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Resumo

Luan Tavares de Andrade. Estratégias para Lidar com Ruido de Audio em Apren-
dizado Automatico para Insuficiéncia Respiratoria: Uma analise da Filtragem.
Monografia (Bacharelado). Instituto de Matematica e Estatistica, Universidade de Sdo
Paulo, Sao Paulo, 2025.

Este trabalho tem como objetivo investigar a eficacia da filtragem de ruido como estratégia de pré-
processamento para mitigar o viés ambiental em modelos de rede neural para deteccdo de insuficiéncia
respiratoria por analise de dudio. Para isso foi utilizado o dataset do Projeto SPIRA, caracterizado por uma
forte correlacido entre ruido hospitalar e a classe positiva, além de duas arquiteturas de Redes Neurais
pré-treinadas: a CNN10 (Rede Neural Convolucional) e o AudioMAE (Transformer), de forma que fosse
possivel a comparacdo do desempenho de dois modelos com complexidades diferentes. A metodologia
consistiu em duas etapas experimentais: (1) uma analise de sensibilidade para determinar a estabilidade dos
parametros do filtro, que revelou uma tendéncia ao overfitting de artefatos de filtragem; e (2) um teste de
viés comparando os modelos ao serem testados com os 4udios filtrados e com insercéo de ruido antes do
processo do filtragem. Como resultado, com a inser¢io de ruido prévia, ambos os modelos apresentaram um
colapso das métricas avaliadas, evidenciando que o aprendizado baseou-se em atalhos (shortcut learning)
associados ao ruido residual e aos fragmentos de filtragem. Conclui-se que a filtragem de ruido é insuficiente
para a remocdo de vieses ambientais, revelando-se ndo apenas uma abordagem ineficaz, mas um potencial

intensificador do problema ao introduzir novos vieses.

Palavras-chave: Insuficiéncia Respiratéria. Aprendizado Profundo. Processamento de Audio. Filtragem

de Ruido. Viés Ambiental. Rede Neural Convolucional. Transformer.






Abstract

Luan Tavares de Andrade. Strategies for Handling Audio Noise in Machine Learn-
ing for Respiratory Insufficiency: An Analysis of Filtering. Capstone Project Report
(Bachelor). Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo Paulo,
2025.

This work aims to investigate the efficacy of noise filtering as a pre-processing strategy to mitigate
environmental bias in neural network models for respiratory insufficiency detection via audio analysis. To
this end, the SPIRA Project dataset was used, characterized by a strong correlation between hospital noise
and the positive class, along with two pre-trained Neural Network architectures: CNN10 (Convolutional
Neural Network) and AudioMAE (Transformer), allowing for the performance comparison of two models
with different complexities. The methodology consisted of two experimental stages: (1) a sensitivity analysis
to determine filter parameter stability, which revealed a tendency toward overfitting to filtering artifacts;
and (2) a bias test comparing the models when tested with filtered audios versus noise insertion prior
to the filtering process. As a result, with prior noise insertion, both models presented a collapse in the
evaluated metrics, evidencing that the learning process relied on shortcuts (shortcut learning) associated
with residual noise and filtering fragments. It is concluded that noise filtering is insufficient for removing
environmental biases, revealing itself not only as an ineffective approach but also as a potential intensifier

of the problem by introducing new biases.

Keywords: Respiratory Insufficiency. Deep Learning. Audio Processing. Noise Filtering. Environmental

Bias. Convolutional Neural Network. Transformer.
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Capitulo 1

Introducao

1.1 Contextualizacao

A pandemia da COVID-19, deflagrada pelo virus SARS-CoV-2 no final de 2019, represen-
tou uma das maiores crises sanitarias da historia moderna, impondo desafios monumentais
aos sistemas de satide em todo o mundo. A rapida disseminacdo da doenga, cujas compli-
cagdes mais severas sao de natureza respiratoria, gerou uma pressao insustentavel sobre a
infraestrutura hospitalar. A superlotaciao de prontos-socorros e a escassez de leitos de UTI
tornaram-se uma realidade global (RACHE et al, 2020), evidenciando a necessidade urgente
de solucdes inovadoras que pudessem otimizar o fluxo de pacientes e recursos.

Neste cenario adverso, a tecnologia emergiu como uma aliada fundamental, catalisando
projetos inovadores como o SPIRA' (FINGER et al.,, 2021). A ferramenta foi concebida
como um sistema de triagem remota, cuja premissa era empregar modelos de inteligéncia
artificial para analisar caracteristicas acusticas em audios da voz, tosse e respiragio.

A grande vantagem dessa abordagem era a sua acessibilidade, ja que os dados poderiam
ser facilmente capturados por dispositivos de uso massivo, como smartphones. Ao fornecer
uma analise de risco preliminar, o objetivo era ajudar a evitar a ida desnecessaria de pessoas
com sintomas leves aos hospitais, aliviando a sobrecarga do sistema e protegendo tanto
pacientes quanto profissionais de satude.

1.2 Motivacio e Objetivo

Uma das estratégias notaveis do projeto SPIRA para garantir a robustez de seu modelo
foi a insercéo artificial de ruido hospitalar nos dados de audio, forcando o modelo a se tornar
invariante as condi¢des ambientais. Contudo, essa abordagem levanta uma questao de
pesquisa pertinente: seria a insercdo de ruido a melhor forma de mitigar o viés ambiental?
Uma estratégia alternativa, e talvez mais intuitiva, seria a de remover o ruido existente
por meio de algoritmos de filtragem.

! (acrénimo) Sistema de deteccio Precoce de Insuficiéncia Respiratoria por meio de analise de Audio



INTRODUCAO

Essa abordagem alternativa de remocéo de ruido busca, em teoria, isolar o sinal de voz
em sua forma mais pura, o que poderia facilitar o aprendizado de caracteristicas biomédicas
relevantes. Contudo, essa estratégia nio é isenta de riscos. O processo de filtragem pode,
paradoxalmente, distorcer o sinal de voz, correndo o risco de remover ndo apenas o ruido,
mas também biomarcadores acusticos sutis.

