
Universidade de São Paulo
Instituto de Matemática e Estatística

Bacharelado em Ciência da Computação

Usando aleatoriedade para lidar com problemas
computacionalmente difíceis em grafos

Guilherme Vinicius Ferreira de Assis
Supervisor: Prof.º Dr.º Fábio Happ Botler

Monografia

MAC0499 – Trabalho de Formatura Supervisionado

São Paulo
2025

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0.

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Resumo

ASSIS, G. V. F. de. Usando aleatoriedade para lidar com problemas
computacionalmente difíceis em grafos. 2025. Monografia (Bachare-
lado em Ciência da Computação) – Instituto de Matemática e Estatística,
Universidade de São Paulo, São Paulo, 2025.

Muitos problemas relevantes em computação são computacionalmente di-
fíceis – não se conhecem algoritmos polinomiais para resolvê-los –, o que
motiva a busca por abordagens alternativas, como algoritmos para subclasses
específicas, soluções aproximadas, paralelização e, particularmente, o uso
de aleatoriedade. Este trabalho apresenta uma revisão bibliográfica sobre
a aplicação de aleatoriedade em problemas difíceis em grafos, abordando
duas formas principais: algoritmos aleatorizados e análise probabilística
de algoritmos. Na primeira, considera-se algoritmos que têm acesso a bits
aleatórios, permitindo o desenvolvimento de soluções mais simples, embora
a aleatoriedade provavelmente não aumente o poder computacional. Na se-
gunda, substituímos, de forma justificada, a análise de pior caso pela análise
de caso médio ou pela análise suavizada, possibilitando resultados positivos
para problemas complexos sob essa perspectiva.

Palavras-chave: Algoritmos aleatorizados. Análise probabilística de algo-
ritmos. Complexidade computacional. Grafos.

Abstract

ASSIS, G. V. F. de. Using randomness to address computationally
hard problems in graphs. 2025. Undergraduate thesis (Bachelor’s degree
in Computer Science) — Institute of Mathematics and Statistics, University
of São Paulo, São Paulo, 2025.

Many relevant problems in computer science are computationally hard – no
polynomial-time algorithms are known to solve them – which motivates the
search for alternative approaches, such as algorithms for specific subclasses,
approximation methods, parallelization, and particularly the use of random-
ness. This work presents a literature review on the use of randomness to
tackle hard graph problems, addressing two main approaches: randomized
algorithms and probabilistic analysis of algorithms. In the first, algorithms
have access to random bits, allowing the development of simpler solutions,
although randomness is unlikely to increase computational power. In the
second, for good reason reasons, worst-case analysis is replaced by average-
case analysis or smoothed analysis, allowing for positive results in complex
problems from this perspective.

Keywords: Randomized algorithms. Probabilistic analysis of algorithms.
Computational complexity. Graphs.

Sumário

1 Introdução 4
2 Algoritmos aleatorizados 6

2.1 Classificação de algoritmos 7
2.1.1 Monte Carlo . 8
2.1.2 Las Vegas . 13
2.1.3 Conversão entre algoritmos Monte Carlo e Las Vegas 19

2.2 Modelo computacional e classes de complexidade 21
2.3 Pseudoaleatoriedade e derandomização 27

3 Análise probabilística de algoritmos 32
3.1 Grafos aleatórios . 33
3.2 Análise de caso médio . 37

3.2.1 Ciclo hamiltoniano em tempo esperado polinomial 38
3.2.2 Lema Minimax de Yao 47

3.2.2.1 Analisando algoritmos através de jogos . 50
3.3 Análise suavizada . 52

4 Conclusão 57

4

1 Introdução

Uma das questões fundamentais na análise de algoritmos e na complexi-
dade computacional é identificar quais problemas são fáceis ou difíceis de
resolver, adotando estratégias apropriadas para cada caso. Embora muitas
questões fundamentais permaneçam abertas, como a conjectura P ≠ NP ,
pesquisadores desenvolveram diversas ferramentas para lidar com proble-
mas computacionalmente difíceis, para os quais não se conhecem algoritmos
polinomiais. Entre elas estão algoritmos eficientes para subclasses específi-
cas, aproximações, paralelização, análise parametrizada da complexidade e
heurísticas [1].

