UNIVERSITY OF SA0 PAuLO
INSTITUTE OF MATHEMATICS AND STATISTICS
BACHELOR OF COMPUTER SCIENCE

Testing Linux Drivers with
Device Emulation Aid

Lucas Pires Stankus

FiNAL EssAy

MAC 499 — CAPSTONE PROJECT

Supervisor: Paulo Meirelles

Co-supervisor: Marcelo Schmitt

S3do Paulo
December 5, 2021

Acknowledgments

For supporting me throughout the year, I acknowledge my parents, Renata and Vences-
lau, and my sister Julia. They did their best in putting up with my complaints during this
intense year of work. I also acknowledge my friends, Augusto, Gabriel, and Guilherme,
for being there for me when I needed it the most. A great thanks to Alexandru Ardelean,
Andy Shevchenko, Jonathan Cameron and Rob Herring for providing me guidance to
develop a high-quality device driver for the Linux kernel; and Darius Berghe, Dragos
Bogdan, and Nishant Malpani for mentoring and assisting me through the device driver’s
development. Last but clearly not least, a special thanks to my supervisors; Marcelo
Schmitt, for introducing me to the world of open-source and device driver development
and for being a source of inspiration and guidance; Paulo R. M. Meirelles for giving me
the opportunity to work with the Linux kernel and for being supportive throughout the

year; and both for putting a real effort in reviewing this work. Thank you all.

Resumo

Lucas Pires Stankus. Testando Drivers do Linux com Auxilio de Emulacao de Dis-
positivos. Monografia (Bacharelado). Instituto de Matematica e Estatistica, Universidade
de Sdo Paulo, Sao Paulo, 2021.

Drivers de dispositivos sdo uma das partes mais importantes do kernel Linux, compondo a maior
parcela do seu cédigo fonte. Todavia, ainda falta no kernel um arcabougo para validar e testar drivers.
Como consequéncia, esses acabam concentrando mais erros que qualquer outra de suas partes. Dentro
de varias solucdes de curto prazo, emulagio de dispositivos e utilizacdo desses como alvo de drivers vem
sendo uma tatica para testa-los adotada por membros relevantes da comunidade do Linux. Este trabalho tem
como objetivo analisar o uso de emula¢ido como ferramenta para auxiliar o desenvolvimento de drivers de
dispositivos no kernel Linux. Para atingir o objetivo proposto, o modelo ADXL313 foi usado como estudo
de caso. Ele é uma especificacio de circuito integrado que descreve um acelerometro digital de trés eixos,
recomendado para aplica¢des em alarmes de carros e caixas-pretas. Durante este trabalho, um driver para
controlar a operacéo de dispositivos ADXL313 no kernel Linux e um dispositivo ADXL313 emulado foram
desenvolvidos. Ambas implementatacdes foram testadas contra a outra. Devido ao sucesso deste projeto, o
driver desenvolvido foi aceito pela comunidade do Linux e vai estar disponivel a partir da versdo 5.16 do
kernel Linux. O teste do driver contra a emulacdo também foi bem sucedido. Eles puderam ser testados um
contra o outro em um ambiente virtual sem qualquer erro. Contudo, muitas deficiéncias desse processo foram
encontradas em comparacdo com arcabougos de testes, invalidando o uso da configuracéo para integracéo

continua de drivers de dispositivos em ambientes de producao.

Palavras-chave: Linux. Device driver. Free software. QEMU. Emulagéo. Integracdo Continua.

Abstract

Lucas Pires Stankus. Testing Linux Drivers with Device Emulation Aid. Capstone
Project Report (Bachelor). Institute of Mathematics and Statistics, University of Sdo
Paulo, Sao Paulo, 2021.

Device drivers are one of the essential parts of the Linux kernel, making up the most significant share
of its source code. However, the kernel still lacks proper frameworks for validating and testing drivers. As
a result, they end up concentrating more bugs than any other of its parts, and among many short-term
solutions, emulating devices and using them as the drivers’ target has been an approach for testing adopted
by relevant members of the Linux community. This work aims to analyse the use of device emulation as a
tool for aiding device driver development in the Linux kernel. The ADXL313 device model was taken as a
case study to achieve the proposed goal. This design is an integrated circuit specification that describes a
3-axis digital accelerometer recommended for car alarms and black boxes applications. During this work, a
driver to control the operation of ADXL313 devices for the Linux kernel and an ADXL313 emulated device
was developed. Both implementations were then tested against each other. Due to the success of this project,
the driver developed has been accepted by the Linux community and will be available from version 5.16
onwards of the Linux kernel. The test of the driver against emulation was also successful. They were able to
be executed against each other in a virtual environment without any errors. However, many shortcomings
of the process were found compared to standard testing frameworks, invalidating the use of the setup for

continuous integration of device drivers in a production environment.

Keywords: Linux. Device driver. Free software. QEMU. Emulation. Continuous Integration.

Contents

1

2

3

4

Introduction

1.1 Objective e
1.2 UsedConventions i
1.3 Manuscript Structure Lo

Linux Driver Development

21 Regmap
22 IO Channels
23 DevicePrivateData o o000
24 TIOOperations i e
241 read raw
2.4.2 Write Taw e e e e e
243 read avail
2.5 Device ProbingandSetup Lo L.
2.6 Summary L e

Device Emulation with QEMU

3.1 ADXL3130Verview i e e e e
3.2 Devicetree Infrastructure
33 QEMU e
34 Qdev ... e
35 SystemBusDevice o
351 MemoryMap
3.5.2 InterruptRequestMap
353 Devicetree
3.6 Standard Device

Device Emulation Implementation
41 Class

W DN DN

51

10
10
11
13
13
13
15

17
17
18
19
20
21
22
23
25
26

29
29

vii

viii

42 Device Type
43 Device State
4.4 SSI Interface Implementation . . .
441 Realize...........
442 Transfer

4.5 Emulation as a Development Tool
5 Final Remarks

6 Personal Appreciation

References

30
31
32
33
33
37

39

41

43

Chapter 1

Introduction

The Linux' operating system kernel is one of the most significant open-source software
projects to date and one of the most important collaborative projects in history. It is
almost ubiquitous in computing, being a predominant force in almost all of its areas.
From powering all current top 500 super computers [30], the majority of the cellphone
market share with Android [27] and about 70% of devices in IoT applications [20], a strong
argument can be made that it is the underlying foundation of modern computing.

Linux is surrounded by vibrant communities of contributors. Developers from around
the world dive into its development; either for the challenge, for self-improvement or for
fun, people make massive amounts of contributions to the Linux source code. From 2005
to 2017 it has received code patches from roughly 15,600 unique developers, ranking it as
one of the most popular projects ever [20]. With this many people actively inspecting and
improving the source code, the risk of security issues and user surveillance is minimized.
Its open nature foments a sense of community, encouraging knowledge sharing and
collaborative development among peers.

An operating system kernel is a software responsible for controlling the hardware
operations and managing the machine’s resources, providing abstractions for their usage.
It is a highly complex software; in particular, Linux’s source code has over twenty million
lines of code [20]. To handle its complexity and size, Linux separates its codebase into
smaller, maintainable parts called subsystems, each responsible for smaller portions of
the functionality provided by the kernel. There are components responsible for handling
different hardware devices within many of these subsystems. These programs are called
device drivers.

Drivers are fundamental to the functioning of the Linux kernel. A driver is responsible
for mapping existing kernel abstractions to the functionality provided by a given device.
With the abstractions, user-space programs can leverage the device’s resources without
dealing with any intricacies of the hardware [18]. As this process is heavily dependant
on the device specification, each board design must be targeted by a driver to function
correctly within the system. With the constant influx of new devices to the market, driver

! https://www.linuxfoundation.org/projects/linux/

https://www.linuxfoundation.org/projects/linux/

1 | INTRODUCTION

development has become one of the most significant parts of the Linux kernel. Currently,
the majority of lines of code in Linux comes from drives, but this brings some issues to

light [7].

Code in Linux “hardens” over time, which means older code tends to have fewer bugs
and security risks as more developers take time to examine it. However, device drivers are
much more recent than core parts of the kernel. Therefore, they tend to be more prone
to vulnerabilities. Also, verifying if a given driver works properly is often troublesome.
Validation against physical hardware is difficult. A subsystem might contain dozens or
even hundreds of drivers, rendering it almost impossible for maintainers to own every
device present in it. Validation against Continuous Integration (CI) frameworks is also
problematic. CI for device drivers is still an open problem in Linux. Today, there is no
built-in kernel infrastructure, and there are very few frameworks for it, most no longer
supported and none enforced by subsystems. In summary, it is possible to state that device
driver testing is still precarious. As a result, device drivers end up concentrating more
bugs than any other part of the kernel [7].

Among the various solutions for the lack of proper testing of device drivers, a short-term
possibility is using emulation to assist developers with device testing and development. This
approach consists of emulating the target device inside a machine emulation environment.
The device driver can then be tested against the emulated peripheral, possibly assisting
testing and development of the driver.

1.1 Objective

Using emulation to assist driver development is an idea that has already been in the
minds of some relevant members of the Linux communities®. However, it is still quite novel;
hence few real experiments have been made with it and not many reports are available.
It’s not clear if device emulation is a good solution for device driver testing, but it might
provide a great auxiliary tool while real long-term solutions are still in development.

Given that, this work aims to explore the use of emulation to assist the development
and testing of device drivers in Linux, taking the ADXL313 model as example. ADXL313
chips were designed by Analog Devices Inc. to measure acceleration primarily in car
alarms and black boxes, as they provide several built-in sensing functions and are quite
shock resistant.

1.2 Used Conventions

In this work, the following typographic convention will be used:
« italic will be used to express parts of the file system, including files and directories.

« monospaced will be used to express parts of the computer source code, such as
structures, variables and functions.

2 https://lore.kernel.org/linux-iio/20210614113507.897732-1-jic23@kernel.org/

https://lore.kernel.org/linux-iio/20210614113507.897732-1-jic23@kernel.org/

1.3 | MANUSCRIPT STRUCTURE

« bold will be used to highlight definitions and emphasize important concepts.

1.3 Manuscript Structure

Besides this introduction, the manuscript has five other chapters, organized as follows.
Chapter 2 introduces the core concepts of a device driver in Linux using the Industrial
I/O subsystem’s core framework, exemplified by the implementation of the ADXL313
driver in the subsystem. Chapter 3 presents the fundamental concepts behind device
emulation using QEMU, going through a bit of its architecture and device model and
necessary background. Chapter 4 follows the previous, focusing on concepts about device
emulation implementation itself with an in-depth overview of the ADXL313 emulation
code. Chapter 5 provides a discussion about the results of the exploratory work and
presents the conclusions and possible future works. Finally, Chapter 6 shares the author’s
personal appreciation about this work.

Chapter 2

Linux Driver Development

One of the essential parts of emulation is understanding the target hardware and how
it interacts with the surrounding software from a high level. However, to analyze whether
it can aid the development of its surroundings, in-depth knowledge of the interactions and
how the software is structured becomes essential. Therefore, as this work aims to study
how emulation can assist developers in device driver development, it is essential to break
down first how one can be implemented. This chapter aims to cover relevant core concepts
of driver development in Linux using the Industrial I/O (IIO) subsystem, focusing on how
the device is accessed from the system’s perspective and the driver’s main routines and
data flow.

For such, the ADX1L313" IIO driver implementation will be used as a role model. The
device is a 3-axis digital accelerometer with a handful of features, including configurable
automatic sleep mode and activity and inactivity setups for data capture. Additionally, it
works with various connection setups, including 4-wire and 3-wire SPI configurations, as
well as standard I*C.

This work does not focus on providing a comprehensive guide to Linux driver de-
velopment. This chapter gives a high-level view of driver structure and the necessary
background. Thus, beginners looking to get into driver development might find this
work lacking in some respects. For example, topics such as the kernel build system will
not be discussed here. If that is the case, one can find more guidance through Schmitt’s
work [29].