Diante disso, este trabalho se propde a investigar a eficacia e os desafios da aplicacdo
de filtros de ruido como método de pré-processamento para a classificacdo de insuficiéncia
respiratoria a partir da voz. Espera-se, com isso, ndo apenas avaliar comparativamente as
duas estratégias, mas também oferecer subsidios praticos e tedricos para o desenvolvimento
de sistemas mais confiaveis e robustos em ambientes reais de uso.



Capitulo 2

Fundamentaciao Teorica

O objetivo deste capitulo é apresentar os conceitos fundamentais de processamento de
audio e aprendizado de maquina que servem como alicerce para este trabalho, oferecendo
o embasamento necessario para a compreensao das técnicas e metodologias aplicadas.

2.1 Redes Neurais Convolucionais (CNNs)

Uma Rede Neural Convolucional (CNN) é uma classe de rede neural profunda especia-
lizada em tratar dados em grade onde a localidade é relevante, ou seja, a vizinhanca de
um valor é relevante para a analise dele, como por exemplo na analise de imagens. Para
realizar sua tarefa, a arquitetura de uma CNN processa os dados através de uma sequéncia
de camadas especializadas, cujas funcdes serdo detalhadas nas subse¢oes a seguir.

2.1.1 Camada Convolucional

Sendo a principal camada de uma CNN, consiste em procurar por padrdes especificos
nos dados passados. Isso é feito com a utilizacdo de filtros, que deslizam pela imagem
(convolugao) e reconhecem sempre que captam seu padrio atribuido.

No contexto de um espectrograma, esses padrdes podem ser caracteristicas acusticas
como linhas horizontais (que representam tons estaveis, como possiveis pausas), linhas
verticais (como cliques ou o inicio de uma tosse), ou formas mais complexas que corres-
pondem a formantes da voz.

2.1.2 Funcao de Ativacao - ReLU (Rectified Linear Unit)

As funcdes de ativacao tém o papel de introduzir nao-linearidade nas redes neurais.
Sem elas, uma sequéncia de camadas lineares seria matematicamente equivalente a apenas
uma Unica transformacao linear, limitando a rede a problemas muito simples. Ao aplicar
uma funcéo de ativacgdo, a rede passa a ser capaz de modelar fendmenos nao-lineares, como
os padrdes complexos presentes em sinais de fala e em outros dados do mundo real.



2 | FUNDAMENTACAO TEORICA

A funcéo de ativacdo mais utilizada em CNNs é a ReLU (Rectified Linear Unit), de-
finida como:

f(x) = max(0, x) (2.1)

Essa fun¢do mantém valores positivos inalterados e zera os valores negativos. Entre suas
principais vantagens estdo a simplicidade computacional e a eficiéncia no treinamento
de redes profundas.

Em sintese, a introducdo dessa ndo-linearidade é crucial para que a rede consiga extrair
representacOes mais ricas e discriminativas, transformando os mapas de caracteristicas
em descri¢des cada vez mais adequadas a tarefa de classificacio.

2.1.3 Camada de Pooling

Essa camada tem como funcéo principal reduzir as dimensoes da entrada, mantendo
apenas as informacdes que atribuir como mais relevantes. Ela pode ser do tipo Max Pooling,
que pega o valor maximo de uma regido especifica, atribuindo ele ao novo bloco reduzido
ou do tipo Average Pooling, que calcula a média da regido e atribui esse valor ao novo
bloco reduzido.

Essa etapa é importante pois ao reduzir as dimensdes espaciais do mapa de carac-
teristicas, ela diminui drasticamente o nimero de parametros e a carga computacional
para as camadas seguintes da rede.

2.1.4 Camada Totalmente Conectada ou Densa

Apbs as camadas convolucionais e de pooling, a representacdo extraida ainda possui
formato bidimensional (semelhante a uma imagem com varias “profundidades” de filtros).
Para que essa informacao possa ser usada em uma camada densa, é necessario primeiro
realizar o achatamento (flattening), que transforma os mapas de caracteristicas em um
unico vetor unidimensional.

A camada totalmente conectada, como o préprio nome indica, conecta todos os seus
neurdnios a todos os neurdnios da camada anterior. Essa etapa funciona como a parte
decisodria da rede, combinando as caracteristicas aprendidas para produzir a saida final.
Em tarefas de classificagdo, por exemplo, essa camada costuma ter nimero de neurdnios
igual a quantidade de classes a serem previstas.

Por fim, os valores gerados por essa camada passam por uma funcio de ativacdo
final apropriada a tarefa: Sigmoid no caso de classificacio binaria, ou Softmax quando ha
multiplas classes. Isso converte os resultados em probabilidades normalizadas, permitindo
a interpretacao direta como a previsdo do modelo para cada classe possivel.
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Fonte: Casanova, GRris et al., 2021.

Figura 2.1: Arquitetura da Rede Neural Convolucional SpiraConvV1

2.2 Transformers

Enquanto as CNNs se destacam na extracdo hierarquica de caracteristicas locais, uma
classe de arquiteturas mais recente, os Transformers (VASwANTI et al., 2017), foi proposta
para modelar dependéncias de longo alcance nos dados, ao mesmo tempo que permitia
uma melhor paralelizacdo do processo ao tratar dados sequenciais, fator limitante em
modelos anteriores como Recurrent Neural Networks e Long Short-Term Memory.

Originada no campo de Processamento de Linguagem Natural, essa arquitetura re-
volucionou a area e foi subsequentemente adaptada com grande sucesso para dominios
como visdo computacional e analise de audio. Os pontos cruciais desse modelo sio ex-
plicados a seguir:

2.2.1 O mecanismo de Self-Attention

O mecanismo de Self-Attention, elemento central dos Transformers, permite que cada to-
ken de uma sequéncia estabeleca relacdes diretas com todos os demais, independentemente
da distancia entre eles. Dessa forma, o modelo atribui pesos de atencdo que indicam o grau
de relevancia entre pares de tokens, capturando dependéncias globais de maneira eficiente.