A aleatoriedade surge na computação na década de 1950 como uma ferra-
menta promissora, cuja compreensão tem promovido avanços significativos
em complexidade e desenvolvimento de algoritmos. O estudo da aleato-
riedade computacional oferece uma perspectiva diferente das abordagens
matemáticas clássicas, como será brevemente discutido na Seção 2.3. Entre
suas contribuições, destacam-se resultados fundamentais em criptografia
e profundas contribuições conceituais em complexidade computacional,
reconhecidas recentemente pelo prêmio Turing concedido a Avi Wigderson
[2].

Dada a relevância da aleatoriedade no contexto computacional, este
trabalho apresenta uma revisão bibliográfica introdutória sobre o uso de
aleatoriedade para lidar com problemas computacionalmente difíceis, com
ênfase em grafos. De forma geral, a aleatoriedade pode ser incorporada dire-
tamente nos algoritmos, na esperança de ampliar o que podemos computar
em tempo polinomial, ou aplicada na análise probabilística de algoritmos,
buscando resultados mais favoráveis que os sugeridos pela análise de pior
caso.

Na Seção 2, exploramos algoritmos com acesso a bits aleatórios, inclu-
indo exemplos introdutórios e a investigação do poder computacional desses
algoritmos através de classes de complexidade probabilísticas. Na Seção 3,
discutimos a motivação para substituir a análise de pior caso por abordagens
alternativas, como caso médio ou suavizada, apresentando os métodos cor-
respondentes e seus principais resultados positivos. Também examinaremos
a relação curiosa entre o desempenho médio de algoritmos determinísticos
e o de algoritmos aleatorizados. Embora o trabalho se restrinja ao contexto
de grafos, muitos dos resultados apresentados se aplicam a outros domínios
de problemas. Ao longo do texto, usamos conceitos e termos convencionais
de teoria da computação, grafos e probabilidade.

5

Este trabalho concentra-se exclusivamente na complexidade de tempo
de algoritmos offline, cujas entradas são totalmente conhecidas antecipada-
mente. Entretanto, a aleatoriedade também pode ser aplicada para reduzir a
memória utilizada ou resolver problemas online. Detalhes de implementação
de estruturas de dados são omitidos, mantendo o foco nas ideias algorítmi-
cas, e algumas suposições simplificadoras são feitas implicitamente, como
consultas a arestas de grafos em tempo constante, facilmente realizáveis em
implementações concretas.

Por fim, este é um trabalho estritamente introdutório. Para um estudo
mais aprofundado sobre aleatoriedade em computação, veja [3,4,5].

6

1Tais técnicas foram ide-
alizadas por Stanisław
Ulam com o advento dos
primeiros computadores
eletrônicos. O nome faz re-
ferência ao famoso cassino
de Monte Carlo, em Mô-
naco, associado aos hábitos
de jogo do tio de Ulam.
2Note que os bits seguem
uma distribuição de pro-
babilidade uniforme. Isso
é suficiente para gerar
todas as distribuições de
probabilidade usualmente
consideradas [8].
3Ainda que possa parecer
contraproducente projetar
um algoritmo que ocasio-
nalmente produza respostas
incorretas, uma taxa de erro
suficientemente pequena
pode ser aceitável se pro-
porcionar uma redução
significativa no tempo de
execução.

2 Algoritmos aleatorizados

Uma maneira natural de incorporar aleatoriedade no contexto de algo-
ritmos é por meio de algoritmos aleatorizados (ou probabilísticos), nos quais
certo grau de aleatoriedade é integrado à lógica de execução. Contrário ao
que uma primeira impressão possa sugerir, o comportamento caótico intro-
duzido pelo acaso pode, em muitos casos, ser explorado de forma vantajosa.