2.1 Regmap

Regmap is a register access mechanism provided by the Linux kernel that mainly targets
SPI, I*C, and memory-mapped registers. It was introduced in version 3.1 of the Linux
kernel to allow factorizing and unifying access to devices with different protocols. When
set, a regmap provides an abstract access layer to device registers which does not require
specifying the access method. To set up a regmap, one must initialize the appropriate

! https://www.analog.com/en/products/adxI313.html

https://www.analog.com/en/products/adxl313.html

2 | LINUX DRIVER DEVELOPMENT

configuration structures with data suited to the connection capabilities. All accesses to the
device are then wrapped into a unified API?, regardless of protocol [25][26].

Regmaps can leverage driver development for devices with support for multiple proto-
cols. All device access code can be easily abstracted away by setting a regmap at device
initialization for the invoked protocol. As access is often the only unique part of each
protocol implementation, the driver can be easily split into two conceptual parts, the
core code and the protocol-specific initialization and registration. This division leads to
cleaner code, with better separation of concerns, and fewer redundancies in general across
multiple kernel drivers [25].

regmap = devm_regmap_init_i2c(client, &adx1313_i2c_regmap_config);
if (IS_ERR(regmap)) {
dev_err(&client->dev, "Error initializing i2c regmap: %ld\n",
PTR_ERR(regmap));
return PTR_ERR(regmap);

O WNRE

Figure 2.1: FC regmap initialization for the ADXL313 driver.

Given that, the ADXL313 driver is split across three source files, adxI313 core.c,
adxl313_spi.c, and adxI313_i2c.c, holding, respectively, the core code and the SPI and
IC specific code. Regmap initialization and configuration are handled only in the latter
two. Figure 2.1 exemplifies a regmap initialization with proper error handling. A function
call to the appropriate protocol constructor takes as parameters the device being abstracted
and the regmap configuration for it. There are many possible properties one can set to a
regmap. The most relevant regmap properties for the ADXL313 driver are:

« reg_bits: The number of bits required to describe a register address, similar to the
32-bit and 64-bit definitions in modern machines for memory address space.

« val_bits: The number of bits in a register value, therefore the size in bits of the
value present in a given register address.

« rd_table: A pointer to a regmap_access_tab'le structure specifying the valid reg-
ister ranges for read access.

« wr_table: Analogous to rd_table for write access.
« max_register: The maximum valid register address.

- read_flag_mask: A mask to be set in the top bytes of the register address when
doing a read.

The regmap configuration structures for both SPI and I*C protocols of the ADXL313
driver can be seen in Figure 2.2 and the register tables referenced by it in Figure 2.3.

Apart from being able to easily catch invalid device register accesses by the driver,
specifying which registers can be written to and read from also enables one to use the
kernel debug tools provided by the regmap subsystem. Its debug interface can be found in

2The complete API can be found at https://github.com/torvalds/linux/blob/master/include/linux/regmap.h

https://github.com/torvalds/linux/blob/master/include/linux/regmap.h

2.1 | REGMAP

1 static const struct regmap_config adx1313_spi_regmap_config = {
2 .reg_bits = 8,
3 .val_bits = 8,
4 .rd_table = &adx1313_readable_regs_table,
5 .wr_table = &adx1313_writable_regs_table,
6 .max_register = 0x39,
7 /* Setting bits 7 and 6 enables multiple-byte read x/
8 .read_flag_mask = BIT(7) | BIT(6),
9 };
10
11 static const struct regmap_config adx1313_1i2c_regmap_config = {
12 .reg_bits = 8,
13 .val_bits = 8,
14 .rd_table = &adx1313_readable_regs_table,
15 .wr_table = &adx1313_writable_regs_table,
16 .max_register = 0x39,
17 }s
Figure 2.2: ADXL313 regmap configurations for SPI and FC.
1 static const struct regmap_range adx1313_readable_reg_range[] = {
2 regmap_reg_range (ADXL313_REG_DEVIDO, ADXL313_REG_XID),
3 regmap_reg_range (ADXL313_REG_SOFT_RESET, ADXL313_REG_SOFT_RESET),
4 regmap_reg_range (ADXL313_REG_OFS_AXIS(0), ADXL313_REG_OFS_AXIS(2)),
5 regmap_reg_range (ADXL313_REG_THRESH_ACT, ADXL313_REG_ACT_INACT_CTL),
6 regmap_reg_range (ADXL313_REG_BW_RATE, ADXL313_REG_FIFO_STATUS),
7 s
8
9 const struct regmap_access_table adx1313_readable_regs_table = {
10 .yes_ranges = adx1313_readable_reg_range,
11 .n_yes_ranges = ARRAY_SIZE(adx1313_readable_reg_range),
12 };
13
14 static const struct regmap_range adx1313_writable_reg_range[] = {
15 regmap_reg_range (ADXL313_REG_SOFT_RESET, ADXL313_REG_SOFT_RESET),
16 regmap_reg_range (ADXL313_REG_OFS_AXIS(0), ADXL313_REG_OFS_AXIS(2)),
17 regmap_reg_range (ADXL313_REG_THRESH_ACT, ADXL313_REG_ACT_INACT_CTL),
18 regmap_reg_range (ADXL313_REG_BW_RATE, ADXL313_REG_INT_MAP),
19 regmap_reg_range (ADXL313_REG_DATA_FORMAT, ADXL313_REG_DATA_FORMAT),
20 regmap_reg_range (ADXL313_REG_FIFO_CTL, ADXL313_REG_FIFO_CTL),
21 35
22
23 const struct regmap_access_table adx1313_writable_regs_table = {
24 .yes_ranges = adx1313_writable_reg_range,
25 .n_yes_ranges = ARRAY_SIZE(adx1313_writable_reg_range),
26 };

Figure 2.3: ADXL313 regmap register read and write tables.

the sysfs virtual file-system, located at /sys/kernel/debug/regmap/entry, where each entry
is an active regmap instance. The features provided by the interface often come in handy
for driver development. Among them, it provides ways to peek at register values at any
given instant. Thus, one can easily compare raw bit values with the actual return values
of the driver, making it a crucial validation tool in the developer’s toolkit [26].

2 | LINUX DRIVER DEVELOPMENT

2.2 1IIO Channels

The most important characteristic of the IIO subsystem is its interface. It abstracts the
actual communication with the driver, allowing generic user-space code to interface with
a particular device [6]. For such, IIO defines the concept of channels. A channel groups
information about a homogeneous data stream that must be exposed to user-space, either
for input or output. Besides the raw bits of data, a channel provides relevant metadata
for applications, such as the type of physical quantity being measured, sample frequency,
scale and offset values to convert data to S.I units, etc. Among the many properties that a
channel may have, ADXL313 makes use of the following [16]:

« type: The data type of the channel measurement, such as voltage, current, tempera-
ture, acceleration.

« address: A driver-specific identifier of the channel.

- modified: Specifies if a modifier is applied to the channel. The type of this is
dependant on the channel’s type, and the actual modifier is defined in channel2.

« channel2: Specifies the modifier to be applied if modified is set. An example modifier
is II0_MOD_X to specify the “x” axis in axial sensors.

« info_mask_separate: Indicates what information is exposed to the user-space that
is specific to the channel.

« info_mask_shared_by_type: Indicates what information is exposed to the user-
space that is shared by all channels of the same type.

« info_mask_shared_by_type_available: Indicates what availability information is
exposed to the user-space that is shared by all channels of the same type.

« scan_type: A custom structure containing relevant information about the data scan
itself, such as the endianness of the data and if it is signed or not. The only field
used by the ADXL313 driver is realbits, which stores the number of bits used to
store the value itself, excluding bits used for padding, for example.

ADXL313 is a 3-axis digital accelerometer that captures data for each axis independently.
To expose the data of each axis separately, the device driver implements three unique
channels. Per-axis configurable hardware offsets for the acceleration data are also exposed
per channel.

The raw data gathered from the accelerometer uses its scaling, defined in the datasheet.
However, to be meaningful, the constant for converting the data to standard units® must
be accessible and thus exposed as channel metadata. Along with that, ADXL313 devices
support configuring the polling rate of the acceleration, which can also be provided as
channel metadata. The last two channel attributes are set per device type. However, only a
specified set of polling rates can be chosen for the accelerometer; these need to be exposed
to user-space as well. The complete channel specification of the ADXL313 driver can be
seen in Figure 2.4.

3 Note that not all measurement types use SI units in IIO, one must check the documentation for the standard
unit of a given type of data. In the case of acceleration, the standard IIO unit is the same as SI.

2.2 | IO CHANNELS

1 #define ADXL313_ACCEL_CHANNEL (index, axis) { \
2 .type = IIO_ACCEL, \
3 .address = 1index, \
4 .modified = 1, \
5 .channel2 = IIO_MOD_##axis, \
6 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
7 BIT(IIO_CHAN_INFO_CALIBBIAS), \
8 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
9 BIT(IIO_CHAN_INFO_SAMP_FREQ), \

10 .info_mask_shared_by_type_available = \

11 BIT(IIO_CHAN_INFO_SAMP_FREQ), \

12 .scan_type = { \

13 .realbits = 13, \

14 s \

15 }

16

17 static const struct iio_chan_spec adx1313_channels[] = {

18 ADXL313_ACCEL_CHANNEL (O, X),

19 ADXL313_ACCEL_CHANNEL(1, Y),

20 ADXL313_ACCEL_CHANNEL (2, Z),

21 };

Figure 2.4: ADXL313 IO channels specifications.

Device drivers created by the Linux Device Model, the unified descriptor of devices in
the Linux kernel, expose a user-space interface through sysfs and the ones in IIO are no
exception [10]. The core framework of the IIO subsystem automatically creates and exposes
the device’s attributes from the properties of each channel declared by its driver. For an
ITIO device with index X, all its attributes are exposed under the /sys/bus/iio/iio:deviceX
directory of sysfs, where the attributes filenames are also generated given the channel
specification. For instance, the channel2 modifier set in the ADXL313 channels identify
what axis the channel represents, reflected by the file’s nomenclature. A typical ADXL313
device generates the following files and directories under its sysfs directory:

in_accel_sampling_frequency in_accel_y_calibbias of _node
in_accel_sampling frequency_available in_accel_y_raw power
in_accel_scale in_accel_z_calibbias subsystem
in_accel x_calibbias in_accel z raw uevent
in_accel_x_raw name

For each of these files the kernel subsystems processes the access accordingly, even-
tually calling either adxI313 read_raw, adxl313_write_raw or adxI313_read_avail, given
the touched file and the operation, either reading or writing. To convert a raw value to
standard units, IO defines the following formula: value = (raw + offset) * scale. Therefore,
reading from any in_accel_axis_raw returns the raw bit of acceleration data in a given
instant, which can then be multiplied by the value read from in_accel_scale to get the
actual standard unit measurement of the acceleration.

One caveat in the ADXL313 driver is that it does not actually implement offsets from
IIO’s perspective. By its definition, an offset is applied to the data at the software level,
while the ADXL313 offsets are applied at the hardware level. This difference is marked

10

2 | LINUX DRIVER DEVELOPMENT

by the different nomenclature of offset and calibbias. Hence, if a value is written into any
in_accel_axis_calibbias, the offset will be applied automatically to the acceleration data by
the device itself, which is not the case for offsets.

Lastly, the device’s polling rate can be checked or edited by, respectively, reading from
or writing to in_accel_sampling_frequency, while the list of valid sampling frequencies can
only be retrieved by reading from in_accel_sampling frequency available.

2.3 Device Private Data

Most device drivers need to store data particular to the device instance to assist its
operation. In IIO, device private data must be encapsulated in a single data structure which
is then stored by the generic IIO device at runtime. With this approach, the generic device
is used by internal kernel code, which abstracts the internal driver data, and, when needed,
the private data structure can be retrieved by a function call. Thus, from an object-oriented
perspective, the relationship between the two structures is similar to inheritance, where
the iio_dev is the superclass, and the private data structure is the subclass. The structure
in Figure 2.5 defines the private data of an ADXL313 instance.

struct adx1313_data {
struct regmap *regmap;
struct mutex lock; /* lock to protect transf_buf x/

__lels transf_buf ____cacheline_aligned;

abwNE

s

Figure 2.5: Data struct that holds ADXL313 device private data.

« regmap: The regmap used for device register access.
« lock: A mutex to lock the cacheline aligned transfer buffer.