Diferentemente das CNNs, que operam com janelas locais e extraem caracteristicas a
partir de vizinhancas fixas, o Self-Attention nao se limita a regides proximas da entrada.
Isso possibilita que o modelo aprenda relacdes de longo alcance sem a necessidade de
camadas adicionais para ampliar o campo receptivo, além de permitir o processamento
totalmente paralelo, resultando em maior eficiéncia e escalabilidade.

2.2.2 A arquitetura Encoder-Decoder

Tendo sido proposta inicialmente em VASWANT et al. (2017) para a realizagao de tarefas
de traducdo automatica, essa arquitetura consiste em duas partes principais, o Encoder
e 0 Decoder. Juntos, esses modulos permitem tanto a compreensao da entrada quanto a
geracdo de uma saida contextualizada.
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Encoder

O Encoder tem como funcéo principal processar os dados de entrada e extrair represen-
tacoes contextuais significativas. Cada elemento da entrada é transformado em um vetor
de embeddings, ao qual é somada uma codificacao de posicao, necessaria para indicar a
posicdo de cada elemento (token) na sequéncia.

Sua estrutura consiste em uma pilha de camadas idénticas, cada uma composta por
dois modulos: o Self-Attention, que permite a interacdo entre todos os elementos, e uma
Rede Neural Feed-Forward, responsavel por melhorar as representacdes obtidas. Entre cada
modulo é acrescentada uma etapa de normalizacido dos dados.

Decoder

O Decoder tem como func¢ao principal gerar a sequéncia de saida de forma autoregres-
siva, isto é, produzindo um elemento por vez com base nos elementos previamente gerados.

Sua estrutura também é composta por uma pilha de camadas, nas quais o primeiro
modulo realiza uma operaciao de Masked Self-Attention, que impede o acesso a tokens
futuros, garantindo que a geracdo ocorra de forma autoregressiva. O segundo modulo
realiza o Cross-Attention, que combina as informacoes internas do Decoder com as represen-
tacdes codificadas pelo Encoder, permitindo que a saida seja produzida de forma coerente
com o contexto da entrada. Por fim, uma camada Feed-Forward refina o resultado, que
é entdo projetado por uma camada linear seguida de uma funcdo Softmax para gerar a
distribuicao de probabilidade sobre o vocabulario de saida e selecionar o préximo elemento
da sequéncia.
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Figura 2.2: Arquitetura proposta do Transformer

2.2.3 Masked Auto-Encoders

A eficacia das arquiteturas Transformer esta diretamente ligada a sua capacidade de
processar sequéncias longas e capturar relacdes contextuais. Contudo, treinar modelos
muito grandes e complexos do zero exige vastos conjuntos de dados rotulados, que sdo
caros e dificeis de obter. Para superar essa limitacdo, ao longo dos anos vém sendo popula-
rizada cada vez mais a utilizacdo do Aprendizado Auto-Supervisionado, um paradigma
de treinamento onde o modelo aprende representagdes tteis a partir dos proprios dados,
sem a necessidade de rotulos explicitos.

Dentro do Aprendizado Auto-Supervisionado, uma das estratégias mais eficientes e
bem-sucedidas para Transformers é a de Masked Auto-encoders (MAE) (HE et al., 2021).
A ideia central é fazer com que o modelo, em vez de classificar uma imagem ou som,
reconstrua partes da entrada que foram deliberadamente escondidas (mascaradas). Esse
processo forca o modelo a desenvolver uma compreensao profunda da estrutura intrinseca
dos dados para ser capaz de "imaginar"o conteudo ausente.

O MAE adota uma arquitetura de Encoder-Decoder assimétrica: o Encoder processa
apenas os elementos nao mascarados, extraindo representacdes compactas e eficientes,
enquanto o Decoder recebe essas representacdes junto com informagdes sobre as posicoes
mascaradas para reconstruir a entrada original. Essa assimetria reduz significativamente o
custo computacional durante o treinamento, permitindo o uso de taxas de mascaramento
elevadas — frequentemente acima de 75% — sem perda substancial de desempenho. Como
resultado, os MAEs se mostram particularmente adequados para pré-treinamento de
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grandes modelos, servindo como base para tarefas posteriormente supervisionadas ou de
fine-tuning. Nesta segunda etapa, o Decoder, que serviu apenas como ferramenta para o
pré-treinamento, é completamente descartado, e apenas o Encoder pré-treinado é utilizado
para a tarefa final.

- |
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Fonte: HE et al., 2021.

Figura 2.3: Arquitetura do Masked Autoencoder

2.3 Trabalhos Correlacionados

Diversos estudos tém explorado o uso de modelos baseados em CNNs e Transformers
para a analise de sinais de audio. No contexto da pandemia de COVID-19, a investigagio da
deteccdo de insuficiéncia respiratoria a partir da fala ganhou destaque. Casanova, CANDIDO
Jr et al., 2021, por exemplo, demonstraram a eficacia do aprendizado por transferéncia
a partir de modelos de voz para essa tarefa, alcancando resultados promissores com
dados limitados. De forma similar, FINGER et al. (2021) e GAUY e FINGER, 2021 focaram
no uso de arquiteturas de redes neurais, focando principalmente no uso de MFCCs (Mel-
Frequency Cepstral Coefficients) como entrada para o modelo, visando aumentar a acuracia
do diagnostico. Em conjunto, esses estudos estabelecem a viabilidade da abordagem,
servindo como ponto de partida fundamental para o presente trabalho.

Paralelamente, o avanco em modelos de audio pré-treinados e auto-supervisionados
tem sido um pilar para o progresso da area. KonG et al., 2020 introduziram as PANNs
(Pretrained Audio Neural Networks), uma familia de CNNs pré-treinadas em larga escala no
dataset AudioSet,' que se tornaram uma forte base para diversas tarefas de classifica¢do de
audio. Mais recentemente, a abordagem de aprendizado auto-supervisionado foi explorada
por HUANG et al., 2023 com um Transformer que aprende representacdes robustas ao
reconstruir espectrogramas mascarados, demonstrando um desempenho superior no fine-
tuning com poucos dados. A eficacia de tais modelos pré-treinados, como também analisado
por GAUY e FINGER, 2022, reforca a aplicabilidade da metodologia proposta neste estudo,
que busca combinar o poder dessas representagdes com uma analise critica das etapas
de pré-processamento.

