
reconstructing the exact sequence of events that led to a particular data state.
Helping especially with debugging.

27

• Data recovery: If data is lost or corrupted, it may be possible to recover the
data by replaying the event stream up to the point of the loss or corruption. It
facilitates rollback commands.

• Regulatory compliance: Regulatory requirements such as the General Data
Protection Regulation (GDPR) or the Lei Geral de Proteção de Dados (LGPD)
may require companies to maintain a record of all changes made to personal
data, and event sourcing can help to meet these requirements.

• Decoupling: Event sourcing can help decouple the various components of an
application, as the event store serves as a single source of truth for the data
rather than requiring each component to maintain its copy. It can make adding
or modifying components easier without affecting the rest of the application.

CQRS
It’s common to combine the event sourcing pattern with Command and Query
Responsibility Segregation (CQRS) to avoid replaying events to achieve the system’s
current state. The CQRS pattern separates commands, which change data, and
queries that only retrieve information about the system’s current state.

The principle behind this pattern is that applications usually have different writing
and reading necessities, with variable loads for them. The technologies used to store
events and to read data from the system can be completely different. Denormalization
and heavy indexing can be applied to the reading system, which will not directly
impact the writing operations.

Separating the typical model of a unique database into two also allows scaling those
different responsibilities to be better optimized.

There are essential trade-offs when considering Event Sourcing and CQRS. The
CQRS implies that a queue of events separates the command and querying databases.
The direct consequence of this is that the data consistency of the system will now
be only eventual. Changes written to the database will only be visible by queries
after milliseconds or even seconds, depending on the system’s load. In eventual
consistency, it’s possible to guarantee that the system will always converge to an
agreement about its state, but there is always some inconsistency window of time.

The complexity of storage is increased, so it must be important to assess when the
benefits will compensate for this infrastructure complexity. Those approaches are
especially relevant for high-load and real-time systems. CQRS and event sourcing

28

should be only used on specific bounded contexts and not to store information about
the system as a whole. Each bounded context needs its design considerations.
Figure 5.2 exemplifies a CQRS and Event Sourcing architecture.

Figure 5.2: Example of a CQRS and Event Sourcing architecture [25]

29

C h a p t e r 6

CONCLUSION

The architecture of enterprise applications is an always-evolving topic. New de-
mands and necessities derived from now-unknown business aspects will continually
provide new techniques and approaches to software architecture. Nevertheless,
the majority of topics discussed in previous chapters have almost two decades of
establishment and have been applied to various enterprise applications needs.

Two fundamental aspects of modeling those applications are:

• The necessity to establish a ubiquitous language that binds real-world business
requirements to the application as a domain model. This domain needs to
be found in the collaboration between the technical staff and the business
stakeholders (domain experts). The model is aimed to correctly distillate the
essential concepts from the problem domain and serves as the basis and source
of truth to model the software system. From it, the high-level modules of the
system will be derived, its bounded contexts, and the description of the main
processes as a series of events.

• The isolation of the domain layer from other application concerns is the central
point of a layered architecture. The domain must be free from infrastructure
and representation concerns, focusing only on enforcing business rules.

Moreover, once a domain model is established, abstractions, such as entities, value
objects, repositories, and factories, can help preserve the cleanness of the domain
layer. Event sourcing and CQRS can be used in high-scale applications to perform
better and decouple different bounded contexts.

Further improvements to the system can be made by adopting other high-level con-
cepts derived from DDD, such as domain-centric architectures. Those architectures
include Alistair Cockburn’s Hexagonal Architecture [26], and Robert R. Martin’s
Clean Architecture [27].

30

BIBLIOGRAPHY

[1] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science Behind De-
vOps : Building and Scaling High Performing Technology Organizations (G
- Reference,Information and Interdisciplinary Subjects Series). IT Revolu-
tion, 2018, isbn: 9781942788331. [Online]. Available: https://books.
google.com.br/books?id=85XHAQAACAAJ.

[2] Evans, Domain-Driven Design: Tacking Complexity In the Heart of Soft-
ware. USA: Addison-Wesley Longman Publishing Co., Inc., 2003, isbn:
0321125215.

[3] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns
of Enterprise Application Architecture. Addison-Wesley Professional, 2002.