« transf buf: A buffer used for multi-byte transmissions, as it needs to be cacheline
aligned for direct memory access (DMA) support.

2.4 IIO Operations

The iio_info structure defines the static device information used by the IIO subsystem
at device registering and while handling any incoming request to the device. Among its
fields iio_info stores several objects, such as pointers to IIO attribute-linked functions,
general-purpose and event attributes, buffers and triggers.

The static information of the ADXI313 driver sets callbacks for the read_raw,
write_raw and read_avail functions (see Figure 2.6). In the IIO subsystem, these call-
backs are responsible for, respectively, requesting data from the device, pushing incoming
data to the device and returning the list of available values for a given type of information.
All of them operate based on the device channel definitions, taking as arguments a reference
to the device, a reference to the accessed channel specification and the type of information
being requested.

2.4 | IIO OPERATIONS

static const struct iio_info adx1313_info = {
.read_raw = adx1313_read_raw,

.write_raw = adx1313_write_raw,
.read_avail = adx1313_read_freq_avail,

aphwNRE

s

Figure 2.6: Struct declaring the static information of the ADXL313 driver.

Given that the three functions operate on the same parameters, the callbacks have
a similar structure between them. First, a lookup table finds the channel type. Then
the underlying subroutines are called to perform the desired operation, according to the
reference of the channel specification. The action to be performed can be further specialized
according to the actual channel attributes. The implementations of those will follow in the
following subsections.

2.4.1 read raw

Among the three callbacks, read_raw is the most complex as it deals with the largest
amount of distinct types. It handles reads of raw acceleration data (II0_CHAN_INFO_RAW),
of the scale constant for standard unit conversion (II0_CHAN_INFO_RAW), of the offset
applied to the acceleration (IIO_CHAN_INFO_CALIBBIAS) and of the current sampling
frequency of the device (II0_CHAN_INFO_SAMP_FREQ).

The subroutines for each data type are quite similar, consisting of reading one or
more registers of the device, processing the bits accordingly and returning the expected
value. The only exception is the scale constant given by the datasheet and can be returned
without peeking at the accelerometer. As regmap abstracts the actual device access, the
subroutines will differ the most on data processing. For reference, the full implementation
of adx1313_read_raw can be seen in Figure 2.7.

Parsing and processing the raw data gathered from the device can be a cumbersome
task. However, as these issues are recurrent around the Linux kernel, it provides general
implementations treating data to simplify dealing with parsing and processing. For instance,
several functions automatically convert little-endian or big-endian to the actual CPU
endianness. Another example is converting raw bits, returned from regmap as unsigned
chars, to signed integers. These features are widely used across multiple drivers and
dramatically improve the driver developer workflow. For such, ADXL313 uses both of
these function sets, as its acceleration data is a 13-bit signed integer stored across two
8-bit registers in little-endian.

However, some processing has to be done per device according to its implementation,
even with the extensive kernel infrastructure. In the ADXL313 driver, this happens in two
instances. Firstly, the offset scale used internally by the accelerometer is four times larger
than the acceleration’s scale. Thus, the offset must be multiplied by four before it is passed
to user-space to be consistent with the acceleration. Secondly, the sampling frequency of
ADXL313 is not a value by itself. It is an index for a table of valid polling rates defined at
the device-sheet and described by adx1313_odr_freqs in Figure 2.8. Therefore, the raw
data must be matched against the table, and the result is the returned value.

12

2 | LINUX DRIVER DEVELOPMENT

1 static int adx1313_read_raw(struct iio_dev *indio_dev,
2 struct iio_chan_spec const *chan,
3 int xval, int xval2, long mask)
4 {
5 struct adx1313_data xdata = iio_priv(indio_dev);
6 unsigned int regval;
7 int ret;
8
9 switch (mask) {
10 case ITIO_CHAN_INFO_RAW:
11 ret = adx1313_read_axis(data, chan);
12 if (ret < 0) return ret;
13
14 *val = sign_extend32(ret, chan->scan_type.realbits - 1);
15 return IIO_VAL_INT;
16 case ITO_CHAN_INFO_SCALE:
17 /*
18 * Scale for any g range is given in datasheet as
19 * 1024 LSB/g = 0.0009765625 * 9.80665 = 0.009576806640625 m/s"2
20 */
21 *val = 0;
22 xval2 = 9576806;
23 return IIO_VAL_INT_PLUS_NANO;
24 case ITIO_CHAN_INFO_CALIBBIAS:
25 ret = regmap_read(data->regmap, ADXL313_REG_OFS_AXIS(chan->address), ®val);
26 if (ret) return ret;
27
28 /*
29 *x 8-bit resolution at +/- 0.5g, that is 4x accel data scale
30 x factor at full resolution
31 */
32 xval = sign_extend32(regval, 7) x 4;
33 return IIO_VAL_INT;
34 case ITO_CHAN_INFO_SAMP_FREQ:
35 ret = regmap_read(data->regmap, ADXL313_REG_BW_RATE, ®val);
36 if (ret) return ret;
37
38 ret = FIELD_GET(ADXL313_RATE_MSK, regval) - ADXL313_RATE_BASE;
39 *val = adx1313_odr_freqs[ret][0];
40 *val2 = adx1313_odr_freqs[ret][1];
41 return IIO_VAL_INT_PLUS_MICRO;
42 default:
43 return -EINVAL;
44 }
45 }
Figure 2.7: Function for handling raw read operations for the ADXL313 devices.
1 static const int adx1313_odr_freqs[][2] = {
2 [6] = { 6, 250000 },
3 [1] = { 12, 500000 },
4 [2] = { 25, 0 },
5 [31 = {50, 01},
6 [4] = { 100, 0 },
7 [51 = { 200, 0 },
8 [6] = { 400, 0 },
9 [7]1 = { 800, 0 },
10 [8] = { 1600, 0 },
11 [9] = { 3200, 0 },
12 };

Figure 2.8: Sample frequency rate table of the ADXL313 driver.

2.5 | DEVICE PROBING AND SETUP

2.4.2 write_raw

The ADXL313 driver implementation of the write_raw callback only handles writes of
two data types IIO_CHAN_INFO_CALIBBIAS and ITO_CHAN_INFO_SAMP_FREQ, as seen in
Figure 2.9. Both of these subroutines are fairly similar to the read_raw implementations,
but with the inverse data flow. Therefore, a user-space value is received, parsed and then
written to the device. For the offset, given the scale difference stated previously, the input
must be divided by four before it is written to the device to be consistent. While for the
sampling frequency, the input is used for an inverse search on the frequency table to find
the index. It is then written onto the device if the search is successful.

1 static int adx1313_write_raw(struct iio_dev *indio_dev,
2 struct iio_chan_spec const xchan,
3 int val, int val2, long mask)
4 {
5 struct adx1313_data *data = dio_priv(indio_dev);
6
7 switch (mask) {
8 case ITIO_CHAN_INFO_CALIBBIAS:
9 /%
10 *x 8-bit resolution at +/- 0.5g, that is 4x accel data scale
11 * factor at full resolution
12 */
13 if (clamp_val(val, -128 x 4, 127 * 4) != val)
14 return -EINVAL;
15
16 return regmap_write(data->regmap, ADXL313_REG_OFS_AXIS(chan->address), val / 4);
17 case IIO_CHAN_INFO_SAMP_FREQ:
18 return adx1313_set_odr(data, val, val2);
19 default:
20 return -EINVAL;
21 }
22 }

Figure 2.9: Function for handling raw write operations for the ADXL313 devices.

2.4.3 read_avail

Finally, the read_avail function is the simplest of the bunch, handling only
IIO_CHAN_INFO_SAMP_FREQ. As the function is only responsible for returning the
available values for the sampling frequency, it must only return the values present in
adx1313_odr_fregs tables. For that, the subroutine only has to return a pointer to the
table, its size and data type, as seen in Figure 2.10.

2.5 Device Probing and Setup

When a new device is discovered by the kernel system, the bus-specific routine is
dispatched to find a suitable driver for the device in the known drivers’ list. The bus routine
then calls its registered probe function if one is identified. The probe is responsible for
initializing all aspects of the driver necessary to support the newly discovered device. This
includes, for example, allocating memory for the private structures, setting up the device’s
configuration and registering the device itself in the appropriate subsystem [10].

14

2 | LINUX DRIVER DEVELOPMENT

OCoO~NOOUDWNRE

static int adx1313_read_freq_avail(struct iio_dev xindio_dev,
struct iio_chan_spec const xchan,
const int **vals, int xtype, int xlength,

long mask)
{
switch (mask) {
case ITIO_CHAN_INFO_SAMP_FREQ:
*vals = (const 1int *)adx1313_odr_fregs;
*length = ARRAY_SIZE(adx1313_odr_freqs) * 2;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}

Figure 2.10: Function for handling read available operations for the ADXL313 devices.

OCo~NoOOUhwWNE

[**
* adx1313_core_probe() - probe and setup for adx1313 accelerometer
* @dev: Driver model representation of the device
* @regmap: Register map of the device
* @name: Device name buffer reference
* @setup: Setup routine to be executed right before the standard device
* setup, can also be set to NULL if not required
*

* Return: 0 on success, negative errno on error cases
x/
int adx1313_core_probe(struct device xdev,
struct regmap *regmap,
const char *name,
int (*setup) (struct device *, struct regmap *))

struct adx1313_data xdata;
struct iio_dev xindio_dev;
int ret;

indio_dev = devm_iio_device_alloc(dev, sizeof(*xdata));
if (!indio_dev) return -ENOMEM;

data = ijo_priv(indio_dev);
data->regmap = regmap;
mutex_init(&data->lock);

indio_dev->name = name;

indio_dev->info = &adx1313_info;

indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adx1313_channels;
indio_dev->num_channels = ARRAY_SIZE(adx1313_channels);

ret = adx1313_setup(dev, data, setup);

if (ret) {
dev_err(dev, "ADXL313 setup failed\n");
return ret;

return devm_iio_device_register(dev, indio_dev);

Figure 2.11: Probe function registered for the ADXL313 driver.

As stated in Section 2.1, part of the ADXL313 initialization is protocol specific. Hence,

2.6 | SUMMARY

both the I?C and SPI counterparts split the device probe into two separate functions.
adx1313_core_probe holds the code shared by both protocols, responsible for configuring
the device model representation, for allocating and initializing the private device data, for
ensuring the device is in a workable state and setting it up for driver use and, finally, for
registering it in the IIO subsystem (see Figure 2.11). However, as a device initialization is
not complete without the protocol-specific part, the core probe is not registered by any
device as its probe function.

On the other hand, the protocol-specific probe function is the first part of the ini-
tialization process. They are responsible for setting up the device among the subsys-
tem, configuring and initializing a regmap and, lastly, calling the core probe to finish
the device initialization. Since the probe of both protocols does the same procedures
thing, but for different device types, their code structure is highly similar, exemplified by
adx1313_spi_probe in Figure 2.12.

1 static int adx1313_spi_probe(struct spi_device *spi)
2 {
3 const struct spi_device_id xid = spi_get_device_id(spi);
4 struct regmap *regmap;
5 int ret;
6
7 spi->mode |= SPI_MODE_3;
8 ret = spi_setup(spi);
9 if (ret) return ret;
10
11 regmap = devm_regmap_init_spi(spi, &adx1313_spi_regmap_config);
12 if (IS_ERR(regmap)) {
13 dev_err(&spi->dev, "Error initializing spi regmap: %Lld\n", PTR_ERR(regmap));
14 return PTR_ERR(regmap);
15 }
16
17 return adx1313_core_probe(&spi->dev, regmap, id->name, &adx1313_spi_setup);
18 }

Figure 2.12: SPI specific probe function of the ADXL313 driver.

2.6 Summary

As stated in the introduction of this chapter, this is not a comprehensive guide to
Linux driver development. As one may have noticed, a significant part of the intricacies of
the code snippets presented throughout this chapter are purposely ignored in favor of a
broader view of the code behaviour. Also, several parts of the driver implementation are
not present in this chapter, as they would not add much value in terms of exemplifying
the driver data flow; even though they are essential for its proper functioning. However,
given this broad overview of an IIO device driver, one can have a better understanding of
how data is moved to and from the devices by the driver. This is relevant for emulation,
as it is now plausible for one to map an abstract action in the operating system, such as
reading from a file in sysfs, to its actual consequence in the hardware-level, such as an
access to a certain device register, following with the example. With this in mind, we can
now follow up with the emulation itself.