! https://research.google.com/audioset/dataset/index.html



Capitulo 3

Metodologia

Este capitulo detalha todos os procedimentos metodologicos adotados para a conducao
deste trabalho, desde a preparacdo dos dados até a descri¢do dos experimentos realizados
para avaliar o impacto da filtragem de ruido no treinamento de modelos de rede neural.

3.1 Conjunto de Dados

Os dados utilizados nesse trabalho foram obtidos do SPIRA Dataset."! Esses dados
foram coletados utilizando smartphones durante a pandemia de COVID-19. O dataset
é composto por audios de duas classes: vozes de pessoas saudaveis (grupo de controle),
gravados majoritariamente em ambientes controlados e silenciosos devido ao isolamento
social, e audios de pessoas em situagdo de insuficiéncia respiratoéria (grupo de pacientes
com concentracdo de oxigénio no sangue abaixo de 92%), frequentemente capturados em
ambientes clinicamente mais complexos e ruidosos.

Para a realizacdo da tarefa, foi utilizada uma versao balanceada do dataset, que incuia
gravacoes de 423 pessoas diferentes pronunciando a mesma frase de referéncia: "O amor ao
proximo ajuda a enfrentar o coronavirus com a for¢a que a gente precisa". Esses dados foram
divididos para treinamento (283), validagao (32) e testes (108), mantendo o balanceamento
entre as duas classes em todos os conjuntos de dados, conforme detalhado na Tabela 3.1.

Coniunt Homem Mulher Homem Mulher Total Total Total
onjunto (Controle) (Controle) (Paciente) (Paciente) | (Controle) (Paciente) ota
Treinamento 57 84 76 66 141 142 283
Validacdo 8 8 8 8 16 16 32
Teste 22 26 28 32 54 54 108

Tabela 3.1: Distribuicdo dos dados utilizados

! https://github.com/Edresson/SPIRA-ACL2021
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Duracgdo Média (s) Duracdo Média (s)

Conjunt .
onjunto (Controle) (Paciente)

Treinamento 8.16 13.23

Validacao 7.75 10.78
Teste 8.77 9.44

Tabela 3.2: Média de duragdo dos dados em segundos

3.2 Pré-Processamento

No contexto desse trabalho, pode-se considerar essa como sendo a fase mais critica,
pois é onde os problemas intrinsecos do dataset sao tratados, assim como adaptados para
uma melhor compatibilidade e performance nos modelos utilizados.

3.2.1 Filtragem de Ruido

Como detalhado na Secao 3.1, o desafio mais critico deste dataset é o viés ambiental,
originado da diferenca sistematica entre os ambientes de gravagao dos grupos de controle
(silenciosos) e de pacientes (ruidosos). Esse viés representa o risco de o modelo aprender a
classificar os audios com base no ruido de fundo em vez dos padrdes vocais da patologia,
um fenémeno conhecido como shortcut learning.

Para investigar e tentar neutralizar este viés, foi utilizado um filtro de ruido que
atua nos dominios tempo-amplitude e tempo-frequéncia baseado em subtragio espectral,
desenvolvido durante o projeto SPIRA como um trabalho de formatura (PEREIRA, 2020)
e cujo funcionamento sera detalhado na Secéo 3.3.

3.2.2 Transformacio do Dominio do Audio

Apos a etapa de filtragem, o sinal de dudio ainda se encontra no dominio do tempo.
Conforme discutido no Capitulo 2, essa representacio nio é a ideal para ser processada
por arquiteturas como CNNs e Transformers. Portanto, essa etapa do pré-processamento
consiste na conversao de cada arquivo de audio para a sua representagiao tempo-frequéncia,
nesse caso a representacio de Log-Mel Spectrogram.

Nessa representacio, além de se considerar o audio de forma mais intuitiva visualmente
por meio da transformacao para espectrograma utilizando a STFT, também ¢ feita uma
transformacéo para uma escala que representa melhor a forma como o sistema auditivo
humano percebe as frequéncias, como exemplificado na Figura 3.1.
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Espectrograma Log-Mel
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Figura 3.1: Exemplo do Espectrograma Log-Mel de um audio.

3.2.3 Janelamento

Conforme apresentado na Tabela 3.2, a duragéo das gravacdes de dudio é variavel entre
as amostras e, notavelmente, apresenta uma média consistentemente menor para o grupo
de pacientes. Uma vez que as arquiteturas de redes neurais poderiam aprender a usar
essa diferenca de duracdo como um atalho indesejado para a classificagéo, ou tipicamente
exigem entradas de tamanho fixo, essa variabilidade precisa ser tratada.

Para resolver essa questdo, foi aplicada uma técnica de janelamento (windowing) com
sobreposicdo. Cada arquivo de audio foi segmentado em janelas de 4 segundos, com uma
sobreposicdo de 1 segundos entre janelas consecutivas. Este procedimento cumpre dois
objetivos simultaneamente: normaliza o comprimento de todas as amostras de entrada
para o modelo e atua como uma forma de aumentacdo de dados (data augmentation),
multiplicando o nimero de exemplos disponiveis.

3.3 Filtro Utilizado

O filtro de ruido empregado neste trabalho, adaptado do trabalho desenvolvido no
contexto do projeto SPIRA (PEREIRA, 2020), opera através de um processo de duas etapas
principais: um classificador fala/ruido seguido por um supressor de ruido.