[4] D. J. Snowden and M. E. Boone, A leader’s framework for decision making,
Dec. 2007. [Online]. Available: https://hbr.org/2007/11/a-leaders-
framework-for-decision-making.

[5] E. Codd, “Relational database: A practical foundation for productivity,” in
Readings in Artificial Intelligence and Databases, J. Mylopolous and M.
Brodie, Eds., San Francisco (CA): Morgan Kaufmann, 1989, pp. 60–68, isbn:
978-0-934613-53-8. doi: https://doi.org/10.1016/B978-0-934613-
53-8.50009-1. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/B9780934613538500091.

[6] P. C. KANELLAKIS, “Chapter 17 - elements of relational database theory,”
in Formal Models and Semantics, ser. Handbook of Theoretical Computer
Science, J. VAN LEEUWEN, Ed., Amsterdam: Elsevier, 1990, pp. 1073–
1156, isbn: 978-0-444-88074-1. doi: https : / / doi . org / 10 . 1016 /
B978-0-444-88074-1.50022-6. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/B9780444880741500226.

[7] P. Douglas and M. Douglas, Purity and Danger: An Analysis of Concepts of
Pollution and Taboo. Taylor & Francis, 2013, isbn: 9781136489273. [Online].
Available: https://books.google.com.br/books?id=CjFHQGiXsVcC.

[8] E. Evans, Domain-Driven Design Reference: Definitions and Pattern Sum-
maries. Dog Ear Publishing, 2014, isbn: 9781457501197. [Online]. Avail-
able: https://books.google.com.br/books?id=ccRsBgAAQBAJ.

[9] K. Beck, M. Beedle, A. van Bennekum, et al., Manifesto for agile software
development, 2001. [Online]. Available: http://www.agilemanifesto.
org/.

[10] R. C. Martin, Agile software development : principles, patterns, and practices.
Prentice Hall, 2003, isbn: 9780132760584. doi: 10.1002/pfi.21408.
[Online]. Available: http://dx.doi.org/10.1002/pfi.21408.

https://books.google.com.br/books?id=85XHAQAACAAJ
https://books.google.com.br/books?id=85XHAQAACAAJ
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
https://doi.org/https://doi.org/10.1016/B978-0-934613-53-8.50009-1
https://doi.org/https://doi.org/10.1016/B978-0-934613-53-8.50009-1
https://www.sciencedirect.com/science/article/pii/B9780934613538500091
https://www.sciencedirect.com/science/article/pii/B9780934613538500091
https://doi.org/https://doi.org/10.1016/B978-0-444-88074-1.50022-6
https://doi.org/https://doi.org/10.1016/B978-0-444-88074-1.50022-6
https://www.sciencedirect.com/science/article/pii/B9780444880741500226
https://www.sciencedirect.com/science/article/pii/B9780444880741500226
https://books.google.com.br/books?id=CjFHQGiXsVcC
https://books.google.com.br/books?id=ccRsBgAAQBAJ
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
https://doi.org/10.1002/pfi.21408
http://dx.doi.org/10.1002/pfi.21408

31

[11] M. Kersten, Project to Product: How to Survive and Thrive in the Age of
Digital Disruption with the Flow Framework (G - Reference,Information
and Interdisciplinary Subjects Series). IT Revolution Press, 2018, isbn:
9781942788393. [Online]. Available: https://books.google.com.br/
books?id=G1aQtAEACAAJ.

[12] M. Cohn, User Stories Applied: For Agile Software Development. USA:
Addison Wesley Longman Publishing Co., Inc., 2004, isbn: 0321205685.

[13] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming In-
stalled (XP series). Addison-Wesley, 2001, isbn: 9780201708424. [Online].
Available: https://books.google.com.br/books?id=l4zO3OWkdIsC.

[14] J. Patton, User Story Mapping. Beĳing: O’Reilly, 2014, isbn: 978-1-4919-
0490-9. [Online]. Available: https://www.safaribooksonline.com/
library/view/user-story-mapping/9781491904893/.

[15] G. Kim, The Unicorn Project: A Novel about Developers, Digital Disruption,
and Thriving in the Age of Data. IT Revolution, 2019, isbn: 9781942788768.
[Online]. Available: https : / / books . google . com . br / books ? id =
o0z1tgEACAAJ.

[16] A. Brandolini, Introducting EventStorming: An act of Deliberate Collec-
tive Learning. https://leanpub.com/, 2022. [Online]. Available: https://
leanpub.com/introducing_eventstorming.

