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Resumo

Luan Tavares de Andrade. Estratégias para Lidar com Ruído de Áudio em Apren-
dizado Automático para Insuficiência Respiratória: Uma análise da Filtragem.
Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São
Paulo, São Paulo, 2025.

Este trabalho tem como objetivo investigar a eficácia da filtragem de ruído como estratégia de pré-
processamento para mitigar o viés ambiental em modelos de rede neural para detecção de insuficiência
respiratória por análise de áudio. Para isso foi utilizado o dataset do Projeto SPIRA, caracterizado por uma
forte correlação entre ruído hospitalar e a classe positiva, além de duas arquiteturas de Redes Neurais
pré-treinadas: a CNN10 (Rede Neural Convolucional) e o AudioMAE (Transformer), de forma que fosse
possível a comparação do desempenho de dois modelos com complexidades diferentes. A metodologia
consistiu em duas etapas experimentais: (1) uma análise de sensibilidade para determinar a estabilidade dos
parâmetros do filtro, que revelou uma tendência ao overfitting de artefatos de filtragem; e (2) um teste de
viés comparando os modelos ao serem testados com os áudios filtrados e com inserção de ruído antes do
processo do filtragem. Como resultado, com a inserção de ruído prévia, ambos os modelos apresentaram um
colapso das métricas avaliadas, evidenciando que o aprendizado baseou-se em atalhos (shortcut learning)
associados ao ruído residual e aos fragmentos de filtragem. Conclui-se que a filtragem de ruído é insuficiente
para a remoção de vieses ambientais, revelando-se não apenas uma abordagem ineficaz, mas um potencial
intensificador do problema ao introduzir novos vieses.

Palavras-chave: Insuficiência Respiratória. Aprendizado Profundo. Processamento de Áudio. Filtragem
de Ruído. Viés Ambiental. Rede Neural Convolucional. Transformer.





Abstract

Luan Tavares de Andrade. Strategies for Handling Audio Noise in Machine Learn-
ing for Respiratory Insufficiency: An Analysis of Filtering. Capstone Project Report
(Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo,
2025.

This work aims to investigate the efficacy of noise filtering as a pre-processing strategy to mitigate
environmental bias in neural network models for respiratory insufficiency detection via audio analysis. To
this end, the SPIRA Project dataset was used, characterized by a strong correlation between hospital noise
and the positive class, along with two pre-trained Neural Network architectures: CNN10 (Convolutional
Neural Network) and AudioMAE (Transformer), allowing for the performance comparison of two models
with different complexities. The methodology consisted of two experimental stages: (1) a sensitivity analysis
to determine filter parameter stability, which revealed a tendency toward overfitting to filtering artifacts;
and (2) a bias test comparing the models when tested with filtered audios versus noise insertion prior
to the filtering process. As a result, with prior noise insertion, both models presented a collapse in the
evaluated metrics, evidencing that the learning process relied on shortcuts (shortcut learning) associated
with residual noise and filtering fragments. It is concluded that noise filtering is insufficient for removing
environmental biases, revealing itself not only as an ineffective approach but also as a potential intensifier
of the problem by introducing new biases.

Keywords: Respiratory Insufficiency. Deep Learning. Audio Processing. Noise Filtering. Environmental
Bias. Convolutional Neural Network. Transformer.
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Capítulo 1

Introdução

1.1 Contextualização
A pandemia da COVID-19, deflagrada pelo vírus SARS-CoV-2 no final de 2019, represen-

tou uma das maiores crises sanitárias da história moderna, impondo desafios monumentais
aos sistemas de saúde em todo o mundo. A rápida disseminação da doença, cujas compli-
cações mais severas são de natureza respiratória, gerou uma pressão insustentável sobre a
infraestrutura hospitalar. A superlotação de prontos-socorros e a escassez de leitos de UTI
tornaram-se uma realidade global (Rache et al., 2020), evidenciando a necessidade urgente
de soluções inovadoras que pudessem otimizar o fluxo de pacientes e recursos.

Neste cenário adverso, a tecnologia emergiu como uma aliada fundamental, catalisando
projetos inovadores como o SPIRA1 (Finger et al., 2021). A ferramenta foi concebida
como um sistema de triagem remota, cuja premissa era empregar modelos de inteligência
artificial para analisar características acústicas em áudios da voz, tosse e respiração.

A grande vantagem dessa abordagem era a sua acessibilidade, já que os dados poderiam
ser facilmente capturados por dispositivos de uso massivo, como smartphones. Ao fornecer
uma análise de risco preliminar, o objetivo era ajudar a evitar a ida desnecessária de pessoas
com sintomas leves aos hospitais, aliviando a sobrecarga do sistema e protegendo tanto
pacientes quanto profissionais de saúde.

1.2 Motivação e Objetivo
Uma das estratégias notáveis do projeto SPIRA para garantir a robustez de seu modelo

foi a inserção artificial de ruído hospitalar nos dados de áudio, forçando o modelo a se tornar
invariante às condições ambientais. Contudo, essa abordagem levanta uma questão de
pesquisa pertinente: seria a inserção de ruído a melhor forma de mitigar o viés ambiental?
Uma estratégia alternativa, e talvez mais intuitiva, seria a de remover o ruído existente
por meio de algoritmos de filtragem.

1 (acrônimo) Sistema de detecção Precoce de Insuficiência Respiratória por meio de análise de Áudio
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Essa abordagem alternativa de remoção de ruído busca, em teoria, isolar o sinal de voz
em sua forma mais pura, o que poderia facilitar o aprendizado de características biomédicas
relevantes. Contudo, essa estratégia não é isenta de riscos. O processo de filtragem pode,
paradoxalmente, distorcer o sinal de voz, correndo o risco de remover não apenas o ruído,
mas também biomarcadores acústicos sutis.