15

Chapter 3

Device Emulation with QEMU

With the basic understanding of a driver in mind, the following two chapters provide
an overview of the code required to emulate a sensor device in QEMU. For such, they
will cover the necessary fundamentals and key concepts behind device emulation using
QEMU, including relevant code snippets retrieved from an example targeting the ADXL313
accelerometer. The emulation itself is heavily dependant on the target device. However,
while the expected behaviour of the code should drastically change between devices, the
general guidelines and key concepts presented here should be generalizable for most
cases.

This chapter, in particular, will cover the necessary foundations of the QEMU’s vir-
tual machine architecture and its device model, and how one can modify the virtual
machine in order to add a new device and its dependencies, without going through its
implementation.

3.1 ADXL313 Overview

As seen in Chapter 2, the current ADX1L.313 Linux driver only implements standard
read/write functionality. It lacks triggers and triggered buffers; thus, no feature that uses
interrupt signals is supported at the moment. At this state, the accelerometer in Linux
behaves like a polling system for getting the current acceleration, with the added option
of setting offsets to the retrieved data. Nevertheless, this simple implementation requires
complex interfacing with the IIO core framework and shares the same core concepts as
more advanced device drivers.

Considering the current driver state and that the emulation code is as complex as
the device it is trying to emulate, the code to support such features is quite simple but
still presents some meaningful challenges. From such challenges, it is possible to analyze
the viability of emulation with QEMU to aid driver development and testing, making the
ADXL313 a proper case study.

17

18

3 | DEVICE EMULATION WITH QEMU

3.2 Devicetree Infrastructure

Most modern machines rely on auto-configuration protocols, commonly ACPI, to
automatically identify connected devices and build a model of the available hardware.
They require minimal to no pre-configuration from users and make the computers ac-
cessible for non-technical people with ’plug-and-play’ style features. However, ACPI
raises several questions regarding system performance and security, which are strong
roadblocks for some hardware implementations [9]. System on a Chip (SoC) and Single
Board Computers (SBC) designs usually lack ACPI implementations or any other means of
discovering devices, which leaves them with an open problem for modelling the available
hardware [8][28]. To solve this, Linux is now favouring the adoption of Devicetrees.

The Devicetree (DT) is a data structure specially designed to describe the available
hardware in a device concisely. A Devicetree Source (DTS) file describes the hardware in
an expressive and human-readable way. It contains a node-tree data structure where each
node represents a single component of an SBC or SoC and may contain child nodes and
properties definitions. A node property can hold integer cells, strings, raw bytestrings,
hexadecimals, references to other nodes, or it can be left empty. To make DTS development
friendlier and make its overall structure more readable, labels can be used as aliases to
reference nodes, and external definitions can be included from Devicetree Include Files
(DTSI), which may also include definitions from other DTSI files [23].

A node that describes a particular sensor device is called device node. Since these
sensors require device drivers to work properly, device nodes are set to have a compatible
property that holds one or more strings specifying the device model compatibility. The
order of the strings is important as it sets a matching priority, from most specific to most
general, and thus allows for setting compatibility with families of device drivers. The rec-
ommended format for the compatible strings is "manufacturer,model", where manufacturer
identifies the manufacturer of the chip and model stands for the device model name or
number, as the following example:

compatible = "mediatek,mt2701-cirq", "mediatek,mtk-cirq";

For device nodes with this compatible list, the first match attempt will be against a
device driver compatible with mediatek,mt2701-cirg. If no such driver is found, then the list
follows on, and a match will be tried against drivers compatible with mediatek,mtk-cirq. If
again no driver is found, the node can be ignored. Figure 3.1 shows a device node example
for an ADXL313 digital accelerometer.

The raw DTS format is great for human readability but is prohibitively expensive to be
stored and processed at boot time, so it needs to be compiled to a better-suited format first
by the Devicetree Compiler (DTC). The compilation output is a flat binary encoding of the
Devicetree called Flattened Devicetree or Devicetree Blob (DTB). The binary encodes the
entire Devicetree in a single, linear, pointerless data structure that is small enough to fit in
the bootloader and fast enough to process at boot time [23].

On Linux, the blob is passed to the kernel at boot time by the bootloader, or it is wrapped
up with the kernel image, the latter case for supporting non-DT aware firmware [22].
Early in the boot, the kernel parses the DTB to identify the machine and execute the

3.3 | QEMU
1 #include <dt-bindings/gpio/gpio.h>
2 #include <dt-bindings/interrupt-controller/irq.h>
3 spi {
4 #address-cells = <1>;
5 #size-cells = <0>;
6
7 /* Example for a SPI device node x/
8 accelerometer@d {
9 compatible = "adi,adx1313";
10 reg = <0>;
11 spi-max-frequency = <5000000>;
12 interrupt-parent = <&gpio0>;
13 interrupts = <0 IRQ_TYPE_LEVEL_HIGH>;
14 interrupt-names = "INT1";
15 };
16 }s

Figure 3.1: A DTS device node example for the ADXL313 digital accelerometer using the SPI protocol.

platform-specific code required. Later in the kernel initialization, the blob is utilized again
to retrieve the list of all device nodes, which are then used to populate the Linux Device
Model with data about the platform.

3.3 QEMU

QEMU is a generic and open-source machine emulator and virtualizer. An emulator

enables a computer, called host, to run programs targeted for another computer, called guest.

Following the trail of thought, a machine emulator aims to emulate an entire computer,
which enables running a whole operating system and its applications in a virtual machine
(VM). QEMU mainly implements full system emulation for several computer architectures,
including x86, arm, and PowerPC. It also supports computer virtualization and user-space
emulation for Linux machines [3].

With the architectures, QEMU includes complete configuration for many boards, such
as various Raspberry Pi models. These configurations are virtual machines modelled based
on real-world board specifications and thus can emulate the intricacies of the board, which
would save a developer from having to test code on real hardware. Documentation for
the supported machine specifications and architectures can be found inside the system
documentation' directory at QEMU’s source code repository.

One of the emulated specifications is virt, a generic virtual machine that, on the
contrary, does not target any real-world hardware specification. Most architectures in
QEMU have a virt machine, and they tend to be very minimal, including only the necessary
to get a system running. Such machines are targeted for use cases where reproducing the
particularities and limitations of a bit of hardware is not required [12].

Using QEMU as a tool for assisting developers is not a novel idea. Given its capabilities
and open-source nature, there has been a growing interest in using QEMU to build tools and
frameworks in complex use cases [24][17][19]. It enables programmers to have low-level

! https://gitlab.com/qemu-project/qemu/-/tree/master/docs/system

19

https://gitlab.com/qemu-project/qemu/-/tree/master/docs/system

20

3 | DEVICE EMULATION WITH QEMU

control of the hardware and gives implementations for most typical computer architectures,
making it great for code inspection and hand-crafted simulated environments. With
that, QEMU presents itself as a perfect candidate for any exploratory work using virtual
machines.

As this work aims to analyze how emulation can aid the development and testing
of device drivers using virtual machines, the particularities of any device other than the
actual test target is out of scope. There are fewer moving parts in virtual architectures’
hardware because of their lean configuration. Thus they tend to be easier to modify. Given
that, virt specs shine as the perfect candidates for emulating sensors. The best option
would be an arm-based architecture since the ADXL313 accelerometer is mainly targeted
at SoCs and SBCs based on it. Out of the bunch, aarch64 is the easiest to configure custom
kernel versions and, because of that, is the one used in the code examples. One caveat to
note, by default arm virt uses a 32-bit cortex-a15 CPU, so a custom one with 64-bit support
must be explicitly set to use the aarch64 architecture [12].

For virt machines, the hardware is built at VM startup, and the virtual machine specs
are hard-coded in the source; hence changing the hardware configuration requires editing
its source code. This forces users to understand some concepts of its architecture to make
simple modifications to the machine [12]. Since this chapter aims to explain the code
required for device emulation, the required changes for adding a virtual device will also
be covered in later sections. However, QEMU is a highly complex software with many
features, so going in-depth about them is significantly outside of scope, and the snippets
will focus closely only on the required concepts.

QEMU’s documentation has gone a long way in recent years, but it still lacks in some
ways. Platforms tend to have their overall structure well documented with information
about their devices and particularities of the board implementation, while QEMU’s internal
details are often overlooked. The lack of official information about such details blurs the
line of what is architecture or board specific to what is global to QEMU. Therefore, even
though the intricacies of QEMU covered in the following sections are mostly global, some
will be exclusive to arm virt.

3.4 Qdev

In QEMU, the virtual devices are organized using a device model abstraction called
qdev (exemplified in Figure 3.2). They are managed in a tree-like data structure of devices
connected by buses. Qdev offers a common API for virtual devices with generic configu-
ration and control for different use cases while keeping the overall model conceptually
simple [2].

In this abstraction, a bus is responsible for handling data transfers. All devices must
have a bus as their parent, and buses must be implemented by devices. This relationship
between buses and devices builds the overall structure of the Qdev tree. Taking an example
from Figure 3.2, the PIIX4_PM device implements an I*C bus, which in turn holds several
other devices. The only exception to the general rule is the main-system-bus, the root bus
for the device model tree in QEMU. A single bus can have multiple children devices, and

3.5 | SYSTEM BUS DEVICE

main-system-bus

6440 FX-pci-host)

(piix3-ide) (piix3—usb-uhci PIIX4,P:/|)
Z_\ l

| ide.1 | I usb.0 | i2c

I\
Combusepom))))))

ioapic

i440FX cirrus—vga)

ide.0

(i8042) Cmc146181 rtc)

Figure 3.2: An example tree of a device structure using qdev [2].

all communication done by them is handled by the direct parent bus. Usually, the children
devices would also have local addresses within the scope of their parent [13][2].

To have a particular transfer protocol inside a VM in QEMU, a bus must be implemented
by one of the machine’s devices, usually an emulated bus controller. Despite that, to increase
the security against attacks from the guest machine and to reduce the risk of the virtual
machine being broken by any kernel updates, virt machines in QEMU tend to avoid having
many controllers. To emulate sensor devices, this comes up as an issue as most of them
use either the SPI or I*C transfer protocols, both lacking in the default configuration of
most virt machines. Therefore, to add a sensor to the virtual architecture, one device that
implements the correct bus protocol must be added first.

3.5 System Bus Device

Even though a bus and a device are conceptually distinct, in practice, devices that
implement a bus are wrapped into one single entity called system bus device (sysbus).
As sysbus devices include both standard devices and buses, their initialization is more
complex. Along with the standard device emulation code, they require their mapped region
of memory in the I/O address space and an I/O pin to signal interrupt requests (IRQ).

There would be little to no difference choosing either SPI or I*C as the data transfer
protocol to emulate a sensor device; both are plausible to work within the VM. Also, QEMU
already has implementations of sysbus devices for either of them, leaving no need to write
the emulation code from scratch. Therefore, there should not be much difference between
each protocol in terms of VM structure. The main decider between them should be what
does the target device support. If a device supports both, as ADXL313 does, either protocol
suffice. Given that, the code examples will use QEMU’s implementation of the pl022% bus
microcontroller to handle SPI data transfers. The following subsections will get in-depth
about memory-mapped regions for device I/O and interrupt generation.

2 https://datasheets.globalspec.com/ds/4439/ARM/8A846544-6043-483B-BF18-579EE30A8CC1

21

https://datasheets.globalspec.com/ds/4439/ARM/8A846544-6043-483B-BF18-579EE30A8CC1

22

3 | DEVICE EMULATION WITH QEMU

3.5.1 Memory Map

One common abstraction of peripheral device communication is memory-mapped I/O
(MMIO). Some regions of the addressable memory space are allocated for a particular I/O
device. Instead of a typical read/write to memory, when these addresses are accessed, the
hardware generates a data access request and sends it to the device. The request is then
processed by the peripheral, and the response is given as a regular memory operation from
the user’s perspective. As it changes the usable memory layout, the BIOS usually creates
MMIO regions at boot time and rarely changes during regular operation. The operating
system also has to interface with them to properly manage the system RAM without any
conflict [5][26].