A origem dos algoritmos aleatorizados remonta aos métodos de Monte
Carlo, empregados em análise numérica, física estatística e simulação, de-
senvolvidos no final da década de 19401 [6]. Atualmente, seu uso estende-se
a diversas outras áreas, incluindo sistemas distribuídos, hashing, criptografia
e otimização combinatória [7].

Formalmente, um algoritmo 𝐴 é dito aleatorizado se utiliza uma sequên-
cia 𝑆 ∈ {0, 1}𝑑 composta por 𝑑 bits aleatórios, independentes e imparciais2

como entrada auxiliar para guiar seu comportamento. Algoritmos alea-
torizados são úteis porque, em muitos casos, são significativamente mais
rápidos e/ou mais simples que alternativas determinísticas. Contudo, tais
vantagens têm um custo: o resultado pode ter uma pequena probabilidade
de erro3, ou a eficiência do algoritmo pode ser garantida apenas com certa
probabilidade.

A análise desses algoritmos busca então estabelecer limitantes para o
valor esperado de uma medida de desempenho – como o tempo de execução
ou a correção da saída – que sejam válidos para qualquer entrada. Essa me-
dida é, então, uma variável aleatória, cuja distribuição depende das escolhas
guiadas pelos bits aleatórios.

Em certo sentido, um algoritmo determinístico eficiente pode ser visto
como um caso particular de algoritmo aleatorizado: correto e eficiente com
probabilidade 1. Isso sugere que o modelo de algoritmos aleatorizados é
estritamente mais geral do que o determinístico.

A aleatoriedade oferece um meio eficaz de explorar o espaço de solu-
ções de forma não trivial, o que sugere ser possível construir algoritmos
aleatorizados eficientes para problemas difíceis com a utilização de passos
aleatórios. Embora essa abordagem possa ocasionalmente produzir respostas
incorretas, muitas vezes é possível controlar rigorosamente a probabilidade
de erro, resultando em algoritmos probabilisticamente corretos.

Já sob a ótica da eficiência algorítmica, algoritmos aleatorizados podem
ser especialmente eficientes. Por exemplo, suponha que um adversário es-
colha a entrada de modo a maximizar o tempo de execução do algoritmo,

7

4Bits aleatórios são um
recurso computacional não
trivial. Na prática, usam-se
geradores pseudoaleatórios
(veja Seção 2.3) em vez de
aleatoriedade genuína.
5O modelo RAM assume
um computador com acesso
instantâneo à memória e
capacidade de realizar ope-
rações aritméticas básicas
em tempo constante. Trata-
se do modelo padrão na
análise de algoritmos.
6O limitante no tamanho
do intervalo garante que
apenas um número poli-
nomial de bits aleatórios
seja necessário, permitindo
que o modelo seja simu-
lado em tempo polinomial
por uma máquina de Tu-
ring probabilística (cuja
definição é apresentada na
Seção 2.2), mantendo as-
sim a consistência teórica
dos resultados sobre com-
plexidade computacional
probabilística.

7Um algoritmo aleato-
rizado que fosse sempre
correto e eficiente seria,
na verdade, um algoritmo
determinístico eficiente.
Portanto, é necessário abrir
mão de um desses aspectos.

como na análise de pior caso. As decisões aleatórias impedem que o adver-
sário preveja o comportamento do algoritmo, tornando impossível escolher
antecipadamente uma entrada que garanta o pior desempenho. Por esse
motivo, certos algoritmos aleatorizados são probabilisticamente eficientes,
isto é, seu tempo de execução esperado é eficiente.

É importante destacar que essa abordagem difere da análise de caso
médio (veja Seção 3.2), na qual a variação do desempenho decorre de uma
distribuição de probabilidade sobre as entradas do problema, e não da alea-
toriedade interna do algoritmo.

Na Seção 2.1, examinaremos com mais detalhe esses dois principais tipos
de algoritmos aleatorizados: Monte Carlo e Las Vegas.

Em seguida, na Seção 2.2, apresentaremos os modelos computacionais
probabilísticos e discutiremos as classes de complexidade computacional
definidas sobre algoritmos aleatorizados e suas relações com classes clássicas,
como P e NP .