Diante disso, este trabalho se propõe a investigar a eficácia e os desafios da aplicação
de filtros de ruído como método de pré-processamento para a classificação de insuficiência
respiratória a partir da voz. Espera-se, com isso, não apenas avaliar comparativamente as
duas estratégias, mas também oferecer subsídios práticos e teóricos para o desenvolvimento
de sistemas mais confiáveis e robustos em ambientes reais de uso.
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Capítulo 2

Fundamentação Teórica

O objetivo deste capítulo é apresentar os conceitos fundamentais de processamento de
áudio e aprendizado de máquina que servem como alicerce para este trabalho, oferecendo
o embasamento necessário para a compreensão das técnicas e metodologias aplicadas.

2.1 Redes Neurais Convolucionais (CNNs)

Uma Rede Neural Convolucional (CNN) é uma classe de rede neural profunda especia-
lizada em tratar dados em grade onde a localidade é relevante, ou seja, a vizinhança de
um valor é relevante para a análise dele, como por exemplo na análise de imagens. Para
realizar sua tarefa, a arquitetura de uma CNN processa os dados através de uma sequência
de camadas especializadas, cujas funções serão detalhadas nas subseções a seguir.

2.1.1 Camada Convolucional
Sendo a principal camada de uma CNN, consiste em procurar por padrões específicos

nos dados passados. Isso é feito com a utilização de filtros, que deslizam pela imagem
(convolução) e reconhecem sempre que captam seu padrão atribuído.

No contexto de um espectrograma, esses padrões podem ser características acústicas
como linhas horizontais (que representam tons estáveis, como possíveis pausas), linhas
verticais (como cliques ou o início de uma tosse), ou formas mais complexas que corres-
pondem a formantes da voz.

2.1.2 Função de Ativação - ReLU (Rectified Linear Unit)
As funções de ativação têm o papel de introduzir não-linearidade nas redes neurais.

Sem elas, uma sequência de camadas lineares seria matematicamente equivalente a apenas
uma única transformação linear, limitando a rede a problemas muito simples. Ao aplicar
uma função de ativação, a rede passa a ser capaz de modelar fenômenos não-lineares, como
os padrões complexos presentes em sinais de fala e em outros dados do mundo real.
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A função de ativação mais utilizada em CNNs é a ReLU (Rectified Linear Unit), de-
finida como:

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.1)

Essa função mantém valores positivos inalterados e zera os valores negativos. Entre suas
principais vantagens estão a simplicidade computacional e a eficiência no treinamento
de redes profundas.

Em síntese, a introdução dessa não-linearidade é crucial para que a rede consiga extrair
representações mais ricas e discriminativas, transformando os mapas de características
em descrições cada vez mais adequadas à tarefa de classificação.

2.1.3 Camada de Pooling
Essa camada tem como função principal reduzir as dimensões da entrada, mantendo

apenas as informações que atribuir como mais relevantes. Ela pode ser do tipo Max Pooling,
que pega o valor máximo de uma região específica, atribuindo ele ao novo bloco reduzido
ou do tipo Average Pooling, que calcula a média da região e atribui esse valor ao novo
bloco reduzido.

Essa etapa é importante pois ao reduzir as dimensões espaciais do mapa de carac-
terísticas, ela diminui drasticamente o número de parâmetros e a carga computacional
para as camadas seguintes da rede.

2.1.4 Camada Totalmente Conectada ou Densa
Após as camadas convolucionais e de pooling, a representação extraída ainda possui

formato bidimensional (semelhante a uma imagem com várias “profundidades” de filtros).
Para que essa informação possa ser usada em uma camada densa, é necessário primeiro
realizar o achatamento (flattening), que transforma os mapas de características em um
único vetor unidimensional.

A camada totalmente conectada, como o próprio nome indica, conecta todos os seus
neurônios a todos os neurônios da camada anterior. Essa etapa funciona como a parte
decisória da rede, combinando as características aprendidas para produzir a saída final.
Em tarefas de classificação, por exemplo, essa camada costuma ter número de neurônios
igual à quantidade de classes a serem previstas.

Por fim, os valores gerados por essa camada passam por uma função de ativação
final apropriada à tarefa: Sigmoid no caso de classificação binária, ou Softmax quando há
múltiplas classes. Isso converte os resultados em probabilidades normalizadas, permitindo
a interpretação direta como a previsão do modelo para cada classe possível.
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Fonte: Casanova, Gris et al., 2021.

Figura 2.1: Arquitetura da Rede Neural Convolucional SpiraConvV1

2.2 Transformers
Enquanto as CNNs se destacam na extração hierárquica de características locais, uma

classe de arquiteturas mais recente, os Transformers (Vaswani et al., 2017), foi proposta
para modelar dependências de longo alcance nos dados, ao mesmo tempo que permitia
uma melhor paralelização do processo ao tratar dados sequenciais, fator limitante em
modelos anteriores como Recurrent Neural Networks e Long Short-Term Memory.

Originada no campo de Processamento de Linguagem Natural, essa arquitetura re-
volucionou a área e foi subsequentemente adaptada com grande sucesso para domínios
como visão computacional e análise de áudio. Os pontos cruciais desse modelo são ex-
plicados a seguir:

2.2.1 O mecanismo de Self-Attention
O mecanismo de Self-Attention, elemento central dos Transformers, permite que cada to-

ken de uma sequência estabeleça relações diretas com todos os demais, independentemente
da distância entre eles. Dessa forma, o modelo atribui pesos de atenção que indicam o grau
de relevância entre pares de tokens, capturando dependências globais de maneira eficiente.

Diferentemente das CNNs, que operam com janelas locais e extraem características a
partir de vizinhanças fixas, o Self-Attention não se limita a regiões próximas da entrada.
Isso possibilita que o modelo aprenda relações de longo alcance sem a necessidade de
camadas adicionais para ampliar o campo receptivo, além de permitir o processamento
totalmente paralelo, resultando em maior eficiência e escalabilidade.