[17] R. Laszczak, Software dark ages — threedots.tech, https://threedots.
tech/post/software-dark-ages/, [Accessed 12-Out-2022], June 2021.

[18] E. W. Dĳkstra, “On the role of scientific thought,” in Selected Writings on
Computing: A personal Perspective. New York, NY: Springer New York,
1982, pp. 60–66, isbn: 978-1-4612-5695-3. doi: 10.1007/978-1-4612-
5695-3_12. [Online]. Available: https://doi.org/10.1007/978-1-
4612-5695-3_12.

[19] S. Black, “Computing ripple effect for software maintenance,” Journal of
Software Maintenance, vol. 13, no. 4, p. 263, Sep. 2001, issn: 1040-550X.

[20] M. Fowler, Bliki: Anemicdomainmodel, Nov. 2003. [Online]. Available:https:
//martinfowler.com/bliki/AnemicDomainModel.html.

[21] V. Vernon, Implementing Domain-Driven Design, 1st. Addison-Wesley Pro-
fessional, 2013, isbn: 0321834577.

[22] The patterns - domain-driven design. [Online]. Available: https://doc.
rust-cqrs.org/intro.html.

[23] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, 1st ed. Addison-Wesley Profes-
sional, 1994, isbn: 0201633612. [Online]. Available: http://www.amazon.
com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/
0201633612/ref=ntt_at_ep_dpi_1.

https://books.google.com.br/books?id=G1aQtAEACAAJ
https://books.google.com.br/books?id=G1aQtAEACAAJ
https://books.google.com.br/books?id=l4zO3OWkdIsC
https://www.safaribooksonline.com/library/view/user-story-mapping/9781491904893/
https://www.safaribooksonline.com/library/view/user-story-mapping/9781491904893/
https://books.google.com.br/books?id=o0z1tgEACAAJ
https://books.google.com.br/books?id=o0z1tgEACAAJ
https://leanpub.com/introducing_eventstorming
https://leanpub.com/introducing_eventstorming
https://threedots.tech/post/software-dark-ages/
https://threedots.tech/post/software-dark-ages/
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-1-4612-5695-3_12
https://doi.org/10.1007/978-1-4612-5695-3_12
https://martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/bliki/AnemicDomainModel.html
https://doc.rust-cqrs.org/intro.html
https://doc.rust-cqrs.org/intro.html
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1

32

[24] T. Nurkiewicz and B. Christensen, Reactive Programming with RxJava: Cre-
ating Asynchronous, Event-Based Applications. O’Reilly Media, 2016, isbn:
9781491931608. [Online]. Available: https://books.google.com.br/
books?id=gYY1DQAAQBAJ.

[25] D. Miller, A fast and lightweight solution for cqrs and event sourcing, Apr.
2020. [Online]. Available: https://www.codeproject.com/Articles/
5264244/A- Fast- and- Lightweight- Solution- for- CQRS- and-
Event.

[26] A. O. Cockburn, Hexagonal architecture, Oct. 2021. [Online]. Available:
https://alistair.cockburn.us/hexagonal-architecture/.

[27] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software Structure
and Design, 1st. USA: Prentice Hall Press, 2017, isbn: 0134494164.

https://books.google.com.br/books?id=gYY1DQAAQBAJ
https://books.google.com.br/books?id=gYY1DQAAQBAJ
https://www.codeproject.com/Articles/5264244/A-Fast-and-Lightweight-Solution-for-CQRS-and-Event
https://www.codeproject.com/Articles/5264244/A-Fast-and-Lightweight-Solution-for-CQRS-and-Event
https://www.codeproject.com/Articles/5264244/A-Fast-and-Lightweight-Solution-for-CQRS-and-Event
https://alistair.cockburn.us/hexagonal-architecture/

	Abstract
	Table of Contents
	List of Illustrations
	Introduction
	Making Sense of Complexity
	The Cynefin framework
	The abstraction layer
	Achieving order

	Knowledge Crunching
	Binding business and implementation
	Ubiquitous language
	How to aggregate domain knowledge
	Bounded contexts

	The Necessity of Domain Modeling
	Layered architecture
	The domain layer

	Tactical Patterns
	Domain object representation
	The life of a domain object
	Working with domain events

	Conclusion
	Bibliography