A obtenção dos bits aleatórios utilizados nesses algoritmos é, por si só, um
problema complexo4. Como de costume, assumiremos que os algoritmos aqui
apresentados e analisados operam no modelo computacional RAM5, agora
estendido: por simplicidade, consideramos que o modelo dispõe de acesso
em tempo constante a uma fonte perfeita de números inteiros aleatórios,
uniformemente distribuídos em um intervalo de cardinalidade polinomial no
tamanho da entrada6. As questões relacionadas à obtenção de bits aleatórios
serão discutidas com mais detalhes na Seção 2.3.

Um resultado fundamental da teoria de algoritmos aleatorizados, o Lema
Minimax de Yao, que estabelece uma conexão direta entre algoritmos alea-
torizados e a análise de caso médio, é apresentado posteriormente na Seção
3.2.2.

2.1 Classificação de algoritmos

Os algoritmos aleatorizados podem ser classificados de acordo com qual
aspecto de seu comportamento é tratado como variável aleatória. Quando a
validade da resposta depende das escolhas probabilísticas, o algoritmo é do
tipo Monte Carlo. Quando, ao contrário, a duração da execução é que varia
de acordo com as decisões aleatórias, o algoritmo é classificado como Las
Vegas7.

Embora seja possível combinar as duas abordagens em um mesmo algo-

8

8A denominação Monte
Carlo tem origem nos mé-
todos de Monte Carlo,
empregados para resolver
problemas matemáticos por
meio da aproximação de
resultados via amostragem
estatística computacional.

9Perceba que a definição
de algoritmo Monte Carlo
ainda se aplica: se 𝜀𝑆 é a
probabilidade de erro ao
responder SIM e 𝜀𝑁 é a pro-
babilidade de erro ao res-
ponder NÃO, simplesmente
definimos 𝜀 = max{𝜀𝑆 , 𝜀𝑁 }.

10Mesmo em sua versão
simples (i.e., sem pesos as-
sociados às arestas), o pro-
blema do Corte Máximo é
NP-completo [9].
11Uma sequência de eventos
{E𝑛}𝑛∈ℕ ocorre com alta
probabilidade se Pr(E𝑛) → 1
quando 𝑛 → ∞.

ritmo – os quais são, em geral, também classificados como do tipo Monte
Carlo –, por simplicidade, estudaremos apenas algoritmos que se enquadram
inteiramente em uma ou outra categoria.

2.1.1 Monte Carlo

A seguir, apresentamos a definição formal de um algoritmoMonte Carlo8.

Definição 1 (Algoritmo Monte Carlo). Um algoritmo aleatorizado 𝐴 é dito
Monte Carlo se existe 𝜀 ∈ (0, 1) tal que, para toda entrada 𝑥 , 𝐴(𝑥) retorna
uma resposta correta com probabilidade ao menos 1 − 𝜀, em que 𝜀 representa a
probabilidade de erro.

O tempo de execução de um algoritmo de Monte Carlo é, em geral, de-
terminístico. Contudo, estamos particularmente interessados em algoritmos
Monte Carlo eficientes.

No caso de problemas de decisão, um algoritmo Monte Carlo pode apre-
sentar erro unilateral ou erro bilateral9:

• O erro é unilateral quando a probabilidade de erro é nula para uma das
duas possíveis respostas (SIM ou NÃO). Isto é, sempre que o algoritmo
responde SIM (ou, analogamente, NÃO), essa resposta é necessaria-
mente correta.

• Dizemos que o erro é bilateral quando existe probabilidade não nula
de erro tanto ao responder SIM quanto ao responder NÃO.

Para ilustrar esses conceitos, apresentaremos um algoritmo aleatorizado
simples que aproxima o problema do Corte Máximo10 com alta probabili-
dade11.

Dado um grafo 𝐺 = (𝑉 , 𝐸), um corte é um subconjunto 𝑆 ⊆ 𝐸 induzido
por uma bipartição (𝑋 , 𝑌) dos vértices 𝑉 , de modo que 𝑆 consiste de todas
as arestas que possuem uma extremidade em 𝑋 e outra em 𝑌 .