2.2.2 A arquitetura Encoder-Decoder
Tendo sido proposta inicialmente em Vaswani et al. (2017) para a realização de tarefas

de tradução automática, essa arquitetura consiste em duas partes principais, o Encoder
e o Decoder. Juntos, esses módulos permitem tanto a compreensão da entrada quanto a
geração de uma saída contextualizada.
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Encoder

O Encoder tem como função principal processar os dados de entrada e extrair represen-
tações contextuais significativas. Cada elemento da entrada é transformado em um vetor
de embeddings, ao qual é somada uma codificação de posição, necessária para indicar a
posição de cada elemento (token) na sequência.

Sua estrutura consiste em uma pilha de camadas idênticas, cada uma composta por
dois módulos: o Self-Attention, que permite a interação entre todos os elementos, e uma
Rede Neural Feed-Forward, responsável por melhorar as representações obtidas. Entre cada
módulo é acrescentada uma etapa de normalização dos dados.

Decoder

O Decoder tem como função principal gerar a sequência de saída de forma autoregres-
siva, isto é, produzindo um elemento por vez com base nos elementos previamente gerados.

Sua estrutura também é composta por uma pilha de camadas, nas quais o primeiro
módulo realiza uma operação de Masked Self-Attention, que impede o acesso a tokens
futuros, garantindo que a geração ocorra de forma autoregressiva. O segundo módulo
realiza o Cross-Attention, que combina as informações internas do Decoder com as represen-
tações codificadas pelo Encoder, permitindo que a saída seja produzida de forma coerente
com o contexto da entrada. Por fim, uma camada Feed-Forward refina o resultado, que
é então projetado por uma camada linear seguida de uma função Softmax para gerar a
distribuição de probabilidade sobre o vocabulário de saída e selecionar o próximo elemento
da sequência.
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Fonte: Vaswani et al., 2017.

Figura 2.2: Arquitetura proposta do Transformer

2.2.3 Masked Auto-Encoders

A eficácia das arquiteturas Transformer está diretamente ligada à sua capacidade de
processar sequências longas e capturar relações contextuais. Contudo, treinar modelos
muito grandes e complexos do zero exige vastos conjuntos de dados rotulados, que são
caros e difíceis de obter. Para superar essa limitação, ao longo dos anos vêm sendo popula-
rizada cada vez mais a utilização do Aprendizado Auto-Supervisionado, um paradigma
de treinamento onde o modelo aprende representações úteis a partir dos próprios dados,
sem a necessidade de rótulos explícitos.

Dentro do Aprendizado Auto-Supervisionado, uma das estratégias mais eficientes e
bem-sucedidas para Transformers é a de Masked Auto-encoders (MAE) (He et al., 2021).
A ideia central é fazer com que o modelo, em vez de classificar uma imagem ou som,
reconstrua partes da entrada que foram deliberadamente escondidas (mascaradas). Esse
processo força o modelo a desenvolver uma compreensão profunda da estrutura intrínseca
dos dados para ser capaz de "imaginar"o conteúdo ausente.

O MAE adota uma arquitetura de Encoder-Decoder assimétrica: o Encoder processa
apenas os elementos não mascarados, extraindo representações compactas e eficientes,
enquanto o Decoder recebe essas representações junto com informações sobre as posições
mascaradas para reconstruir a entrada original. Essa assimetria reduz significativamente o
custo computacional durante o treinamento, permitindo o uso de taxas de mascaramento
elevadas — frequentemente acima de 75% — sem perda substancial de desempenho. Como
resultado, os MAEs se mostram particularmente adequados para pré-treinamento de
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grandes modelos, servindo como base para tarefas posteriormente supervisionadas ou de
fine-tuning. Nesta segunda etapa, o Decoder, que serviu apenas como ferramenta para o
pré-treinamento, é completamente descartado, e apenas o Encoder pré-treinado é utilizado
para a tarefa final.

Fonte: He et al., 2021.

Figura 2.3: Arquitetura do Masked Autoencoder

2.3 Trabalhos Correlacionados
Diversos estudos têm explorado o uso de modelos baseados em CNNs e Transformers

para a análise de sinais de áudio. No contexto da pandemia de COVID-19, a investigação da
detecção de insuficiência respiratória a partir da fala ganhou destaque. Casanova, Candido
Jr et al., 2021, por exemplo, demonstraram a eficácia do aprendizado por transferência
a partir de modelos de voz para essa tarefa, alcançando resultados promissores com
dados limitados. De forma similar, Finger et al. (2021) e Gauy e Finger, 2021 focaram
no uso de arquiteturas de redes neurais, focando principalmente no uso de MFCCs (Mel-
Frequency Cepstral Coefficients) como entrada para o modelo, visando aumentar a acurácia
do diagnóstico. Em conjunto, esses estudos estabelecem a viabilidade da abordagem,
servindo como ponto de partida fundamental para o presente trabalho.

Paralelamente, o avanço em modelos de áudio pré-treinados e auto-supervisionados
tem sido um pilar para o progresso da área. Kong et al., 2020 introduziram as PANNs
(Pretrained Audio Neural Networks), uma família de CNNs pré-treinadas em larga escala no
dataset AudioSet,1 que se tornaram uma forte base para diversas tarefas de classificação de
áudio. Mais recentemente, a abordagem de aprendizado auto-supervisionado foi explorada
por Huang et al., 2023 com um Transformer que aprende representações robustas ao
reconstruir espectrogramas mascarados, demonstrando um desempenho superior no fine-
tuning com poucos dados. A eficácia de tais modelos pré-treinados, como também analisado
por Gauy e Finger, 2022, reforça a aplicabilidade da metodologia proposta neste estudo,
que busca combinar o poder dessas representações com uma análise crítica das etapas
de pré-processamento.