QEMU uses MMIO for most I/O device communication, with memory addresses defined
during the VM initialization. Buses are bound to function under MMIO operation, requiring
a memory address region at creation, validated and reserved for it. A memory region in
QEMU is defined by the MemMapEntry structure, which includes the base memory address
and the region’s size. One important distinction is that an MemMapEntry only holds the
necessary information to identify the area of the memory, but by itself, the structure does
not interact with it [12][14].

QEMU enforces safety measures while registering the address in the memory. Unless
explicitly set, allocated MMIO areas cannot overlap; for such, it would cause request
duplication between the devices on writes and possibly undefined behaviour on reads.
Likewise, mappings can be set to follow general memory region rules according to their
application, defined by the architecture and board specification. For instance, the arm virt
defines the following region map for the memory addresses®:

« Between 0 and 128MB: reserved for flash devices (includes boot device)

« Between 128MB and 256MB: reserved for miscellaneous device I/O

« Between 256MB and 1GB: reserved for PCI support, but yet to be implemented
« Over 1GB: reserved for normal RAM

On some virtual architectures, usually the ones with more complex device structures,
it is common to centralize the MemMapEntry structures in a map of some sort. Since the
map only holds the entry structures, it does not provide any checks or validation of the
regions. However, moving them all to a central location helps the overall code organization
and simplifies dealing with the memory layout. A map is usually set by an array of
MemMapEntry, where the index serves as the identifier for the region itself. Macros can
cover the indexes to avoid magic numbers in the code.

In arm virt two arrays are used to map the memory, one for the lower memory, for
addresses up to RAM and used for most cases, and one for the higher memory, after RAM
and used for some exceptional use cases. Figure 3.3 exhibits the low memory map of the
architecture, in it VIRT_SPI stores the index of the entry for the SPI controller.

% From code at: https://gitlab.com/qemu-project/qemu/-/blob/master/hw/arm/virt.c#L120

https://gitlab.com/qemu-project/qemu/-/blob/master/hw/arm/virt.c#L120

3.5 | SYSTEM BUS DEVICE

1 static const MemMapEntry base_memmap[] = {
2 /* Space up to 0x8000000 is reserved for a boot ROM x/
3 [VIRT_FLASH] = { Ox00000000, Ox08000000 },
4 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
5 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
6 [VIRT_GIC_DIST] = { 0x08000000, Ox00010000 },
7 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
8 [VIRT_GIC_V2M] = { 0x08020000, O0x00001000 },
9 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
10 [VIRT_GIC_VCPU] = { 0x08040000, O0x00010000 },
11 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
12 [VIRT_GIC_ITS] = { Ox08080000, 0x00020000 },
13 /* This redistributor space allows up to 2%64kBx123 CPUs x/
14 [VIRT_GIC_REDIST] = { Ox080A0000, OxOOF60000 },
15 [VIRT_UART] = { 0x09000000, O0x000010600 },
16 [VIRT_RTC] = { 0x09010000, 0x00001000 },
17 [VIRT_FW_CFG] = { 0x09020000, O0x00000018 },
18 [VIRT_GPIO] = { 0x09030000, 0x00001600 },
19 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
20 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
21 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
22 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
23 [VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
24 [VIRT_PVTIME] = { 0x090a0000, O0x00010000 },
25 [VIRT_SECURE_GPIO] = { 0x090b00OOO, OX00001660 },
26 [VIRT_MMIO] = { 0x0a000000, O0x00000200 },
27 [VIRT_SPI] = { 0x0b10000O, Ox00001000 },
28 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size x/
29 [VIRT_PLATFORM_BUS] = { 0x0cO0OO0O, O0x02000000 1},
30 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
31 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2effo000O },
32 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
33 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
34 /* Actual RAM size depends on initial RAM and device memory settings */
35 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
36 };

Figure 3.3: Memory map with a VIRT_SPI entry.

3.5.2 Interrupt Request Map

An interrupt request (IRQ) is conceptually simple. It is a hardware signal passed
to an interrupt controller, which temporarily stops the running program on the CPU
and launches another, the interrupt handler. Interrupts are fundamental to computing
because they allow hardware devices to signal when they need to be processed without
constantly polling the device for updates, for example, checking when there is a keypress
on a keyboard. Computers nowadays have multiple interrupt lines where IRQs can be
sent through with specific functionalities, allowing more intelligent decisions by the
handler [5].

QEMU implements interrupt after the hardware counterpart. They are just signals
sent through an emulated I/O pin, usually a General Purpose Input/Output (GPIO) pin.
Consequently, setting up an IRQ for a sysbus device consists of choosing the correct
pin to use for its interrupts. The interrupt controllers are modelled after their real-life
counterparts, including their set of intricacies, so the chosen interrupt line would vary
according to each controller and require case by case analysis. There is a function called
qdev_get_gpio_in to get a GPIO pin from the controller, which takes as arguments a
sysbus device to take the pin from and an integer with the pin id within the bus. For the

3 | DEVICE EMULATION WITH QEMU

case of interrupt controllers, the pin id is usually the lane number.

For arm virt, the interrupt controller is the Generic Interrupt Controller (GIC) v3*. GIC
v3 handles a large number of configurable interrupt lanes and, with the limited amount of
devices in arm virt, most of them end up free for use. A similar array to the memory map
is set for the interrupt lanes identifiers to organize the controllers’ pins, identifying the
taken lanes (see Figure 3.4). The qdev_get_gpio_in function should be called with the
interrupt controller followed by the identifier as parameters to get the pin for a particular
lane identifier.

1 static const int al5irgmap[] = {

2 [VIRT_UART] = 1,

3 [VIRT_RTC] = 2,

4 [VIRT_PCIE] = 3, /* ... to 6 */

5 [VIRT_GPIO] = 7,

6 [VIRT_SECURE_UART] = 8,

7 [VIRT_ACPI_GED] = 9,

8 [VIRT_SPI] = 10,

9 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
10 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 x/
11 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 x/

12 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
13 };

Figure 3.4: Interrupt request map (irgmap) with a VIRT_SPI entry.

With an I/O pin for interrupts and a memory region, adding a device to the VM is
just a function call of sysbus_create_simple. It takes as arguments, in order, a string to
identify the sysbus device, a MemMapEntry for the allocated region of memory and a pin
for IRQ requests, as in Figure 3.5, where vms represents the virtual machine state of the
current architecture. For arm virt the structure is defined in /include/hw/arm/virt.h. Going
in-depth about the internal representation of a VM’s state is outside of scope, although, for
context, the memmap field is an array similar to the one in Figure 3.3, holding the entries of
the memory map of the VM, and gic is the interrupt controller device.

DeviceState *dev = sysbus_create_simple(
"ple22",
vms->memmap [VIRT_SPI].base,
qdev_get_gpio_in(vms->gic, vms->irgmap[VIRT_SPI])
)5

apbhwNE

Figure 3.5: Creation of a pl022 sysbus device.

This whole process is equivalent to physically connecting the device to the computer.
Since only a few arm architectures implement auto-discovery protocols for devices and
arm virt is not one of them, the operating system cannot identify the newly connected
device. The device would also need to be described in the devicetree of the VM to achieve
that.

* https://developer.arm.com/ip-products/system-ip/system-controllers/interrupt-controllers

https://developer.arm.com/ip-products/system-ip/system-controllers/interrupt-controllers

3.5 | SYSTEM BUS DEVICE

3.5.3 Devicetree

In the virtual architectures of QEMU, instead of using a pre-compiled DTB file, the
flatted device tree (fdt) is generated at VM initialization. QEMU implements a custom
framework to generate the fdt from the C source code, which is then passed on to the
operating system. Having the devicetree generated in the code simplifies the maintenance
of the machines and gives developers more tools at their disposal, such as functions for
getting guaranteed unique node handles at runtime [12]. The fdt manipulation API follows
quite closely the structure of the devicetree and can be transpiled almost directly to a DTS
equivalent. It has been made this way to improve the developers’ workflow for adding
new devices to the architecture since almost certainly they would already have a DTS
example from which they could use as a model.

The code and API of the framework can be found at the /dtc/libfdt/ directory in QEMU’s
source code repository. Its functions are all prefixed with gemu_fdt and most of them
perform modifications to the proper fdt, for instance gemu_fdt_add_subnode, adds a
subnode to the tree, or gemu_fdt_setprop_cell, sets a property of a node with a cell.
The functions also have the same argument structure, where the first one is the target fdt,
the second is a string with the path of nodes from the root to the node in question, and
the latter arguments are related to the operation itself. An example of code and the DTS
equivalent can be seen at Figures 3.6 and 3.7, respectively.

gemu_fdt_add_subnode (fdt, "/parent');

gemu_fdt_setprop(fdt, "/parent", "property-a'", "a string", sizeof("a string"));
gemu_fdt_add_subnode (fdt, "/parent/child");

gemu_fdt_setprop_cell(fdt, "/parent/child", "property-b'", 0x10);

A wWNR

Figure 3.6: Example code of fdt manipulation.

parent {
property-a = "a string";
child {
property-b = <0x10>;
}s

O, WNKE

s

Figure 3.7: DTS equivalent to code in Figure 3.6.

Even though simpler devices can usually work with only one node in the devicetree,
some require more complex setups and thus need more nodes for a proper configuration.
Controllers usually follow the latter case, having aspects such as voltage, clocks and so
forth to be configured within the system. For example, the pl022 microcontroller requires
a system clock and a voltage regulator within the expected bounds established in its
datasheet. Figure 3.8 shows the code used to configure the pl022 devicetree node in
QEMU'’s fdt framework, where ms is the machine state, the parent structure of the previous
virtual machine state. It holds the current hardware state that is common to all platforms
in QEMU, such as valid CPUs and RAM, and is defined in /include/hw/boards.h

26

3 | DEVICE EMULATION WITH QEMU

OCoO~NOOUDWNRE

// mclk node

gemu_fdt_add_subnode (ms->fdt, "/mclk");

gemu_fdt_setprop_string(ms->fdt, "/mclk'", "compatible", "fixed-clock");
gemu_fdt_setprop_cell(ms->fdt, "/mclk", "#clock-cells", 0x0);
gemu_fdt_setprop_cell(ms->fdt, "/mclk", "clock-frequency", 24000);
gemu_fdt_setprop_string(ms->fdt, "/mclk'", "clock-output-names", "bobsclk'");
uint32_t clk_phandle = gemu_fdt_alloc_phandle(ms->fdt);
gemu_fdt_setprop_cell(ms->fdt, "/mclk", "phandle", clk_phandle);

// regulator node

const char *reg_node = "/regulator@oe";

gemu_fdt_add_subnode(ms->fdt, reg_node);

gemu_fdt_setprop(ms->fdt, reg_node, "compatible", "regulator-fixed", sizeof("regulator-fixed"));

gemu_fdt_setprop_cell(ms->fdt, reg_node, "reg'", 0);
gemu_fdt_setprop_cell(ms->fdt, reg_node, "regulator-min-microvolt", 3000000);
gemu_fdt_setprop_cell(ms->fdt, reg_node, "regulator-max-microvolt", 3000000);
gemu_fdt_setprop_string(ms->fdt, reg_node, "regulator-name", "vcc_fun");
uint32_t reg_phandle = gemu_fdt_alloc_phandle(ms->fdt);
gemu_fdt_setprop_cell(ms->fdt, reg_node, "phandle", reg_phandle);

// SPI node

char *spi_node = g_strdup_printf("/spi@%" PRIX64, vms->memmap[VIRT_SPI].base); // spi@address
gemu_fdt_add_subnode (ms->fdt, spi_node);

gemu_fdt_setprop_sized_cells(ms->fdt, spi_node, "reg",

2, vms->memmap[VIRT_SPI].base,

2, vms->memmap[VIRT_SPI].size);
gemu_fdt_setprop_string(ms->fdt, spi_node, '"clock-names'", "apb_pclk");
gemu_fdt_setprop_cell(ms->fdt, spi_node, '"clocks", vms->clock_phandle);
gemu_fdt_setprop_cells(ms->fdt, spi_node, "interrupts",

GIC_FDT_IRQ_TYPE_SPI, vms->irqmap[VIRT_SPI],
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
gemu_fdt_setprop_cells(ms->fdt, spi_node, "num-cs", 3);
const char compat[] = "arm,plo22\0arm,primecell";
gemu_fdt_setprop(ms->fdt, spi_node, "compatible", compat, sizeof(compat));

Figure 3.8: QEMU code for creating the required devicetree nodes for the pl022 microcontroller.