3.3.1 Etapa 1: Classificador Fala/Ruido

A primeira etapa do filtro consiste em um classificador que identifica e isola os seg-
mentos do audio que contém apenas ruido de fundo operando no dominio do tempo da
seguinte forma:

1. O sinal é dividido em janelas curtas n;
2. E calculado a energia em decibéis, dB(i), para cada janela do sinal;

3. Um limiar de ruido (€) é entdo estabelecido para classificar cada janela. Verificou-se
que a ferramenta permite duas abordagens distintas para a defini¢do deste limiar:

« Limiar por Valor Fixo (dB): Neste modo, o limiar é definido adicionando-se um

11
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valor fixo V5 a energia minima encontrada no sinal, Egp,, :

€fixo = mln{dB(l)} + Vg (3.1)

+ Limiar por Porcentagem: Neste modo, o limiar é definido como uma porcenta-
gem V,, da faixa dindmica de energia (a diferenca entre a energia maxima e
minima do sinal):

€pct = mln{dB(l)} + ((max{dB(z)} - mln{dB(l)}) X Plimiar) (32)

4. Finalmente, qualquer janela x; onde dB(x;) < € é classificada como ruido e as
restantes sdo classificadas como fala.

3.3.2 Etapa 2: Supressor de Ruido

A segunda etapa, o supressor de ruido, utiliza o perfil de ruido detectado para rea-
lizar uma subtracgio espectral, operando no dominio tempo-frequéncia para atenuar as
frequéncias associadas ao ruido no 4udio original da seguinte forma:

1. O audio original e os segmentos de ruido sdo convertidos para o dominio tempo-
frequéncia usando a STFT, resultando nos respectivos espectrogramas utilizando
janelas de tamanho w x h;

2. Um perfil de ruido é criado a partir do espectrograma do ruido obtido no item 1,
calculando-se, para cada frequéncia, a média e o desvio padrao de suas magnitudes.

3. Finalmente, o audio original é filtrado por meio da aplicagao, para cada frequéncia
do espectrograma obtido no item 1, de um filtro que atenua por um fator de y as
componentes cuja magnitude ndo ultrapassa a média (y;) mais a desvios padrao (o;)
das magnitudes correspondentes a essa frequéncia conforme a equacgéo 3.3.

ll‘, se |ll| > Hi + ao;
I = (3.3)
y l;, caso contrario

3.3.3 Software

O programa do filtro utilizado opera, portanto, utilizando 5 parametros principais a
serem analisados (além do sinal de 4dudio):

n_grad_freq (h): Altura da janela a ser utilizada no supressor;

n_grad_time (w): Largura da janela a ser utilizada no supressor;

n_std_thresh (a) : Define quantos desvios padrao acima da média uma frequéncia
precisa estar para ser considerada sinal.

« prop_decrease (1 — y): Define, em porcentagem, quanto do ruido detectado deve
ser reduzido do audio original;
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« noise_threshold / noise_threshold_pct: Métodos para cria¢do do limiar do ruido,

respectivamente com valor fixo e em porcentagem.

34

Para investigar o impacto do viés de pré-processamento e avaliar a eficacia das solu¢des
propostas, duas arquiteturas de rede neural pré-treinadas distintas foram empregadas,
ambas ja introduzidas conceitualmente no Capitulo 2 e exemplificadas a seguir.

Modelos Utilizados

3.4.1 Rede Neural Convolucional: CNN10 (PANNs)

Para a realizacdo dos experimentos iniciais, foi utilizada a arquitetura CNN10, mostrada
na Figura 3.2 que faz parte da familia de Redes Neurais de Audio Pré-treinadas (PANNS)

proposta por KoNG et al. (2020).

Este modelo é pré-treinado no dataset AudioSet e foi utilizado alterando sua "ca-
beca"para realizar uma classificacdo binaria e realizando um processo de fine-tuning

nos nossos dados.

VGGish [1]

CNN6 [ CNNI10

CNNI14

Log-mel spectrogram
96 frames x 64 mel bins

Log-mel spectrogram
1000 frames x 64 mel bins

3 x 3@ 64 HxH@pd 3x 3@ 64 3 x3 @pd
ReLU BN, ReLU ( BN, R::LU) 2 ( BN, ReLU ) X2
MP2x2 Pooling 2 = 2
3= 3 @128 HxH@ 128 3x3@128 . 128
ReLU BN, ReLU ( BN, ReLU ) x 2 ( ) X2
MP2x2 Pooling 2 x 2
3 x 3 @ 256 ® 5@ 256 3= 3@ 256 . 3 x 'iti2ﬁ
( ReLU )"2 BN. ReLU (BN.R:LU)“ ( BN, ReLU )”
MP 2 x 2 Pooling 2 = 2
(SXS:E-E;'JIZ)XZ Hx5@512 (:Ix3@512)x2 (3 .1:1.‘;12)”
RelLU BN, RelLU BN, RelLU BN, RelL.U
Mlgagtt:;? Global pooling Pooling 2 x 2
ngngﬁ ® 2 FC 512, ReLU ( BN Re]ljy) ® 2
FC 527, Sigmoid FC 527, Sigmoid Pooling 2 x 2
3 x 3@ 2048
( BN, ReLU ) X2
Global pooling
FC 2048, ReLU

Figura 3.2: Arquitetura das PANNs

Para este trabalho, foi optada pela utilizacdo da CNN10 dentre as PANNs por conta
dos resultados obtidos em estudos anteriores utilizando as redes pré-treinadas objetivando

Fonte: KoNG et al., 2020.

a analise de voz como visto em GAUY e FINGER (2022).

FC 527, Sigmoid
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3.4.2 Masked Autoencoder: AudioMAE

Como arquitetura utilizada para a avaliacdo de uma solucdo de treinamento robusta,
foi empregado o modelo AudioMAE, proposto por HUANG et al. (2023). Esta arquitetura é
baseada em Transformers e utiliza a estratégia de pré-treinamento auto-supervisionado
Masked Autoencoder (MAE), conforme detalhado conceitualmente na Secao 2.2.3.

O modelo utilizado também foi pré-treinado no dataset AudioSet, porém com a tarefa
auto-supervisionada de reconstruir espectrogramas mascarados. O processo de fine-tuning
para a tarefa de classificagdo seguiu o protocolo padrao do MAE:

1. O Decoder, utilizado apenas durante a fase de pré-treinamento para a reconstrucao
dos patches, foi completamente descartado.