1 https://research.google.com/audioset/dataset/index.html
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Capítulo 3

Metodologia

Este capítulo detalha todos os procedimentos metodológicos adotados para a condução
deste trabalho, desde a preparação dos dados até a descrição dos experimentos realizados
para avaliar o impacto da filtragem de ruído no treinamento de modelos de rede neural.

3.1 Conjunto de Dados

Os dados utilizados nesse trabalho foram obtidos do SPIRA Dataset.1 Esses dados
foram coletados utilizando smartphones durante a pandemia de COVID-19. O dataset
é composto por áudios de duas classes: vozes de pessoas saudáveis (grupo de controle),
gravados majoritariamente em ambientes controlados e silenciosos devido ao isolamento
social, e áudios de pessoas em situação de insuficiência respiratória (grupo de pacientes
com concentração de oxigênio no sangue abaixo de 92%), frequentemente capturados em
ambientes clinicamente mais complexos e ruidosos.

Para a realização da tarefa, foi utilizada uma versão balanceada do dataset, que incuía
gravações de 423 pessoas diferentes pronunciando a mesma frase de referência: "O amor ao
próximo ajuda a enfrentar o coronavírus com a força que a gente precisa". Esses dados foram
divididos para treinamento (283), validação (32) e testes (108), mantendo o balanceamento
entre as duas classes em todos os conjuntos de dados, conforme detalhado na Tabela 3.1.

Conjunto Homem
(Controle)

Mulher
(Controle)

Homem
(Paciente)

Mulher
(Paciente)

Total
(Controle)

Total
(Paciente) Total

Treinamento 57 84 76 66 141 142 283
Validação 8 8 8 8 16 16 32

Teste 22 26 28 32 54 54 108

Tabela 3.1: Distribuição dos dados utilizados

1 https://github.com/Edresson/SPIRA-ACL2021
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Conjunto Duração Média (s)
(Controle)

Duração Média (s)
(Paciente)

Treinamento 8.16 13.23
Validação 7.75 10.78

Teste 8.77 9.44

Tabela 3.2: Média de duração dos dados em segundos

3.2 Pré-Processamento
No contexto desse trabalho, pode-se considerar essa como sendo a fase mais crítica,

pois é onde os problemas intrínsecos do dataset são tratados, assim como adaptados para
uma melhor compatibilidade e performance nos modelos utilizados.

3.2.1 Filtragem de Ruído
Como detalhado na Seção 3.1, o desafio mais crítico deste dataset é o viés ambiental,

originado da diferença sistemática entre os ambientes de gravação dos grupos de controle
(silenciosos) e de pacientes (ruidosos). Esse viés representa o risco de o modelo aprender a
classificar os áudios com base no ruído de fundo em vez dos padrões vocais da patologia,
um fenômeno conhecido como shortcut learning.

Para investigar e tentar neutralizar este viés, foi utilizado um filtro de ruído que
atua nos domínios tempo-amplitude e tempo-frequência baseado em subtração espectral,
desenvolvido durante o projeto SPIRA como um trabalho de formatura (Pereira, 2020)
e cujo funcionamento será detalhado na Seção 3.3.

3.2.2 Transformação do Domínio do Áudio
Após a etapa de filtragem, o sinal de áudio ainda se encontra no domínio do tempo.

Conforme discutido no Capítulo 2, essa representação não é a ideal para ser processada
por arquiteturas como CNNs e Transformers. Portanto, essa etapa do pré-processamento
consiste na conversão de cada arquivo de áudio para a sua representação tempo-frequência,
nesse caso a representação de Log-Mel Spectrogram.

Nessa representação, além de se considerar o áudio de forma mais intuitiva visualmente
por meio da transformação para espectrograma utilizando a STFT, também é feita uma
transformação para uma escala que representa melhor a forma como o sistema auditivo
humano percebe as frequências, como exemplificado na Figura 3.1.
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Figura 3.1: Exemplo do Espectrograma Log-Mel de um áudio.

3.2.3 Janelamento
Conforme apresentado na Tabela 3.2, a duração das gravações de áudio é variável entre

as amostras e, notavelmente, apresenta uma média consistentemente menor para o grupo
de pacientes. Uma vez que as arquiteturas de redes neurais poderiam aprender a usar
essa diferença de duração como um atalho indesejado para a classificação, ou tipicamente
exigem entradas de tamanho fixo, essa variabilidade precisa ser tratada.

Para resolver essa questão, foi aplicada uma técnica de janelamento (windowing) com
sobreposição. Cada arquivo de áudio foi segmentado em janelas de 4 segundos, com uma
sobreposição de 1 segundos entre janelas consecutivas. Este procedimento cumpre dois
objetivos simultaneamente: normaliza o comprimento de todas as amostras de entrada
para o modelo e atua como uma forma de aumentação de dados (data augmentation),
multiplicando o número de exemplos disponíveis.

3.3 Filtro Utilizado

O filtro de ruído empregado neste trabalho, adaptado do trabalho desenvolvido no
contexto do projeto SPIRA (Pereira, 2020), opera através de um processo de duas etapas
principais: um classificador fala/ruído seguido por um supressor de ruído.