3.6 Standard Device

The device creation API in QEMU is unique per bus, hence each has its requirements
to create new device instances, the reasoning behind it will be covered in Chapter 4. The
only global requisite between all buses is a reference to the parent itself and the name
of the peripheral being created. For SPI devices, these are the only arguments for device
creation. Moreover, because of the similarities between the SPI and the SSI communication
protocol, an SSI bus may be used to handle SPI devices. Given this, Figure 3.9 exhibits
the code required for creating a new SPI device in the virtual machine, where dev is a
sysbus device, a pl022 in this case — as with sysbuses, creating a device is equivalent to
plugging it in the machine. Thus, most arm computers cannot properly recognize it. For it
to be identified by the Operating System, a device tree node must be generated for the
peripheral (see Figure 3.10).

1 void xbus = qdev_get_child_bus(dev, "ssi");
2 DeviceState *spidev = ssi_create_peripheral(bus, "adx1313");
3 if (!spidev) printf("could not create adx1313\n");

Figure 3.9: Creation of an ADXL313 device.

3.6 | STANDARD DEVICE

OCo~NoouTh WNRE

[y
N RO

const char compat2[] = "adi,adx1313";
char *nodename2 = g_strdup_printf("/spie%" PRIx64 "/adc@%" PRIx64,
vms->memmap [VIRT_SPI].base, 0x01);

gemu_fdt_add_subnode (ms->fdt, nodename2);
gemu_fdt_setprop(ms->fdt, nodename2, "compatible", compat2, sizeof(compat2));

gemu_fdt_setprop_sized_cells(ms->fdt, nodename2, "reg", 1, 0x0);
gemu_fdt_setprop_sized_cells(ms->fdt, nodename2, "spi-max-frequency", 1, 1000000);

gemu_fdt_setprop_cell(ms->fdt, nodename2, "interrupt-parent", ple6l_phandle);
gemu_fdt_setprop_cells(ms->fdt, nodename2, "interrupts", 4, 3);

Figure 3.10: QEMU code for creating a devicetree node for the ADXL313 accelerometer.

Now that the necessary background for adding new devices to QEMU’s virtual machines

is covered, we may focus on the actual implementation of one.

Chapter 4

Device Emulation
Implementation

This chapter covers the code implementation of the emulated ADXL313 accelerom-
eter in QEMU. The goal here is to be generalizable to the majority of devices. However,
emulation code is highly coupled with the target device and, as the chapter progresses,
its sections will gradually turn less general and more specific to the accelerometer. Later
sections, especially 4.4, will go very in-depth about the intricacies of the ADXL313 and its
implementation. Nevertheless, a significant part of its behaviour is standard, and it can be
treated as a role model for emulating other devices with similar complexity.

About the device API, because of the great distinction between buses in the system,
they often demand unique sets of requisites from their child devices. Some require little
from them, with only initialization and transfer routines, while others demand complex
sets of interactions, possibly unique to the particular bus. The difference complicates
establishing a common API covering all use cases and tames the emergent code complexity.
The API used by peripherals in QEMU’s virtual machines is set per bus to mitigate that,
where each bus defines its custom interface and set of operations [2][1]. The emulation
code for a device varies drastically according to its parent bus. This section will focus on
the SSI interface for SPI and SSI devices.

4.1 Class

The buses’ custom API is set by a class structure. Classes borrow concepts from
object-oriented programming, such as inheritance and virtual methods, to build a model of
the available bus configuration and setup for its devices. A class instance is set per device
type, covered with details in Section 4.2, where all the implementations particular for the
device are set. Even though they are set in a different manner, the final result of this is
similar to inheritance.

The API is defined for a given peripheral by setting the related fields with function
pointers to the concrete implementations of the methods. Hence, the bus code calls the
function present in the field. The fields may also have default values, which can then be

29

30

4 | DEVICE EMULATION IMPLEMENTATION

overwritten, similar to how a method can be overridden in object-oriented programming.
Function pointers compose the majority of the classes’ fields. However, general bus config-
uration can also be present in them, as they are global to the device type, e.g. the polarity
of the CS lane in SPL

For SSI peripherals, the class is set by the SSIPeripheralClass structure, defined in
/include/hw/ssi/ssi.h. Holding the following fields for device configuration':

« parent_class: A reference for the parent class (inheritance).
« cs_polarity: Defines whether chip select (CS) exists and if its active high or low.
« realize: Function called on device initialization.

« transfer: Default function for data transfers, used when the device has standard or
no CS behaviour.

« set_cs: Function called at CS line change. Optional and only required when the
device has side effects related to the CS line.

. transfer raw: Function for non-standard CS behaviour, takes control of the CS
behaviour at device level. When set, transfer, set_cs and cs_polarity fields are
unused.

The CS line in SPI specifies if the peripheral® is selected for a data transfer. Depending
on the device, the line can be high or low in standby, and, in devices with standard
behaviour, it would be inverted by the controller to signify the start of a transfer. ADXL313
has standard CS behaviour where the line is set to low on transmission. Thus, only realize
and transfer functions will be overwritten.

4.2 Device Type

A device implementation is separated into two concepts, a type and its instances. The
type structure, in a sense, formalizes the device inside qdev, holding relevant attributes
about the device itself, instance metadata, such as size and initialization method, and its
class, all aspects global to all instances. A type is defined by the TypeInfo structure in
/include/qom/object.h and contains a large number of fields to enable extensive customiz-
ability for a variety of complex use cases. Different sets of these attributes have to be
configured, all according to the custom requisites set by the target device [15]. SSI buses
are fairly straightforward; to create a type for a standard SSI device, the following fields
need to be set’:

- name: The name of the type.

« parent: The name of the parent type.

I From code at: https://gitlab.com/qemu-project/qemu/-/blob/master/include/hw/ssi/ssi.h#L34

2 Also known as a slave, however the classic master-slave nomenclature present in SPI and other protocols is
being discouraged by the community in favour of the more respectful controller-peripheral counterpart.

3 From code at https://gitlab.com/qemu-project/qemu/-/blob/master/include/qom/object.h#L373

https://gitlab.com/qemu-project/qemu/-/blob/master/include/hw/ssi/ssi.h#L34
https://gitlab.com/qemu-project/qemu/-/blob/master/include/qom/object.h#L373

4.3 | DEVICE STATE

. instance_size: The size of an instance.

« class_init: Function called after all parent class initialization has occurred, allowing
a class to set its default virtual method pointers. This is also used to override virtual
methods from a parent class.

Before they can be used in any form inside QEMU, a user created type must first
be declared and registered. The QEMU Object Model (QOM) provides a framework for
registering types and instantiating objects. It also implements the object-oriented features
found in the class and type structures, such as single-inheritance and multiple inheritances
of stateless interfaces.

Types in QOM can be declared and registered in several ways, including defining the
macros and calling the internal functions directly. Nevertheless, the most common way is
using the OBJECT_DECLARE_TYPE macro and its variants for declaration and type_init
and type_register_static macros for, respectively, creating a module with a callback
function and for registering the type inside the callback [15]. The available functions, as
well as their documentation, can all be found at /include/qom/object.h. Figure 4.1 contains
code snippets for creating, declaring and registering a new SSI device type, where the
ADXL313State is a structure holding the device state.

1 #define TYPE_ADXL313 "adx1313"
2 OBJECT_DECLARE_SIMPLE_TYPE (ADXL313State, ADXL313)
3
4 static void adx1313_class_init(ObjectClass *klass, void *data)
5 {
6 DeviceClass *dc = DEVICE_CLASS(klass);
7 SSIPeripheralClass x*k = SSI_PERIPHERAL_CLASS(klass);
8
9 k->realize = adx1313_realize;
10 k->transfer = adx1313_transfer;
11 k->cs_polarity = SSI_CS_LOW;
12
13 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
14 }
15
16 static const TypeInfo adx1313_info = {
17 .name = TYPE_ADXL313,
18 .parent = TYPE_SSI_PERIPHERAL,
19 .instance_size = sizeof(ADXL313State),
20 .class_init = adx1313_class_init,
21 };
22
23 static void adx1313_register_types(void)
24 {
25 type_register_static(&adx1313_info);
26 }
27
28 type_init(adx1313_register_types)

Figure 4.1: Code for creating, declaring and registering the ADXL313 type with QOM.

4.3 Device State

In QOM, instances of a device type are called objects, and they store the values required
for emulating the peripheral itself. They represent the device’s state. Hence, their types are

31

4 | DEVICE EMULATION IMPLEMENTATION

often referenced as state structures and usually achieve this by mimicking the hardware
found in the real-world counterpart, such as registers and memory. Objects also include
their peripheral parent structure among their fields. For instance, a SSI device would need
to include a SSIPeripheral inside of it (see Figure 4.2).

1 struct ADXL313State {

2 // private

3 SSIPeripheral ssidev;

4

5 // SPI

6 uint8_t address;

7 uint8_t spi_mode;

8

9 // device registers
10 uint8_t bw_rate;
11 intl6_t accels[3];
12 int8_t offsets[3];
13 }s

Figure 4.2: State structure of the ADXL313 accelerometer.

The use of embedded structures in the state structure is a common workaround to
implement inheritance in the C programming language using pointer arithmetic. It includes
the parent structure inside the child types as one of its fields. With this, the pointer to the
parent structure is used. For the cases that have to deal with the individual implementa-
tions, the pointer to the wrapper structure can be calculated from the field offset inside
the structure. Since the pointers to the parent are all the same type, this abstracts the
implementation details of the peripherals in a concise way and memory-efficient format
without overruling C’s type system [4].

Pointer arithmetic is often considered dangerous as it can easily lead to undefined
behaviour. However, QOM generates macros for calculating the child structure reference
from the parent pointer at device declarations, thus making it safe for users. The macro
in question is named after the type name given as an argument in the declaration and
is callable, taking only the pointer to the parent device as a parameter. Converting the
type often is the first line of code in the interfaces’ implementations, as the following
example:

ADXL313State *s = ADXL313(dev);

4.4 SSI Interface Implementation

The device emulation code presented so far is only related to the peripheral setup. It
does not dictate the actual behaviour of the device. The intricacies of how it will work
are defined exclusively by the concrete implementations of its bus’s interface and can
vary according to the user’s intention. The behaviour can be guided towards real-world
emulation, being as close as possible to the real-world counterpart, or be used as a stub,
focusing on predictability to test some part of the pipeline. For this work, the latter makes
more sense. Thus, the example ADXL313 emulation uses easily verifiable return values
instead of mimicking the actual accelerometer behaviour.

4.4 | SSI INTERFACE IMPLEMENTATION

The following paragraphs go in-depth about the ADXL313 implementation of the
standard SSI interface and its particularities, which means only the realize and transfer
functions will be covered. As expected, this is heavily coupled with the actual device, the
most among any other section covered so far. Nevertheless, the foundation concepts of the
presented code should be fairly similar, and thus it can be used as a model while targeting
other devices with similar complexity.

When creating boards, one of the hardware designers’ goals is to minimize wastage.
For this reason, bytes and registers tend to hold multiple information. For example, a
boolean value can be represented with only one bit, so allocating an entire byte leaves 7 of
those bits unused. The D; notation will be used to reference specific bits of a value, where
i indicates the index of bit, from lower to higher bits, starting from zero.

