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THE PROBLEM

Figure 1: A graph and its spanning trees

A graph usually has many spanning trees. Moreover, The
amount of different spanning trees can be exponenঞal on the
number of verঞces. This work explores the idea of specifying a
probability distribuঞon on this set — the set of spanning trees of
a given graph — and to sample one of them accordingly.

A convenient way of specifying a probability distribuঞons on
the set of spanning trees is to specify weights for the edges, and
then define the probability of a tree to be proporঞonal to the
product of those weights. This is the general problem explored
in the monograph.

However, for a cleaner exposiঞon, here we will focus on the
special case when every tree has the same probability. In other
words, our problem is to design a polynomial ঞme algorithm
that, given a graph, returns any of its spanning trees with equal
probability.

WHY CARE?

There are two interesঞng aspects around this problem: The
algorithms that rely on a polynomial ঞme sampling of a spanning
tree, and the theory used in solving the problem.

The first remarkable applicaঞon is an algorithm developed in
[Fri+14], which uses random spanning trees to build expander
graphs. A complete survey about expander graphs can be found
in [HLW06], which begins by highlighঞng its applicaঞons in error
correcঞng codes, pseudo-number generators and complexity
theory results.

Another noteworthy algorithm is described in [Asa+10]. It
develops a O(log n/ log log n)-approximaঞon to a variant of the
Travelling Salesman Problem, using spanning tree sampling as a
subrouঞne.

As regards the theory itself, it is extremely interesঞng to note
how different areas of mathemaঞcs come into play. Linear
algebra is a central topic in the monograph. It is not, however,
with the usual primal-dual results; determinants and matrix
inversion form the foundaঞon on which the first two polynomial
ঞme algorithms are developed.

Moreover, Aldous in [Ald90] and Broder in [Bro89] solved
the problem with an extremely elegant algorithm, based on
random walks on graphs. Therefore, to proper understand the
correctness and running ঞme of these algorithms, it is necessary
to use results from probability theory and Markov chains.

EDGE CONTRACTION

The first idea needed for the naive algorithm is that to count
spanning trees that contain a certain edge is equivalent to count
spanning trees on the graph obtained by contracঞng that edge.

Figure 2: Edge contracঞon

Therefore, we can count how many trees contain an edge if we
can count how many trees there are in a smaller graph. There is,
however, a price. To work with edge contracঞon is to give up on
simple graphs.

Figure 3: Edge contracঞon can create loops and parallel edges from simple
graphs

This reduces the work of sampling a spanning tree into the work
of calculaঞng the probability of an edge to be in the output tree.

With such a probability in hand, we can decide if a given edge
will be in the output of the algorithm.

If it is on the answer, the new problem is about sampling on
the graph obtained by contracঞng that edge. If it is not on the
answer, we can simply remove the edge from the graph and
then sample a spanning tree in it.

NAIVE ALGORITHM

It is interesঞng to look at the algorithm itself, leaving the
quesঞon about calculaঞng the probabiliঞes aside. Given an
order in which the edges will be processed, the possible choices
for the algorithm can be expressed as a tree. In Figure 4, the
edges in blue are the ones being considered.

The choices are color coded. The darker arrows correspond to
adding the edge to the final tree, and the lighter ones correspond
to dropping them.

Figure 4: Possible execuঞons of algorithm

Note that every leaf represents a different spanning tree.

Moreover, Figure 4 has nothing random about it. It is completely
determined by the graph and the sequence in which the edges
are considered. To actually generate a random tree, we must
introduce randomness.

A sampling is a path from the root to a leaf. Whenever there is
a choice, pick a uniformly distributed random number x in the
interval [0, 1]. If x is less then the probability of the edge being in
the spanning tree, go le[. Otherwise, go right.

The algorithm is not producing randomness, it is merely
transforming randomness. This is a simple consequence of the
fact that every algorithm is, by definiঞon, determinisঞc.

HOW TO CALCULATE MARGINAL
PROBABILITIES?

A procedure similar to the described above can actually be
used for calculaঞng the amount of spanning trees in a graph,
and, therefore, the probability of an edge belonging in a tree.
Unfortunately, this is exponenঞal on the amount of edges in
the graph. Kirchhoff presented a be�er approach, with a result
which is known as Kirchhoff's Matrix Tree Theorem.

Given a graph G, let A be its adjacency matrix, and D be a
matrix with the verঞces' degree on the main diagonal. Then it is
possible to define the Laplacian L of the graph as

L = D − A.

The Laplacian arises naturally when studying electric circuits. If
the edges are considered as unit resistors, then it calculates the
current accumulated in every vertex, given the voltages in every
vertex.

For our purposes, the almost magical result is that the number
of spanning trees of a graph is given by

det(Lii),

where Lii is the matrix obtained from L by deleঞng the i-th row
and the i-th column.

This determinant can be calculated in polynomial ঞme, so that
our naive algorithm has running ঞme O(nωm), where ω is the
best-known exponent for matrix mulঞplicaঞon.

SPEEDING UP THE ALGORITHM

When working with electric circuits, it is interesঞng to measure
how much does the circuit as a whole poses as a resistance
between two nodes in it. This number is called the effecঞve
resistance.

To calculate it, it is necessary to solve a system of linear
equaঞons involving the Laplacian of a graph. An algebraic way
to work with this equaঞon solving is to do calculaঞons with the
Moore-Penrose pseudoinverse of the Laplacian.

As the names suggests, the pseudoinverse generalizes the idea
of the inverse. It does so by encoding the process of finding
the linear least square soluঞon of a system of equaঞons in a
matrix. For a given matrix A, its pseudoinvserse is denoted A†.
With such a powerful tool, it is possible to write the effecঞve
resistance between two nodes i and j as

(ei − ej)TL†(ei − ej).

How can this help speed up the algorithm? Given an edge ij in
the graph, the effecঞve resistance between i and j is equal to the
probability that ij belongs to a spanning tree sampled uniformly.

This is helpful since it reduces the work of calculaঞng a
determinant into finding the value of 4 posiঞons in the
pseudoinverse matrix. Moreover, it is possible to update the
pseudoinverse quickly whenever a edge deleঞon or contracঞon
happens. [HX16] explores this idea, and describes an algorithm
that runs in O(nω) ঞme.

AS SIMPLE AS A WALK

With the previous algorithms in context, it becomes even more
remarkable that, to sample a spanning tree, suffices to do a
random walk on the graph, picking any adjacent vertex with
equal probability, and to output the edge used to first visit each
vertex as the spanning tree.

Figure 5: Possible trace of random walk based algorithm. It can do some
unnecessary work.

It is an interesঞng problem, tackled by the monograph, to show
that this approach is indeed correct, and to analyze its running
ঞme. The algorithm terminates as soon as it has visited every
vertex in the graph, so that suffices to bound the expected value
of this number. This is what is called the cover ঞme.

Figure 6: Worst case for random walk based algorithm

Unfortunately, the cover ঞme can be Ω(n3) in graphs like the
one in Figure 6. The problem is that if the walk starts in the
clique, it will take too much ঞme to go into the path, and there
is no guarantee that it will not fall back into the clique again.
Therefore, the random walk based algorithm is O(n3).

REFERENCES