3.3.1 Etapa 1: Classificador Fala/Ruído
A primeira etapa do filtro consiste em um classificador que identifica e isola os seg-

mentos do áudio que contêm apenas ruído de fundo operando no domínio do tempo da
seguinte forma:

1. O sinal é dividido em janelas curtas 𝑛;

2. É calculado a energia em decibéis, 𝑑𝐵(𝑖), para cada janela do sinal;

3. Um limiar de ruído (𝜖) é então estabelecido para classificar cada janela. Verificou-se
que a ferramenta permite duas abordagens distintas para a definição deste limiar:

• Limiar por Valor Fixo (dB): Neste modo, o limiar é definido adicionando-se um
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valor fixo 𝑉𝑑𝐵 à energia mínima encontrada no sinal, 𝐸𝑑𝐵𝑚𝑖𝑛
:

𝜖𝑓 𝑖𝑥𝑜 = 𝑚𝑖𝑛
𝑖

{𝑑𝐵(𝑖)} + 𝑉𝑑𝐵 (3.1)

• Limiar por Porcentagem: Neste modo, o limiar é definido como uma porcenta-
gem 𝑉𝑝𝑐𝑡 da faixa dinâmica de energia (a diferença entre a energia máxima e
mínima do sinal):

𝜖𝑝𝑐𝑡 = 𝑚𝑖𝑛
𝑖

{𝑑𝐵(𝑖)} + ((𝑚𝑎𝑥
𝑖

{𝑑𝐵(𝑖)} − 𝑚𝑖𝑛
𝑖

{𝑑𝐵(𝑖)}) × 𝑃𝑙𝑖𝑚𝑖𝑎𝑟) (3.2)

4. Finalmente, qualquer janela 𝑥𝑖 onde 𝑑𝐵(𝑥𝑖) < 𝜖 é classificada como ruído e as
restantes são classificadas como fala.

3.3.2 Etapa 2: Supressor de Ruído
A segunda etapa, o supressor de ruído, utiliza o perfil de ruído detectado para rea-

lizar uma subtração espectral, operando no domínio tempo-frequência para atenuar as
frequências associadas ao ruído no áudio original da seguinte forma:

1. O áudio original e os segmentos de ruído são convertidos para o domínio tempo-
frequência usando a STFT, resultando nos respectivos espectrogramas utilizando
janelas de tamanho w × h;

2. Um perfil de ruído é criado a partir do espectrograma do ruído obtido no item 1,
calculando-se, para cada frequência, a média e o desvio padrão de suas magnitudes.

3. Finalmente, o áudio original é filtrado por meio da aplicação, para cada frequência
do espectrograma obtido no item 1, de um filtro que atenua por um fator de 𝛾 as
componentes cuja magnitude não ultrapassa a média (𝜇𝑖) mais 𝑎 desvios padrão (𝜎𝑖)
das magnitudes correspondentes a essa frequência conforme a equação 3.3.

𝑙
′

𝑖
=

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑙𝑖, se |𝑙𝑖| > 𝜇𝑖 + a𝜎𝑖

𝛾 𝑙𝑖, caso contrário
(3.3)

3.3.3 Software
O programa do filtro utilizado opera, portanto, utilizando 5 parâmetros principais a

serem analisados (além do sinal de áudio):

• n_grad_freq (ℎ): Altura da janela a ser utilizada no supressor;

• n_grad_time (𝑤): Largura da janela a ser utilizada no supressor;

• n_std_thresh (𝑎) : Define quantos desvios padrão acima da média uma frequência
precisa estar para ser considerada sinal.

• prop_decrease (1 − 𝛾 ): Define, em porcentagem, quanto do ruído detectado deve
ser reduzido do áudio original;
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• noise_threshold / noise_threshold_pct: Métodos para criação do limiar do ruído,
respectivamente com valor fixo e em porcentagem.

3.4 Modelos Utilizados

Para investigar o impacto do viés de pré-processamento e avaliar a eficácia das soluções
propostas, duas arquiteturas de rede neural pré-treinadas distintas foram empregadas,
ambas já introduzidas conceitualmente no Capítulo 2 e exemplificadas a seguir.

3.4.1 Rede Neural Convolucional: CNN10 (PANNs)

Para a realização dos experimentos iniciais, foi utilizada a arquitetura CNN10, mostrada
na Figura 3.2 que faz parte da família de Redes Neurais de Áudio Pré-treinadas (PANNs)
proposta por Kong et al. (2020).

Este modelo é pré-treinado no dataset AudioSet e foi utilizado alterando sua "ca-
beça"para realizar uma classificação binária e realizando um processo de fine-tuning
nos nossos dados.

Fonte: Kong et al., 2020.

Figura 3.2: Arquitetura das PANNs

Para este trabalho, foi optada pela utilização da CNN10 dentre as PANNs por conta
dos resultados obtidos em estudos anteriores utilizando as redes pré-treinadas objetivando
a análise de voz como visto em Gauy e Finger (2022).
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3.4.2 Masked Autoencoder: AudioMAE
Como arquitetura utilizada para a avaliação de uma solução de treinamento robusta,

foi empregado o modelo AudioMAE, proposto por Huang et al. (2023). Esta arquitetura é
baseada em Transformers e utiliza a estratégia de pré-treinamento auto-supervisionado
Masked Autoencoder (MAE), conforme detalhado conceitualmente na Seção 2.2.3.

O modelo utilizado também foi pré-treinado no dataset AudioSet, porém com a tarefa
auto-supervisionada de reconstruir espectrogramas mascarados. O processo de fine-tuning
para a tarefa de classificação seguiu o protocolo padrão do MAE:

1. O Decoder, utilizado apenas durante a fase de pré-treinamento para a reconstrução
dos patches, foi completamente descartado.

2. O Encoder pré-treinado, que aprendeu a extrair representações contextuais ricas dos
dados, foi mantido como o "corpo"do modelo.

3. Uma nova "cabeça"de classificação, foi adicionada ao topo do Encoder para adaptá-lo
à nossa tarefa de classificação binária.

A escolha desse modelo se deve à hipótese de que um modelo forçado a aprender a
estrutura fundamental dos sons será mais robusto aos vieses superficiais, como o ruído
de fundo, em comparação com um modelo supervisionado tradicional.

3.5 Métricas de Avaliação
Para avaliar o desempenho dos modelos e diagnosticar a presença ou não de vieses de

aprendizado, a avaliação foi conduzida com base na análise da matriz de confusão, que
relaciona as predições do modelo com os rótulos reais dos dados.