4.4.1 Realize

The realize function is called at device startup, right after object instantiation. Thus
it is mainly used to run any initialization procedure of the device and set up its state. The
code present in it is often simple and limited to variable initialization, and the argument
structure reflects this, taking only a reference to the device and an error pointer for passing
failure conditions up the stack. For the ADXL313 implementation, since all fields in the
state are set to zero at instantiation, realize only sets arbitrary acceleration values on each
axis of the object state (see Figure 4.3).

static void adx1313_realize(SSIPeripheral *dev, Error xxerrp)

{
ADXL313State *s = ADXL313(dev);

1
N
(o]
(o]

s->accels[0]
s->accels[1]
s->accels[2]

5
03
200;

o~NoOuUuTh WNRE

Figure 4.3: Realize implementation of the ADXL313 accelerometer.

4.4.2 Transfer

While the realize function tends to be simple, a lot of the complexity in sensor
devices’ emulation code comes from the transfer implementation. As the name suggests,
it is called at every data transfer of the peripheral, taking as parameters the raw transferred
value and a reference to the device. However, while the SPI protocol specifies how to convey
data, it does not define how devices ought to grip incoming data. Thus, data handling
complexity is left entirely on the device burden. As a result, SPI compliant devices must
define a data-transfer layout to communicate with the controller device. Therefore, the
device implementation is responsible for parsing the input accordingly, updating the device
state when appropriate, and returning an output when expected [21]. The data transfer
layout is often unique to each device model, so the implemented parsing procedure for
device emulation is tightly coupled with the ADXL313 design.

34

4 | DEVICE EMULATION IMPLEMENTATION

OCoO~NOOUDWNRE

static uint32_t adx1313_transfer (SSIPeripheral *dev, uint32_t value)

{

ADXL313State *s = ADXL313(dev);
uint32_t out = 0;

switch (s->spi_mode) {
case ADXL313_SPI_MULREAD:
if (value == 0) {
out = adx1313_read(dev);
s->address += 1;
break;
}
s->spi_mode = ADXL313_SPI_STANDBY;
/* fallthrough x/
case ADXL313_SPI_STANDBY:
s->address = value & 0x3F;
switch (value >> 6) {

case 0:
s->spi_mode = ADXL313_SPI_WRITE;
break;

case 1:
// Undefined behaviour for multiple writes
break;

case 2:
s->spi_mode = ADXL313_SPI_READ;
break;

case 3:
s->spi_mode = ADXL313_SPI_MULREAD;
break;

}

break;

case ADXL313_SPI_READ:
out = adx1313_read(dev);
s->spi_mode = ADXL313_SPI_STANDBY;
break;

case ADXL313_SPI_WRITE:
adx1313_write(dev, value);
s->spi_mode = ADXL313_SPI_STANDBY;
break;

}

return out;

Figure 4.4: Transfer implementation of the ADXL313 accelerometer.

ADXL313’s transfers are composed of one byte (8 bits), and its datasheet defines

as transmission the group of transfers made while the CS line is active. During a full
transmission, multiple calls are made to adx1313_transfer as it is invoked at every
transferred byte. Usually, communications with sensor devices are started by a controller
device that writes a control value to the communication line. This specifies an operation
to the peripheral and indicates how it must treat the following transfers, e.g. defining
how many bytes are expected to be read from the device. ADXL313 functions under the
same logic. All communications with it are started with a byte written by the controller.
The control byte then designates if the next operation will be a read or write from the
controller’s perspective. The controller must set bit D; to request a read operation or unset
it to request a write. Setting bit Ds tells whether multiple bytes will be transferred, while
bits Ds to D, encode the register address for the operation [11].

4.4 | SSI INTERFACE IMPLEMENTATION

OCoo~NOOUDhWNR

static uint32_t adx1313_accel(ADXL313State *s, int 1)

{
// on full resolution, the offsets’ scale is 4x the acceleration’s scale
int32_t value = s->accels[i] + (4 * s—->offsets[i]);
return x((uint32_t *) &value); // int from raw bit value

static uint32_t adx1313_read(SSIPeripheral xdev)

{
ADXL313State *s = ADXL313(dev);

switch (s->address) {
case ADXL313_REG_DEVIDO:

return Oxad;
case ADXL313_REG_DEVID1:

return 0x1d;
case ADXL313_REG_PARTID:

return Oxcb;
case ADXL313_REG_POWER_CTL:

return 0x4b;
case ADXL313_REG_DATA_FORMAT:

return 0x0b;
case ADXL313_REG_BW_RATE:

return s->bw_rate;
case ADXL313_REG_DATA_AXIS_XO:

return adx1313_accel(s, 0) & 0xff;
case ADXL313_REG_DATA_AXIS_X1:

return (adx1313_accel(s, 0) >> 8) & 0xff;
case ADXL313_REG_DATA_AXIS_YO:

return adx1313_accel(s, 1) & 0xff;
case ADXL313_REG_DATA_AXIS_VY1:

return (adx1313_accel(s, 1) >> 8) & 0xff;
case ADXL313_REG_DATA_AXIS_ZO:

return adx1313_accel(s, 2) & 0xff;
case ADXL313_REG_DATA_AXIS_Z1:

return (adx1313_accel(s, 2) >> 8) & 0xff;
case ADXL313_REG_OFS_AXIS_X:

return s->offsets[0];
case ADXL313_REG_OFS_AXIS_VY:

return s->offsets[1];
case ADXL313_REG_OFS_AXIS_Z:

return s->offsets[2];

return 0;

static void adx1313_write(SSIPeripheral *dev, uint8_t value)

{
ADXL313State *s = ADXL313(dev);

int8_t raw_int = x((int8_t x) &value); // int from raw bit value

switch (s->address) {

case ADXL313_REG_BW_RATE:
s->bw_rate = value;
break;

case ADXL313_REG_OFS_AXIS_X:
s->offsets[0] = raw_int;
break;

case ADXL313_REG_OFS_AXIS_V:
s->offsets[1] = raw_int;
break;

case ADXL313_REG_OFS_AXIS_Z:
s->offsets[2] = raw_int;
break;

Figure 4.5: Implementation of reads and writes in the emulated ADXL313 accelerometer.

36

4 | DEVICE EMULATION IMPLEMENTATION

A device instance stores the current SPI state in the spi_mode field, which can be
either ADLX313_SPI_STANDBY, the initial state waiting for a new control byte trans-
fer, ADLX313_SPI_READ, ADLX313_SPI_WRITE or ADLX313_SPI_MULREAD, for multi—byte
reads. Multi-byte writes cause undefined behaviour in the current implementation. Hence,
they do not need a state of their own.

Single reads and writes, when Ds is low, operations are composed of only two bytes.
The first transfer carries the already detailed control byte. The second byte contains the
operation itself, e.g. the value to be written in the device address or the value read from
it. Single-byte reading and writing are straightforward to implement. First, the device
instance parses the control byte, updates the SPI state, then sets the current address pointer.
Next, the transfer function calls either adx1313_read or adx1313_write to perform the
requested operation. Lastly, spi_mode is reset to standby so forthcoming transfers may be
handled (see Figure 4.4).

When Dy is high, the operation has no predefined number of transfers to complete
because the end of a multi-read operation is only signaled by the end of the transmission,
with the inversion of the chip select line. However, the current QEMU SSI implementation
activates the CS line at device initialization and keeps it active throughout the device
functioning. This renders it impossible to determine the end of a multi-byte write in the
emulation code. The effect of this CS policy is that the ADXL313 device instance operates
as if all transfers are done within a single transmission. Yet, as the ADXL313 driver does
not make writes with more than one byte, this does not hinder the emulation by any
means.

When the controller device issues a read command, the value argument to the
adx1313_transfer function is set to zero. With that, the device instance can identify
the end of a multi-byte read request by checking out the value that comes with the call
to adx1313_transfer. While in multi-read mode, read requests are handled as a single
read with the difference that the register address pointer is incremented at the end of
each transfer. This multi-read feature is convenient for reading several registers in a
row. When a non-zero argument is passed to adx1313_transfer, the state is set back to
ADLX313_SPI_STANDBY, and the input is parsed as a normal control byte, defining a new
operation (see Figure 4.4).

In the current emulation code, the actual implementation of reads and writes are sepa-
rated from adx1313_transfer into distinct functions in order to enhance code readability
(see Figure 4.5). Both functions resolve the operation with simple lookups using switch
cases, where the value in the address pointer is tested against the register addresses present
in the REG_ macros. Nevertheless, two particularities found in them are relevant to be
discussed.

Firstly, input and output of transfer use unsigned integers; however, acceleration and
offsets are defined by signed integers. This causes a problem, as the input and output must
match, in the bit level, the C programming language implicitly converts the state integers
and these types. A cast is applied to the pointer type instead to avoid any modification
done to the bits, which bypasses C’s type conversion system. Secondly, in ADXL313’s full
resolution mode, offsets use a scale four times larger than the acceleration’s. Hence, their
value must be multiplied by four before they are added.

4.5 | EMULATION AS A DEVELOPMENT TOOL

4.5 Emulation as a Development Tool

In summary, all core aspects of an emulated device implementation are now covered.

As this chapter goes through many in-depth concepts about QEMU’s architecture, the
devices inner workings and the used protocol, all of which require a strong background in
low-level programming, the chapter itself gets quite dense, the most among the others. It
is easy to lose the sense of what this work is aiming to achieve in the midst of it. Given the
context, it is best to look at the bigger picture of the state we currently are in and where
we are heading.

Using the custom virtual machine set in Chapter 3, it is possible to test the ADXL313
driver present in Chapter 2 against the emulated device detailed in this chapter. Doing
such confirms that both implementations are functioning properly, as the Linux driver can
run its setup and its device access functionality within the VM communication against
the emulated ADXL313 with no errors. Using the sysfs interface of the ADXL313 driver
also returns the expected values set by the emulated device. In a sense, this confirms that

emulation can actually be used to test devices, as the driver pipeline is being entirely tested.

Nevertheless, it does not imply that the effort that needs to be put in developing all this
infrastructure is a good investment.

37

Chapter 5

Final Remarks

The main results of this work include the driver for ADXL313 devices, an ADXL313
emulated device using QEMU and, finally, a brief analysis of how the latter can aid the
development and testing of the first.

The driver itself was developed following the open-source development best practices
in the Linux kernel. Testing the device properly against multiple hardware configurations,
gathering feedback from community reviews, implementing the proposed improvements
and properly documenting non-trivial code decisions are among the practices adopted
during development. As a result, the driver has been accepted by the IIO subsystem and
will be globally available in the Linux kernel from version 5.16 onwards'?. This first version
allows users to use ADXL313 devices to read acceleration measurements, set offsets for
the acceleration data and change the sampling frequency of the device.

On the other hand, the emulation implementation was developed to be tested against the
driver. Its development process was more exploratory than not. Therefore, the final result
is not production-ready code, and, consequently, there is no plan to send it out for review
in any QEMU community. However, even with the workarounds presented in Chapter
4, it serves its purpose. It can be targeted against the ADXL313 driver implementation
without any errors within an emulation environment as it handles all accesses made by
the driver.

As stated in Section 4.5, in a sense, the fact that the emulation against driver setup
works confirms that it can be used as a bare minimal testing tool. However, it is highly
inconvenient for such. As machine emulation in QEMU performs full system emulation,
every kernel part has to be run, as with any regular computer. This approach includes
processes that waste time and resources but are not relevant to the parts of the code being
tested, such as system boot. The interaction is not automatic; hence the actual developer
has to go over the sysfs directory and manually test the read and write accesses of the
device. Even the actual implementation of the emulated device is a bit unwieldy, as it
requires too much knowledge about QEMU intrinsics. This scenario invalidates its use as

! https://github.com/torvalds/linux/commit/636d44633039348c955947cee561f372846b478b
2 https://github.com/torvalds/linux/commit/af1c6b50a2947cee3ffffb32aa8debb100c786bb

39

https://github.com/torvalds/linux/commit/636d44633039348c955947cee561f372846b478b
https://github.com/torvalds/linux/commit/af1c6b50a2947cee3ffffb32aa8debb100c786bb

40

5 | FINAL REMARKS

a continuous integration tool. Nevertheless, it can still be relevant to assist developers in
specific scenarios.