2. O Encoder pré-treinado, que aprendeu a extrair representagdes contextuais ricas dos
dados, foi mantido como o "corpo"do modelo.

3. Uma nova "cabeca"de classificacdo, foi adicionada ao topo do Encoder para adapta-lo
a nossa tarefa de classificacdo binaria.

A escolha desse modelo se deve a hipotese de que um modelo forcado a aprender a
estrutura fundamental dos sons sera mais robusto aos vieses superficiais, como o ruido
de fundo, em comparacido com um modelo supervisionado tradicional.

3.5 Métricas de Avaliacao

Para avaliar o desempenho dos modelos e diagnosticar a presenca ou nao de vieses de
aprendizado, a avaliacdo foi conduzida com base na analise da matriz de confusao, que
relaciona as predi¢des do modelo com os rétulos reais dos dados.

Em nossa classificagdo binaria, a classe "Positiva"refere-se a presenca de insuficiéncia
respiratoria (Pacientes) e a classe "Negativa'refere-se aos individuos saudaveis (Controle).
Assim, definem-se:

« Verdadeiros Positivos (TP): Pacientes corretamente identificados com insuficiéncia
respiratoria.

« Verdadeiros Negativos (TN): Individuos saudaveis corretamente identificados como
controle.

« Falsos Positivos (FP): Individuos saudaveis incorretamente classificados como paci-
entes.

« Falsos Negativos (FN): Pacientes incorretamente classificados como saudaveis.

A partir destes valores, foram calculadas as seguintes métricas:

3.5.1 Acuracia (Accuracy)

A acuracia mede a proporcdo global de acertos do modelo sobre o total de amos-
tras. Embora seja uma métrica intuitiva, ela pode ser enganosa em cenarios de possivel
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viés extremo.

, . TP+ TN
Acuracia = (3.4)
TP+ TN + FP+FN

3.5.2 Precisao (Precision)

A precisdo avalia a qualidade das predicdes positivas. Ela responde a pergunta: "De
todos os individuos que o modelo classificou como pacientes, quantos realmente eram
pacientes?". Uma precisao baixa indica uma alta taxa de falsos positivos.

. VP
Precisao = ———— (3.5)
VP +FP

3.5.3 Sensibilidade (Recall)

Esta métrica é critica em aplicacdes médicas de triagem. Ela mede a capacidade do
modelo de detectar a doenca quando ela existe. Um valor baixo de Recall é indesejavel, pois
implica que pacientes com insuficiéncia respiratoria estdo deixando de ser diagnosticados.

TP
Recall = ——— (3.6)
TP+ FN

3.5.4 Especificidade (Specificity)

Complementar ao Recall, a especificidade mede a capacidade do modelo de identificar
corretamente os casos negativos (saudaveis). Esta métrica é particularmente importante
neste trabalho para a analise de viés.

TN

E Ficidade = —2
specificidade TN 1+ FP

(3.7)

3.5.5 F1-Score

O F1-Score é a média harmonica entre a Precisao e o Recall. Ele fornece uma medida
tinica que penaliza valores extremos. E uma métrica essencial para comparar modelos,
pois exige que a rede tenha um bom desempenho tanto na detecgdo da doenca (Recall)
quanto na confiabilidade dessa deteccao (Precisdo).

Precisao x Recall
F1-Score =2 x — (3.8)
Precisao + Recall

15






Capitulo 4

Experimentos e Resultados

Este capitulo apresenta a sequéncia de experimentos realizados para investigar o
impacto da filtragem de ruido no desempenho dos modelos utilizados. A estrutura segue a
propria linha de experimentos, onde o resultado de um experimento justifica as decisdes
tomadas para conduzir o préximo.

4.1 Configuracao de Treinamento

Para garantir a reprodutibilidade, todos os modelos foram treinados (fine-tuning)
seguindo uma configuracdo padronizada:

« Funcao de Perda (Loss Function): Para esta tarefa de classificagéo, foi utilizada a
fungao Cross-Entropy Loss;

« Otimizador: Foi empregado o otimizador Adam com betas = (0.9, 0.98) e com taxas
de aprendizado diferentes para a base do modelo e nossa camada de classificagdo
adicional:

— Camadas de Base (Pré-treinadas): Foi aplicada uma taxa de aprendizado conser-
vadora de [r = 1e-5. Isso permite que os pesos da rede principal sejam ajustados
sutilmente para a nova tarefa.

— Camada de Classificacdo ("Cabeca"): Foi aplicada uma taxa de aprendizado de
Ir = 1e — 4. Como esta camada é nova e seus pesos sao inicializados aleatori-
amente, ela requer um aprendizado mais rapido e agressivo para mapear as
caracteristicas extraidas pela base para a nossa tarefa binaria;

— Seed = 42 fixa durante todos os experimentos;

4.1.1 Configuracoes de Pré-Processamento

Como os modelos utilizados sdo pré-treinados, os parametros de extragdo de carac-
teristicas foram mantidos fixos para corresponder a configuracdo de pré-treinamento
dos modelos:

17
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ParAmetro CNN10 AudioMAE

Sample Rate 32000 16000
Window Size 1024 1024
Hop Size 320 320
Mel Bins 64 128
Fmin 0 0
Fmax 16000 8000

Tabela 4.1: Configuragoes dos modelos utlizados

4.2 Experimentos - CNN10

A investigacgao sobre a eficacia da filtragem foi iniciada utilizando a arquitetura CNN10
como modelo de base.

4.2.1 Experimento 1: Analise de Instabilidade da Filtragem

O primeiro experimento teve como objetivo avaliar a estabilidade dos dois modos de
operagdo do classificador do filtro (descritos na Secéao 3.3).

Configuracao de Treinamento

Para este experimento, o modelo foi treinado por 50 épocas. Os parametros do filtro
foram mantidos fixos, utilizando os valores padrao recomendados baseados em estudos
anteriores. Os valores utilizados foram:

« n_grad_time =3
- n_grad_freq=3
o n_std_thresh = 2.0

Para investigar a influéncia do método de limiarizacédo, foram comparadas duas abor-
dagens: um primeiro modelo, treinado com limiar de valor fixo (6dB), e outro treinado
com limiar por porcentagem (34%).