𝑆𝑋 𝑌

Figura 1: Conjunto de
arestas 𝑆 (em preto) que
forma um corte definido por
uma bipartição dos vértices
do grafo.

Enunciamos então o problema proposto:

9

12A técnica empregada na
demonstração é conhecida
como método probabilístico,
amplamente utilizada em
combinatória para demons-
trar, de forma não constru-
tiva, a existência de objetos
com certas propriedades
desejadas [10].
13Isso corresponderia a
uma 0, 5–aproximação
para o problema do Corte
Máximo, uma vez que o
número máximo possível de
arestas em um corte é 𝑚.

Corte Máximo

Dado grafo 𝐺 = (𝑉 , 𝐸), encontre um corte 𝑆 ⊆ 𝐸 de cardinalidade
máxima.

Apresentamos então o seguinte resultado clássico:

Teorema 1. Seja 𝐺 = (𝑉 , 𝐸) um grafo com 𝑚 arestas. Então existe um corte
𝑆 ⊆ 𝐸 tal que |𝑆| ≥ ⌊𝑚/2⌋.

Demonstração. Considere uma bipartição aleatória (𝑋 , 𝑌) de 𝑉 , em que cada
vértice é atribuído a 𝑋 ou 𝑌 de forma independente, com probabilidade 1/2
cada.

Seja 𝑆 o corte induzido por essa bipartição e, para cada aresta 𝑒 ∈ 𝐸,
definimos 𝟙𝑒 como a variável indicadora do evento 𝑒 ∈ 𝑆.

Como 𝔼[𝟙𝑒] = 1/2, pela linearidade da esperança, temos,

𝔼[|𝑆|] = 𝔼 [∑
𝑒∈𝐸

𝟙𝑒] = ∑
𝑒∈𝐸

𝔼[𝟙𝑒] =
𝑚
2
.

Logo, segue que, com probabilidade positiva, existe um corte 𝑆 tal que
|𝑆| ≥ ⌊𝑚/2⌋. �

Uma questão natural é se o método acima12 pode ser adaptado para
construir um algoritmo aleatorizado que produza, com alta probabilidade,
um corte de tamanho ao menos ⌊𝑚/2⌋ em qualquer grafo13.

Algoritmo 1 (Corte aleatório)

A função CorteAleatório recebe um grafo 𝐺 e retorna o corte in-
duzido por uma bipartição aleatória dos vértices. A função auxiliar
BitAleatório retorna um bit escolhido uniformemente ao acaso.

Entrada: Grafo 𝐺 = (𝑉 , 𝐸), com 𝑛 vértices e 𝑚 arestas.

Saída: Um corte 𝑆 ⊆ 𝐸 tal que |𝑆| ≥ ⌊𝑚/2⌋.

CorteAleatório(𝐺)
1. 𝑋, 𝑌 ← ∅
2. Para cada vértice 𝑣 ∈ 𝑉 faça
3. Se BitAleatório() então
4. 𝑋 ← 𝑋 ∪ {𝑣}
5. Senão
6. 𝑌 ← 𝑌 ∪ {𝑣}

7. 𝑆 ← ∅

10

14Se 𝑋 é uma variá-
vel aleatória não nega-
tiva, a desigualdade de
Markov estabelece que
Pr(𝑋 ≥ 𝜆) ≤ 𝔼[𝑋]/𝜆.

15Note que 𝜀 → 1 quando
𝑚 → ∞.

8. Para cada aresta 𝑒 = {𝑢, 𝑣} ∈ 𝐸 faça
9. Se (𝑢 ∈ 𝑋 e 𝑣 ∈ 𝑌) ou (𝑢 ∈ 𝑌 e 𝑣 ∈ 𝑋) então
10. 𝑆 ← 𝑆 ∪ {𝑒}

11. Retorne 𝑆

O Algoritmo 1 tem tempo de execução determinístico Θ(𝑛 + 𝑚), mas
produz um resultado aleatório: o corte 𝑆 retornado pode não satisfazer
|𝑆| ≥ ⌊𝑚/2⌋. Isto o caracteriza como do tipo Monte Carlo.