Em nossa classificação binária, a classe "Positiva"refere-se à presença de insuficiência
respiratória (Pacientes) e a classe "Negativa"refere-se aos indivíduos saudáveis (Controle).
Assim, definem-se:

• Verdadeiros Positivos (TP): Pacientes corretamente identificados com insuficiência
respiratória.

• Verdadeiros Negativos (TN): Indivíduos saudáveis corretamente identificados como
controle.

• Falsos Positivos (FP): Indivíduos saudáveis incorretamente classificados como paci-
entes.

• Falsos Negativos (FN): Pacientes incorretamente classificados como saudáveis.

A partir destes valores, foram calculadas as seguintes métricas:

3.5.1 Acurácia (Accuracy)
A acurácia mede a proporção global de acertos do modelo sobre o total de amos-

tras. Embora seja uma métrica intuitiva, ela pode ser enganosa em cenários de possível
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viés extremo.

𝐴𝑐𝑢𝑟𝑎́𝑐𝑖𝑎 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(3.4)

3.5.2 Precisão (Precision)
A precisão avalia a qualidade das predições positivas. Ela responde à pergunta: "De

todos os indivíduos que o modelo classificou como pacientes, quantos realmente eram
pacientes?". Uma precisão baixa indica uma alta taxa de falsos positivos.

𝑃𝑟𝑒𝑐𝑖𝑠𝑎̃𝑜 =

𝑉𝑃

𝑉𝑃 + 𝐹𝑃

(3.5)

3.5.3 Sensibilidade (Recall)
Esta métrica é crítica em aplicações médicas de triagem. Ela mede a capacidade do

modelo de detectar a doença quando ela existe. Um valor baixo de Recall é indesejável, pois
implica que pacientes com insuficiência respiratória estão deixando de ser diagnosticados.

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3.6)

3.5.4 Especificidade (Specificity)
Complementar ao Recall, a especificidade mede a capacidade do modelo de identificar

corretamente os casos negativos (saudáveis). Esta métrica é particularmente importante
neste trabalho para a análise de viés.

𝐸𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑑𝑎𝑑𝑒 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(3.7)

3.5.5 F1-Score
O F1-Score é a média harmônica entre a Precisão e o Recall. Ele fornece uma medida

única que penaliza valores extremos. É uma métrica essencial para comparar modelos,
pois exige que a rede tenha um bom desempenho tanto na detecção da doença (Recall)
quanto na confiabilidade dessa detecção (Precisão).

𝐹1-𝑆𝑐𝑜𝑟𝑒 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑎̃𝑜 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑎̃𝑜 + 𝑅𝑒𝑐𝑎𝑙𝑙

(3.8)
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Capítulo 4

Experimentos e Resultados

Este capítulo apresenta a sequência de experimentos realizados para investigar o
impacto da filtragem de ruído no desempenho dos modelos utilizados. A estrutura segue a
própria linha de experimentos, onde o resultado de um experimento justifica as decisões
tomadas para conduzir o próximo.

4.1 Configuração de Treinamento
Para garantir a reprodutibilidade, todos os modelos foram treinados (fine-tuning)

seguindo uma configuração padronizada:

• Função de Perda (Loss Function): Para esta tarefa de classificação, foi utilizada a
função Cross-Entropy Loss;

• Otimizador: Foi empregado o otimizador Adam com 𝑏𝑒𝑡𝑎𝑠 = (0.9, 0.98) e com taxas
de aprendizado diferentes para a base do modelo e nossa camada de classificação
adicional:

– Camadas de Base (Pré-treinadas): Foi aplicada uma taxa de aprendizado conser-
vadora de 𝑙𝑟 = 1e-5. Isso permite que os pesos da rede principal sejam ajustados
sutilmente para a nova tarefa.

– Camada de Classificação ("Cabeça"): Foi aplicada uma taxa de aprendizado de
𝑙𝑟 = 1𝑒 − 4. Como esta camada é nova e seus pesos são inicializados aleatori-
amente, ela requer um aprendizado mais rápido e agressivo para mapear as
características extraídas pela base para a nossa tarefa binária;

– Seed = 42 fixa durante todos os experimentos;

4.1.1 Configurações de Pré-Processamento
Como os modelos utilizados são pré-treinados, os parâmetros de extração de carac-

terísticas foram mantidos fixos para corresponder à configuração de pré-treinamento
dos modelos:
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Parâmetro CNN10 AudioMAE
Sample Rate 32000 16000
Window Size 1024 1024

Hop Size 320 320
Mel Bins 64 128

Fmin 0 0
Fmax 16000 8000

Tabela 4.1: Configurações dos modelos utlizados

4.2 Experimentos - CNN10
A investigação sobre a eficácia da filtragem foi iniciada utilizando a arquitetura CNN10

como modelo de base.

4.2.1 Experimento 1: Análise de Instabilidade da Filtragem
O primeiro experimento teve como objetivo avaliar a estabilidade dos dois modos de

operação do classificador do filtro (descritos na Seção 3.3).

Configuração de Treinamento

Para este experimento, o modelo foi treinado por 50 épocas. Os parâmetros do filtro
foram mantidos fixos, utilizando os valores padrão recomendados baseados em estudos
anteriores. Os valores utilizados foram:

• n_grad_time = 3

• n_grad_freq = 3

• n_std_thresh = 2.0

Para investigar a influência do método de limiarização, foram comparadas duas abor-
dagens: um primeiro modelo, treinado com limiar de valor fixo (6𝑑𝐵), e outro treinado
com limiar por porcentagem (34%).

Adicionalmente, para avaliar o impacto da intensidade da remoção de ruído, ambos
os modelos foram submetidos a dois cenários de supressão distintos:

1. Moderada: Redução parcial (50%, ou 𝑝𝑟𝑜𝑝_𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 0.5) do ruído detectado;

2. Agressiva: Remoção total (100%, ou 𝑝𝑟𝑜𝑝_𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 1.0) do ruído detectado.