Using QEMU to assist driver development is not a novel idea. Jonathan Cameron, the
maintainer of the IIO subsystem, has already declared using a custom QEMU emulation as a
target for one of his patch series®*. The work done there consisted mainly of standardizing
an old driver’s code to the newer conventions of the subsystem. Since Cameron did not
have the hardware in his hands for proper testing, he developed an emulation target based
on the current driver and refactored it against the emulated device. In a way, his approach
is similar to an integration test.

The emulated device implemented in this work had a similar development process
as Cameron’s. Both targeted an already functioning device driver. Then the working
emulation was used for its purpose, in Cameron’s case, the refactoring and in mine this
brief analysis.

Given the current state, which doubtedly will improve, this is the correct way to use
emulation for testing drivers. It is a short-term solution for specific problems, such as
refactoring an existing driver while the kernel lacks a proper CI interface. More complex
use cases may see QEMU’s shortcomings compared to proper testing frameworks.

Building a driver from scratch using emulation is also not a good idea. It would be
easy to misinterpret the datasheet and make minor deviations from the real-world device.
With a collection of such deviations, the final result might be a device driver that only
supports a device’s wrong implementation. A driver which supports no device is no more
than a useless implementation.

Apart from using it as a reference for building a proper CI for device drivers in Linux,
there is not much to go from here with device emulation. It has a purpose in other areas;
however, forcing QEMU to be a CI interface does not seem to be a path to go.

Nevertheless, ADLX313 devices have plenty of features that their driver currently lacks
support, which can be suggestions for future work. Such features include:

« add proper FIFO support
« add support for interrupt requests for data ready
« add support for handling trespassing the activity and inactivity thresholds

« add support for configurable automatic sleep mode

3 https://lore.kernel.org/linux-iio/20210614113507.897732-1-jic23@kernel.org/
* https://github.com/jic23/qemu/blob/ad7280a-hacks/hw/misc/ad7280a.c

https://lore.kernel.org/linux-iio/20210614113507.897732-1-jic23@kernel.org/
https://github.com/jic23/qemu/blob/ad7280a-hacks/hw/misc/ad7280a.c

Chapter 6

Personal Appreciation

On a personal note, working on this project has been fairly enjoyable. Before starting it,
I had never had experience with either open-source software or device driver development.
I had done only minor experiments emulating old gaming consoles. However, in the span
of one year, I have now become the sole maintainer of a Linux driver, shipping soon
to millions of users. I have completed an entire essay about an experiment with device
emulation. Learning about these topics and developing the software present here has been
a challenging but gratifying experience.

I am also grateful for this project. It allowed me to get to know and interact with very
interesting people who helped me throughout the year. Many of them are developers
from different parts of the world (England, Romania, India, and The United States of
America), leading to a great cultural exchange between their peers. It was a privilege to
have such a great experience interacting with people considering the current worldwide
pandemic.

41

References

[5]

(6]

[12]

Markus Armbruster. QEMU’s device model gdev: Where do we go from here? 2011.
URL: https://www.youtube.com/watch?v=Cpt5Zqs_1q0%5C&t=128s (visited on
12/05/2021) (cit. on p. 29).

Markus Armbruster. QEMU’s new device model qdev. 2010. URL: https://www.linux-
kvm.org/images/f/fe/2010-forum-armbru-qdev.pdf (visited on 11/11/2021) (cit. on
pp. 20, 21, 29).

Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX annual
technical conference, FREENIX Track. Vol. 41. Califor-nia, USA. 2005, p. 46 (cit. on
p. 19).

Arpit Bhayani. Powering inheritance in C using structure composition. 2020. URL:
https://www.codementor.io/ @arpitbhayani/powering-inheritance-in-c-using-
structure-composition-176sygr724 (visited on 12/11/2021) (cit. on p. 32).

Hossein Bidgoli and Andrew Prestage. “Operating Systems”. In: Encyclopedia of
Information Systems. Ed. by Hossein Bidgoli. New York: Elsevier, 2003, pp. 377-390.
ISBN: 978-0-12-227240-0. por: https://doi.org/10.1016/B0-12-227240-4/00126-X.
URL: https://www.sciencedirect.com/science/article/pii/B012227240400126X (cit. on
pp- 22, 23).

Jonathan Cameron. 10 Years of the Industrial I/O Kernel Subsystem. United Kingdom,
Oct. 2018. URL: https://www.youtube.com/watch?v=6440H1FXdtE (visited on
09/18/2021) (cit. on p. 8).

Andy Chou et al. “An empirical study of operating systems errors”. In: Proceedings
of the eighteenth ACM symposium on Operating systems principles. 2001, pp. 73-88
(cit. on p. 2).

Jonathan Corbet. An alternative device-tree source language. 2017. URL: https://lwn.
net/Articles/730217/ (visited on 10/30/2021) (cit. on p. 18).

Jonathan Corbet. Kernel development. 2001. URL: https://lwn.net/2001/0704/kernel.
php3 (visited on 10/24/2021) (cit. on p. 18).

Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux Device Drivers,
3rd Edition. O’'Reilly Media, Inc., 2005. 1sBN: 0596005903 (cit. on pp. 9, 13).

Analog Devices. ADXL313 Data Sheet. 2019. URL: https://www.analog.com/media/
en/technical-documentation/data-sheets/ADXL313.pdf (visited on 12/11/2021)
(cit. on p. 34).

QEMU documentation. "virt’ generic virtual platform (virt). 2021. URL: https://github.
com/qemu/qemu/blob/master/docs/system/arm/virt.rst (visited on 11/25/2021)
(cit. on pp. 19, 20, 22, 25).

43

https://www.youtube.com/watch?v=Cpt5Zqs_Iq0%5C&t=128s
https://www.linux-kvm.org/images/f/fe/2010-forum-armbru-qdev.pdf
https://www.linux-kvm.org/images/f/fe/2010-forum-armbru-qdev.pdf
https://www.codementor.io/@arpitbhayani/powering-inheritance-in-c-using-structure-composition-176sygr724
https://www.codementor.io/@arpitbhayani/powering-inheritance-in-c-using-structure-composition-176sygr724
https://doi.org/https://doi.org/10.1016/B0-12-227240-4/00126-X
https://www.sciencedirect.com/science/article/pii/B012227240400126X
https://www.youtube.com/watch?v=644oH1FXdtE
https://lwn.net/Articles/730217/
https://lwn.net/Articles/730217/
https://lwn.net/2001/0704/kernel.php3
https://lwn.net/2001/0704/kernel.php3
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL313.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL313.pdf
https://github.com/qemu/qemu/blob/master/docs/system/arm/virt.rst
https://github.com/qemu/qemu/blob/master/docs/system/arm/virt.rst

44

[13]

REFERENCES

QEMU documentation. gdev device use. 2021. URL: https://github.com/qemu/qemu/
blob/master/docs/qdev-device-use.txt (visited on 11/10/2021) (cit. on p. 21).
QEMU documentation. The memory APL 2021. URL: https://qemu.readthedocs.io/
en/stable/devel/memory.html (visited on 12/09/2021) (cit. on p. 22).

QEMU documentation. The QEMU Object Model (QOM). 2021. URL: https://qgemu.
readthedocs.io/en/stable/devel/qom.html (visited on 12/07/2021) (cit. on pp. 30, 31).
The Linux Kernel documentation. Core elements. 2021. URL: https://www.kernel.org/
doc/html/latest/driver-api/iio/core.html (visited on 11/21/2021) (cit. on p. 8).

Pavel Dovgalyuk et al. “QEMU-based framework for non-intrusive virtual machine
instrumentation and introspection”. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering. 2017, pp. 944-948 (cit. on p. 19).

Alexander S. Gillis. Device Driver. 2020. URL: https://searchenterprisedesktop.
techtarget.com/definition/device-driver (visited on 10/09/2021) (cit. on p. 1).
Andrea Holler et al. “QEMU-based fault injection for a system-level analysis of
software countermeasures against fault attacks”. In: 2015 Euromicro Conference on
Digital System Design. IEEE. 2015, pp. 530-533 (cit. on p. 19).

Greg Kroah-Hartman Jonathan Corbet. 2017 Linux Kernel Report. 2017. URL: https:
//www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf
(visited on 07/09/2021) (cit. on p. 1).

Frederic Leens. “An introduction to I°C and SPI protocols”. In: IEEE Instrumentation
Measurement Magazine 12.1 (2009), pp. 8—13. por: 10.1109/MIM.2009.4762946 (cit. on
p- 33).

Grant Likely. Linux and the Devicetree. URL: https://github.com/torvalds/linux/blob/
master/Documentation/devicetree/usage-model.rst (visited on 12/05/2021) (cit. on
p- 18).

Linaro Ltd Linaro Ltd. Devicetree Specification. Feb. 2020. URL: https://github.com/
devicetree-org/devicetree-specification/releases/tag/v0.3 (visited on 12/05/2021)
(cit. on p. 18).

Yan Luo et al. “Qsim: Framework for cycle-accurate simulation on out-of-order pro-
cessors based on QEMU”. In: 2012 Second International Conference on Instrumentation,
Measurement, Computer, Communication and Control. IEEE. 2012, pp. 1010-1015
(cit. on p. 19).

John Madieu. Linux Device Drivers Development: Develop customized drivers for
embedded Linux. Packt Publishing Ltd, 2017, pp. 201-216 (cit. on p. 6).

John Madieu. Mastering Linux Device Driver Development. 1st. UK: Packt Publishing
Ltd., 2020. 1sBN: 978-1-78934-204-8 (cit. on pp. 6, 7, 22).

S. O’Dea. Mobile operating systems’ market share worldwide from January 2012 to
June 2021. 2021. URL: https://www.statista.com/statistics/272698/global-market-
share-held-by-mobile-operating- systems-since-2009/ (visited on 07/09/2021)
(cit. on p. 1).

Marta Rybczynska. Device-tree schemas. 2018. URL: https://Iwn.net/Articles/771621/
(visited on 10/30/2021) (cit. on p. 18).

Marcelo Schmitt. “Linux Device Driver Development: a report from the trenches”.
Sao Paulo: Universisade de Sao Paulo, Dec. 2019 (cit. on p. 5).

TOP500 TEAM. Operating System Family / Linux. 2021. URL: https://www.top500.
org/statistics/details/osfam/1/ (visited on 07/09/2021) (cit. on p. 1).

https://github.com/qemu/qemu/blob/master/docs/qdev-device-use.txt
https://github.com/qemu/qemu/blob/master/docs/qdev-device-use.txt
https://qemu.readthedocs.io/en/stable/devel/memory.html
https://qemu.readthedocs.io/en/stable/devel/memory.html
https://qemu.readthedocs.io/en/stable/devel/qom.html
https://qemu.readthedocs.io/en/stable/devel/qom.html
https://www.kernel.org/doc/html/latest/driver-api/iio/core.html
https://www.kernel.org/doc/html/latest/driver-api/iio/core.html
https://searchenterprisedesktop.techtarget.com/definition/device-driver
https://searchenterprisedesktop.techtarget.com/definition/device-driver
https://www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf
https://www.linuxfoundation.org/wp-content/uploads/linux-kernel-report-2017.pdf
https://doi.org/10.1109/MIM.2009.4762946
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/usage-model.rst
https://github.com/torvalds/linux/blob/master/Documentation/devicetree/usage-model.rst
https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.3
https://github.com/devicetree-org/devicetree-specification/releases/tag/v0.3
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://lwn.net/Articles/771621/
https://www.top500.org/statistics/details/osfam/1/
https://www.top500.org/statistics/details/osfam/1/

	Introduction
	Objective
	Used Conventions
	Manuscript Structure

	Linux Driver Development
	Regmap
	IIO Channels
	Device Private Data
	IIO Operations
	read_raw
	write_raw
	read_avail

	Device Probing and Setup
	Summary

	Device Emulation with QEMU
	ADXL313 Overview
	Devicetree Infrastructure
	QEMU
	Qdev
	System Bus Device
	Memory Map
	Interrupt Request Map
	Devicetree

	Standard Device

	Device Emulation Implementation
	Class
	Device Type
	Device State
	SSI Interface Implementation
	Realize
	Transfer

	Emulation as a Development Tool

	Final Remarks
	Personal Appreciation
	References