Teorema 2. Dado um grafo 𝐺 = (𝑉 , 𝐸) com 𝑚 arestas, o Algoritmo 1 retorna
um corte 𝑆 ⊆ 𝐸 com tamanho |𝑆| ≥ ⌊𝑚/2⌋ com probabilidade de erro 𝜀 ≤
𝑚/(𝑚 + 2).

Demonstração. Queremos estimar

𝜀 = Pr(|𝑆| < ⌊𝑚/2⌋) = Pr(|𝑆| ≤ ⌊𝑚/2⌋ − 1),

já que |𝑆| é inteiro.

Considere a variável aleatória 𝑋 = 𝑚−|𝑆| ≥ 0. Aplicando a desigualdade
de Markov14, temos:

Pr(|𝑆| ≤ ⌊𝑚/2⌋ − 1) = Pr(𝑋 ≥ ⌈𝑚/2⌉ + 1) ≤
𝔼[𝑋]

⌈𝑚/2⌉ + 1
=

𝑚 − 𝔼[|𝑆|]
⌈𝑚/2⌉ + 1

.

Sabemos que 𝔼[|𝑆|] = 𝑚/2 pela demonstração do Teorema 1. Logo,

𝜀 ≤
𝑚 − 𝑚/2
⌈𝑚/2⌉ + 1

≤ 𝑚
𝑚 + 2

.

�

Embora o limitante pareça fraco15, podemos reduzir arbitrariamente a
probabilidade de erro aplicando uma técnica conhecida como amplificação.

Suponha que executemos 𝑘 vezes o Algoritmo 1 de forma independente,
mantendo o maior corte obtido entre as execuções. Mostraremos que essa
estratégia reduz exponencialmente a probabilidade de erro.

Algoritmo 2 (Maior corte aleatório)

A função MaiorCorteAleatório recebe um grafo 𝐺 e um inteiro 𝑘,
retornando o maior corte encontrado em 𝑘 execuções independentes de
CorteAleatório.

Entrada: Grafo 𝐺 = (𝑉 , 𝐸), com 𝑛 vértices e 𝑚 arestas.

11

Saída: Um corte 𝑆 ⊆ 𝐸 tal que |𝑆| ≥ ⌊𝑚/2⌋.

MaiorCorteAleatório(𝐺, 𝑘)
1. 𝑆 ← ∅
2. Para 𝑖 = 1 até 𝑘 faça
3. 𝑆𝑖 ← CorteAleatório(𝐺)
4. Se |𝑆𝑖| > |𝑆| então
5. 𝑆 ← 𝑆𝑖
6. Retorne 𝑆

Lema 1. Dado um grafo 𝐺 = (𝑉 , 𝐸) com 𝑚 arestas, o Algoritmo 2 retorna um
corte corte 𝑆 ⊆ 𝐸 com |𝑆| ≥ ⌊𝑚/2⌋ com probabilidade de erro

𝜀 ≤ (𝑚
𝑚 + 2

)
𝑘
.

Demonstração. Seja 𝑆𝑖 o corte obtido na 𝑖-ésima execução de CorteAleató-
rio. Pela independência das execuções, segue que:

𝜀 = Pr(|𝑆1| < ⌊𝑚/2⌋ ∩ ⋯ ∩ |𝑆𝑘 | < ⌊𝑚/2⌋),

𝜀 =
𝑘

∏
𝑖=1

Pr(|𝑆𝑖| < ⌊𝑚/2⌋),

𝜀 ≤ (𝑚
𝑚 + 2

)
𝑘
.

�

Se escolhermos 𝑘 ≫ 𝑚, então, pelo Lema 1 e usando a desigualdade
1 − 𝑥 ≤ 𝑒−𝑥 , obtemos:

𝜀 ≤ (1 − 2
𝑚 + 2

)
𝑘
≤ 𝑒−

2𝑘
𝑚+2 → 0,

quando 𝑚 → ∞.