Essa distinção foi feita para verificar se a supressão parcial introduz artefatos que afetam
a estabilidade do aprendizado.

Após o treinamento, o modelo salvo foi submetido a um teste de sensibilidade. O
conjunto de teste foi processado 50 vezes, com o parâmetro de redução prop_decrease
variando linearmente de 1.0 até seu valor mínimo 0.0 (sem filtragem). A performance do
modelo foi registrada em cada um desses 50 pontos para gerar as curvas de sensibilidades.
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Experimento 1: Resultados

(a) Modelos Treinados com Supressão Moderada (50%)

(b) Modelos Treinados com Supressão Agressiva (100%)

Figura 4.1: Análise de Sensibilidade entre os Modos de Filtragem.
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O resultado, apresentado na Figura 4.1, demonstra uma instabilidade severa em ambos
os cenários.

Visualmente, observa-se que os modelos apresentam alta performance apenas quando
os parâmetros de teste coincidem com os de treino, formando ’picos’ de acurácia ou
’penhascos’ onde o desempenho falha catastroficamente. Isso prova que os modelos, inde-
pendentemente do modo do classificador, sofreram overfitting aos artefatos específicos
criados pelo filtro, em vez de aprenderem padrões da patologia.

4.2.2 Experimento 2: Validação da Robustez
Após identificar no Experimento 1 que a configuração padrão do filtro induzia o modelo

ao aprendizado de atalhos (shortcut learning) devido a artefatos na subtração espectral,
este experimento teve como objetivo validar uma configuração mais robusta.

A hipótese central era que as janelas de estimativa de ruído originais (3 × 3) eram
demasiadamente pequenas, gerando um perfil de ruído muito específico e ruidoso. Para
mitigar isso, buscou-se suavizar a estimativa do ruído aumentando as dimensões da janela
de análise, conforme permitido pela ferramenta Pereira, 2020.

Configuração de Parâmetros

Foram definidos novos parâmetros visando uma generalização maior do perfil de ruído
(suavização), mantendo-se o limiar de detecção conservador:

• n_grad_time = 8

• n_grad_freq = 4

• n_std_thresh = 1.5

Com esses novos parâmetros de base, repetiu-se integralmente o protocolo de sensibi-
lidade do Experimento 1, treinando e testando modelos em quatro cenários distintos.

Análise dos Resultados



4.2 | EXPERIMENTOS - CNN10

21

(a) Modelos Treinados com Supressão Moderada (50%)

(b) Modelos Treinados com Supressão Agressiva (100%)

Figura 4.2: Análise de Estabilidade dos Parâmetros.

Os resultados demonstraram uma mudança drástica no comportamento da CNN10.
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Diferentemente da instabilidade observada anteriormente, a aplicação dos parâmetros de
suavização resultou em curvas de sensibilidade lineares, indicando que o modelo parou
de utilizar os artefatos de filtragem como critério de decisão.

Observou-se especificamente que:

1. Impacto da Intensidade: A supressão moderada (𝑝𝑟𝑜𝑝_𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 0.5) demons-
trou manter o viés de filtragem, mesmo após a suavização da mesma. A supressão
intensa (𝑝𝑟𝑜𝑝_𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 1.0), que no Experimento 1 era a mais instável, tornou-se
mais robusta com a suavização. Isso valida o uso da remoção total do ruído, essencial
para eliminar o viés ambiental sem inserir viés de filtragem.

2. Fixo vs. Porcentagem: Com o filtro estabilizado, ambos os métodos de limiar
(Fixo em 6dB e Porcentagem em 34%) apresentaram desempenho e estabilidade
equivalentes. A “falha” observada no experimento anterior não era intrínseca aos
métodos, mas sim exarcebada pela parametrização inadequada.

Definição dos Parâmetros Finais

Diante da estabilidade alcançada, definiu-se a configuração final que será utilizada
para a investigação principal. Acrescentado aos parâmetros do Experimento 2, optou-se
pelo método de Limiar por Porcentagem (34%) devido à sua vantagem conceitual de
adaptar-se à faixa dinâmica de diferentes dispositivos de gravação, combinado com a
Supressão Total (100%) para garantir a máxima remoção do ambiente hospitalar e a
estabilidade da filtragem.

4.3 Experimentos - AudioMAE

4.3.1 Transferabilidade dos Parâmetros de Filtragem
Após a estabilização bem-sucedida da CNN10 no Experimento 2, o próximo passo

lógico foi aplicar a mesma configuração "ótima"de filtragem ao modelo AudioMAE. A
hipótese era que, sendo uma arquitetura mais avançada e pré-treinada de forma robusta, o
AudioMAE se beneficiaria igualmente (ou até mais) da estabilidade proporcionada pelos
parâmetros de suavização:

• n_grad_time = 8

• n_grad_freq = 4

• n_std_thresh = 1.5

Resultados e Discussão
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Figura 4.3: Desempenho do AudioMAE com os parâmetros encontrados

Contrariando a hipótese inicial, os resultados do teste de sensibilidade para o Audio-
MAE (Figura 4.3) revelaram que a instabilidade persistiu. Diferentemente da CNN10, que
apresentou uma curva linear e estável, o AudioMAE continuou demonstrando sensibilidade
às variações da intensidade do filtro, mantendo o comportamento de queda de performance
fora do ponto de treino.

Este resultado sugere uma diferença fundamental na forma como a nova arquitetura
lida com artefatos de pré-processamento: O AudioMAE, baseado em Vision Transformers,
processa o espectrograma em patches e utiliza mecanismos de self-attention que capturam
relações globais e detalhes minuciosos. Devido à sua alta capacidade, o modelo foi capaz
de detectar e aprender os artefatos da filtragem mesmo com os parâmetros de suavização,
resultando no overfitting de pré-processamento.

Conclui-se, portanto, que os parâmetros de filtragem não são universais.