Adicionalmente, para avaliar o impacto da intensidade da remocao de ruido, ambos
os modelos foram submetidos a dois cenarios de supressao distintos:

1. Moderada: Reducao parcial (50%, ou prop_decrease = 0.5) do ruido detectado;
2. Agressiva: Remocio total (100%, ou prop_decrease = 1.0) do ruido detectado.

Essa distincao foi feita para verificar se a supressao parcial introduz artefatos que afetam
a estabilidade do aprendizado.

Apods o treinamento, o modelo salvo foi submetido a um teste de sensibilidade. O
conjunto de teste foi processado 50 vezes, com o parametro de reducdo prop_decrease
variando linearmente de 1.0 até seu valor minimo 0.0 (sem filtragem). A performance do
modelo foi registrada em cada um desses 50 pontos para gerar as curvas de sensibilidades.
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Experimento 1: Resultados
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Figura 4.1: Analise de Sensibilidade entre os Modos de Filtragem.
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O resultado, apresentado na Figura 4.1, demonstra uma instabilidade severa em ambos
0s cenarios.

Visualmente, observa-se que os modelos apresentam alta performance apenas quando
os parametros de teste coincidem com os de treino, formando ’picos’ de acuracia ou
‘penhascos’ onde o desempenho falha catastroficamente. Isso prova que os modelos, inde-
pendentemente do modo do classificador, sofreram overfitting aos artefatos especificos
criados pelo filtro, em vez de aprenderem padrdes da patologia.

4.2.2 Experimento 2: Validaciao da Robustez

Apos identificar no Experimento 1 que a configuragao padrao do filtro induzia o modelo
ao aprendizado de atalhos (shortcut learning) devido a artefatos na subtracdo espectral,
este experimento teve como objetivo validar uma configura¢do mais robusta.

A hipoétese central era que as janelas de estimativa de ruido originais (3 x 3) eram
demasiadamente pequenas, gerando um perfil de ruido muito especifico e ruidoso. Para
mitigar isso, buscou-se suavizar a estimativa do ruido aumentando as dimensdes da janela
de anélise, conforme permitido pela ferramenta PEREIRA, 2020.

Configuracao de Parametros

Foram definidos novos pardmetros visando uma generaliza¢ado maior do perfil de ruido
(suavizac¢io), mantendo-se o limiar de detec¢io conservador:

« n_grad_time = 8
« n_grad_freq =4
o n_std_thresh =1.5

Com esses novos parametros de base, repetiu-se integralmente o protocolo de sensibi-
lidade do Experimento 1, treinando e testando modelos em quatro cenarios distintos.

Analise dos Resultados
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Figura 4.2: Analise de Estabilidade dos Parametros.

Os resultados demonstraram uma mudanga drastica no comportamento da CNN10.
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Diferentemente da instabilidade observada anteriormente, a aplicacido dos parametros de
suavizacdo resultou em curvas de sensibilidade lineares, indicando que o modelo parou
de utilizar os artefatos de filtragem como critério de decisdo.

Observou-se especificamente que:

1. Impacto da Intensidade: A supressiao moderada (prop_decrease = 0.5) demons-
trou manter o viés de filtragem, mesmo ap6s a suavizacdo da mesma. A supressao
intensa (prop_decrease = 1.0), que no Experimento 1 era a mais instavel, tornou-se
mais robusta com a suavizacao. Isso valida o uso da remocao total do ruido, essencial
para eliminar o viés ambiental sem inserir viés de filtragem.

2. Fixo vs. Porcentagem: Com o filtro estabilizado, ambos os métodos de limiar
(Fixo em 6dB e Porcentagem em 34%) apresentaram desempenho e estabilidade
equivalentes. A “falha” observada no experimento anterior néo era intrinseca aos
métodos, mas sim exarcebada pela parametrizacdo inadequada.

Definicao dos Parametros Finais

Diante da estabilidade alcancada, definiu-se a configuracdo final que sera utilizada
para a investigacao principal. Acrescentado aos parametros do Experimento 2, optou-se
pelo método de Limiar por Porcentagem (34%) devido a sua vantagem conceitual de
adaptar-se a faixa dinamica de diferentes dispositivos de gravacido, combinado com a
Supressao Total (100%) para garantir a maxima remog¢do do ambiente hospitalar e a
estabilidade da filtragem.

4.3 Experimentos - AudioMAE

4.3.1 Transferabilidade dos Parametros de Filtragem

Apos a estabilizacdo bem-sucedida da CNN10 no Experimento 2, o proximo passo
logico foi aplicar a mesma configuracao "6tima"de filtragem ao modelo AudioMAE. A
hipotese era que, sendo uma arquitetura mais avangada e pré-treinada de forma robusta, o
AudioMAE se beneficiaria igualmente (ou até mais) da estabilidade proporcionada pelos
parametros de suavizagao:

« n_grad_time =8
« n_grad_freq =4
e n_std_thresh =15

Resultados e Discussao
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Figura 4.3: Desempenho do AudioMAE com os parametros encontrados

Contrariando a hipétese inicial, os resultados do teste de sensibilidade para o Audio-
MAE (Figura 4.3) revelaram que a instabilidade persistiu. Diferentemente da CNN10, que
apresentou uma curva linear e estavel, o AudioMAE continuou demonstrando sensibilidade
as variacoes da intensidade do filtro, mantendo o comportamento de queda de performance
fora do ponto de treino.

Este resultado sugere uma diferenca fundamental na forma como a nova arquitetura
lida com artefatos de pré-processamento: O AudioMAE, baseado em Vision Transformers,
processa o espectrograma em patches e utiliza mecanismos de self-attention que capturam
relacdes globais e detalhes minuciosos. Devido a sua alta capacidade, o modelo foi capaz
de detectar e aprender os artefatos da filtragem mesmo com os parametros de suavizacao,
resultando no overfitting de pré-processamento.

Conclui-se, portanto, que os parametros de filtragem nao sao universais.