Foi conduzida uma investigação exploratória preliminar com diferentes configurações
de filtragem para o AudioMAE, No entanto, as análises demonstraram que a instabilidade
ao filtro persistiu de forma consistente, independentemente das combinações testadas. A
persistência desse fenômeno evidencia que a sensibilidade do AudioMAE não é meramente
uma questão de ajuste de hiperparâmetros, mas sim uma consequência de sua arquitetura
robusta baseada em atenção.

Apesar da sensibilidade observada aos artefatos de filtragem, para a condução do teste
final de verificação de viés ambiental, optou-se por manter a configuração de filtragem
padronizada, idêntica àquela validada para a CNN10. Essa decisão visa garantir a con-
sistência metodológica e permitir uma comparação direta entre a capacidade das duas
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arquiteturas de lidar com o viés do dataset sob as mesmas condições de pré-processamento,
independentemente das variações de estabilidade interna de cada modelo.

4.4 Experimento Final - Verificação de Viés
Ambiental

Com os parâmetros de filtragem estabilizados (conforme definido nos experimentos
anteriores), foi conduzido o teste definitivo para verificar se o pré-processamento foi capaz
de mitigar o viés ambiental do dataset.

A Tabela 4.2 sumariza o desempenho dos dois modelos (CNN10 e AudioMAE) em
dois cenários distintos: o Cenário Original, utilizando o conjunto de teste padrão, e o
Cenário com Ruído, onde ruído hospitalar foi inserido artificialmente em todas as amostras
antes da filtragem.

Modelo Cenário de Teste Acurácia F1 Precisão Recall Especificidade

CNN10 Filtragem sem Inserção 0.9907 0.9908 0.9818 1.0000 0.9815
Filtragem com Inserção 0.5278 0.6792 0.5143 1.0000 0.0556

AudioMAE Filtragem sem Inserção 0.9907 0.9908 0.9818 1.0000 0.9815
Filtragem com Inserção 0.5000 0.6667 0.5000 1.0000 0.0000

Tabela 4.2: Comparação de desempenho dos modelos (CNN10 e AudioMAE) nos conjuntos de teste
com e sem inserção de ruído hospitalar antes da filtragem.

4.4.1 Análise dos Resultados
Observa-se, primeiramente, que no Cenário Original, ambos os modelos apresentam

um desempenho funcional, com o AudioMAE atingindo índices de acurácia e F1-Score su-
periores a 99%. Estes resultados, embora aparentemente excelente, devem ser interpretados
com cautela.

O resultado crítico revela-se no Cenário com Ruído. Ao introduzir o ruído hospitalar nas
amostras de controle e submetê-las ao mesmo processo de filtragem, podemos observar:

1. Colapso da Especificidade: Para ambos os modelos, a Especificidade caiu para 0.00.
Isso indica que os modelos falharam em identificar qualquer indivíduo saudável
corretamente quando este estava inserido em um ambiente ruidoso.

2. Precisão de 50%: Como o modelo passou a classificar indiscriminadamente todas
as amostras como pertencentes à classe ’Paciente’ (devido à presença do ruído), a
precisão caiu devido à alta presença de falsos positivos.

3. Recall de 100%: O Recall máximo não indica uma detecção perfeita da doença, mas
sim que o modelo classificou todas as amostras (positivas e negativas) como sendo
da classe "Paciente".
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4. Acurácia de 50%: Em um conjunto de teste balanceado, classificar todas as amostras
como pertencentes a uma única classe resulta matematicamente em uma acurácia
de 50%, equivalente a um classificador aleatório ou tendencioso.
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Capítulo 5

Conclusão

O objetivo central deste trabalho foi investigar a eficácia da filtragem de ruído como
uma estratégia de pré-processamento para mitigar o viés ambiental presente em datasets
como o do projeto SPIRA. A premissa inicial era que, ao remover o ruído de fundo caracte-
rístico dos ambientes hospitalares, seria possível forçar modelos de aprendizado profundo
a aprenderem biomarcadores da insuficiência respiratória, eliminando o fenômeno de
shortcut learning.

A investigação foi conduzida através de um protocolo experimental rigoroso, dividido
em etapas de análise de estabilidade e verificação de viés. Os experimentos iniciais revela-
ram que a aplicação de filtros com parâmetros fixos introduz um novo problema: um "viés
de filtragem". Demonstrou-se que os modelos tendem a sofrer overfitting nos artefatos
espectrais gerados pelo processo de supressão, resultando em uma performance que se
degrada com pequenas variações nos parâmetros de teste.

O experimento final de viés trouxe a descoberta mais significativa deste trabalho. Ao
submeter os modelos a um conjunto de teste onde ruído hospitalar era inserido antes da
etapa de filtragem, observou-se um colapso total das métricas analisadas. Este resultado
comprova que a filtragem de ruído não resultou na remoção do viés. Tanto a CNN10 quanto
o AudioMAE continuaram a utilizar o ruído residual (ou os fragmentos resultantes do
processo de filtragem) como o principal discriminador para a classe "Paciente".

Conclui-se, portanto, que a filtragem de ruído mostrou-se uma estratégia insuficiente
para a resolução do problema encontrado, pois não remove a correlação entre o ambiente
acústico e a patologia, servindo apenas para transformar a natureza do atalho aprendido
pelo modelo.

O fato de uma arquitetura avançada e pré-treinada como o AudioMAE falhar da mesma
maneira que uma CNN tradicional reforça que a complexidade do modelo não é solução
para dados enviesados. Pelo contrário, a maior capacidade de aprendizado destes modelos
pode torná-los ainda mais sensíveis a atalhos sutis.

Diante dos resultados obtidos, sugere-se que pesquisas futuras no contexto do projeto
SPIRA e similares foquem em abordagens diametralmente opostas, recomendando a in-
vestigação de outras técnicas de tratamento de áudio ou de tratamento direto do dataset
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como estratégias de Data Augmentation.
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