Foi conduzida uma investigacdo exploratoéria preliminar com diferentes configuracoes
de filtragem para o AudioMAE, No entanto, as analises demonstraram que a instabilidade
ao filtro persistiu de forma consistente, independentemente das combinacdes testadas. A
persisténcia desse fenomeno evidencia que a sensibilidade do AudioMAE néo é meramente
uma questdo de ajuste de hiperparametros, mas sim uma consequéncia de sua arquitetura
robusta baseada em atencio.

Apesar da sensibilidade observada aos artefatos de filtragem, para a condugéo do teste
final de verificacao de viés ambiental, optou-se por manter a configuracao de filtragem
padronizada, idéntica aquela validada para a CNN10. Essa decisdo visa garantir a con-
sisténcia metodologica e permitir uma comparacdo direta entre a capacidade das duas
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arquiteturas de lidar com o viés do dataset sob as mesmas condic¢des de pré-processamento,
independentemente das variacoes de estabilidade interna de cada modelo.

4.4 Experimento Final - Verificacio de Viés
Ambiental

Com os parametros de filtragem estabilizados (conforme definido nos experimentos
anteriores), foi conduzido o teste definitivo para verificar se o pré-processamento foi capaz
de mitigar o viés ambiental do dataset.

A Tabela 4.2 sumariza o desempenho dos dois modelos (CNN10 e AudioMAE) em
dois cenarios distintos: o Cenario Original, utilizando o conjunto de teste padréo, e o
Cenério com Ruido, onde ruido hospitalar foi inserido artificialmente em todas as amostras
antes da filtragem.

Modelo Cenario de Teste Acuracia F1  Precisio Recall Especificidade

CNN10 Filtragem sem Insercdo ~ 0.9907  0.9908  0.9818 1.0000 0.9815
Filtragem com Inser¢do  0.5278  0.6792  0.5143 1.0000 0.0556

AudioMAE, F%ltragem sem Insergalo 0.9907  0.9908  0.9818 1.0000 0.9815
Filtragem com Insercdo  0.5000  0.6667  0.5000 1.0000 0.0000

Tabela 4.2: Comparacado de desempenho dos modelos (CNN10 e AudioMAE) nos conjuntos de teste
com e sem insercdo de ruido hospitalar antes da filtragem.

4.4.1 Analise dos Resultados

Observa-se, primeiramente, que no Cenario Original, ambos os modelos apresentam
um desempenho funcional, com o AudioMAE atingindo indices de acuracia e F1-Score su-
periores a 99%. Estes resultados, embora aparentemente excelente, devem ser interpretados
com cautela.

O resultado critico revela-se no Cenario com Ruido. Ao introduzir o ruido hospitalar nas
amostras de controle e submeté-las ao mesmo processo de filtragem, podemos observar:

1. Colapso da Especificidade: Para ambos os modelos, a Especificidade caiu para 0.00.
Isso indica que os modelos falharam em identificar qualquer individuo saudavel
corretamente quando este estava inserido em um ambiente ruidoso.

2. Precisdo de 50%: Como o modelo passou a classificar indiscriminadamente todas
as amostras como pertencentes a classe 'Paciente’ (devido a presenca do ruido), a
precisdo caiu devido a alta presenca de falsos positivos.

3. Recall de 100%: O Recall maximo nio indica uma deteccao perfeita da doenca, mas
sim que o modelo classificou todas as amostras (positivas e negativas) como sendo
da classe "Paciente".
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4. Acuracia de 50%: Em um conjunto de teste balanceado, classificar todas as amostras
como pertencentes a uma unica classe resulta matematicamente em uma acuracia
de 50%, equivalente a um classificador aleatdrio ou tendencioso.
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Capitulo 5

Conclusao

O objetivo central deste trabalho foi investigar a eficacia da filtragem de ruido como
uma estratégia de pré-processamento para mitigar o viés ambiental presente em datasets
como o do projeto SPIRA. A premissa inicial era que, ao remover o ruido de fundo caracte-
ristico dos ambientes hospitalares, seria possivel forcar modelos de aprendizado profundo
a aprenderem biomarcadores da insuficiéncia respiratoria, eliminando o fenémeno de
shortcut learning.

A investigacdo foi conduzida através de um protocolo experimental rigoroso, dividido
em etapas de analise de estabilidade e verificacdo de viés. Os experimentos iniciais revela-
ram que a aplicacdo de filtros com parametros fixos introduz um novo problema: um "viés
de filtragem". Demonstrou-se que os modelos tendem a sofrer overfitting nos artefatos
espectrais gerados pelo processo de supressio, resultando em uma performance que se
degrada com pequenas variagdes nos parametros de teste.

O experimento final de viés trouxe a descoberta mais significativa deste trabalho. Ao
submeter os modelos a um conjunto de teste onde ruido hospitalar era inserido antes da
etapa de filtragem, observou-se um colapso total das métricas analisadas. Este resultado
comprova que a filtragem de ruido nao resultou na remocéo do viés. Tanto a CNN10 quanto
0 AudioMAE continuaram a utilizar o ruido residual (ou os fragmentos resultantes do
processo de filtragem) como o principal discriminador para a classe "Paciente".

Conclui-se, portanto, que a filtragem de ruido mostrou-se uma estratégia insuficiente
para a resolucdo do problema encontrado, pois ndo remove a correlagio entre o ambiente
acustico e a patologia, servindo apenas para transformar a natureza do atalho aprendido
pelo modelo.

O fato de uma arquitetura avancada e pré-treinada como o AudioMAE falhar da mesma
maneira que uma CNN tradicional reforca que a complexidade do modelo néo é solugéo
para dados enviesados. Pelo contrario, a maior capacidade de aprendizado destes modelos
pode torna-los ainda mais sensiveis a atalhos sutis.

Diante dos resultados obtidos, sugere-se que pesquisas futuras no contexto do projeto
SPIRA e similares foquem em abordagens diametralmente opostas, recomendando a in-
vestigacdo de outras técnicas de tratamento de audio ou de tratamento direto do dataset
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como estratégias de Data Augmentation.
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