Corolário 1. Para 𝑘 ≫ 𝑚, o Algoritmo 2 produz, com alta probabilidade, uma
0, 5-aproximação para o problema do Corte Máximo, em tempoΘ(𝑘 ⋅(𝑛+𝑚)).

Em particular, 𝑘 pode ser escolhido como uma função polinomial de 𝑚,
e o algoritmo resultante mantém-se polinomial.

Assim, a amplificação permite reduzir a probabilidade de erro arbitraria-
mente, ao custo de aumentar o tempo de execução. Para amplificar algorit-
mos de decisão, basta executar o algoritmo 𝑘 vezes de forma independente
e retornar a resposta majoritária. Em problemas de otimização, é natural
executar o algoritmo diversas vezes e devolver a melhor solução obtida.
Em todos os casos, a amplificação baseia-se em argumentos probabilísticos
semelhantes, que levam ao seguinte resultado geral.

12

16Um limitante é justo
quando vale com igualdade.

Teorema 3. Seja 𝐴 um algoritmo Monte Carlo com probabilidade de erro
𝜀𝐴. Para qualquer 𝜀 tal que 0 < 𝜀 < 𝜀𝐴, é possível construir, por repetições
independentes de 𝐴, um novo algoritmo Monte Carlo 𝐵 cuja probabilidade de
erro 𝜀𝐵 satisfaz 𝜀𝐵 ≤ 𝜀.

Uma primeira ideia é investigar se a técnica de amplificação poderia
tornar o Algoritmo 2 capaz de resolver de forma ótima o problema do
Corte Máximo com alta probabilidade em tempo polinomial. Mostraremos,
contudo, que isso não é possível sem hipóteses adicionais sobre o grafo de
entrada.

Teorema 4. Dado um grafo 𝐺 = (𝑉 , 𝐸) com 𝑛 vértices, o Algoritmo 1 resolve
o problema do Corte Máximo com probabilidade de erro

𝜀 ≤ 1 − 1
2𝑛−1

.

Demonstração. Existem 2𝑛−1 bipartições distintas de 𝑉 , todas equiprováveis.
A probabilidade de escolher uma bipartição que resulte em um corte máximo
é, portanto, pelo menos 1/2𝑛−1, uma vez que o grafo pode possuir um único
corte máximo. Logo,

𝜀 ≤ 1 − 1
2𝑛−1

.

�

Não é difícil se convencer de que grafos bipartidos completos possuem
um único corte máximo, o que torna o limitante anterior justo16 nesses
casos. Assim, na ausência de suposições adicionais, não é possível reduzir o
limitante superior do erro.

Analogamente ao Lema 1, segue que:

Teorema 5. Dado um grafo 𝐺 = (𝑉 , 𝐸) com 𝑛 vértices, o Algoritmo 2 resolve
o problema do Corte Máximo com probabilidade de erro

𝜀 ≤ (1 − 1
2𝑛−1

)
𝑘
.

Por uma argumentação semelhante à do Corolário 1, verifica-se que,
para que 𝜀 → 0 quando 𝑚 → ∞, é necessário que 𝑘 = 𝜔(2𝑛), resultando em
um algoritmo exponencial.

Portanto, a princípio, o Algoritmo 2 não pode ser utilizado para resolver
o problema do Corte Máximo com alta probabilidade em tempo polinomial.

Algoritmos do tipo Monte Carlo desempenham um papel importante
no desenvolvimento de algoritmos eficientes para diversos problemas em
grafos e otimização combinatória. Em muitos casos, obtemos algoritmos
assintoticamente mais rápidos do que as soluções determinísticas, ou ainda

13

17A denominação Las Vegas
foi introduzida por Babai
em 1979 [15] para caracte-
rizar algoritmos duais aos
Monte Carlo – daí o nome,
em alusão a outra cidade
célebre por seus cassinos.
Na formulação original, um
algoritmo Las Vegas possui
tempo de execução finito e
falha aleatória certificável,
definição equivalente à for-
mulação moderna adotada
neste trabalho: ao limitar o
tempo de execução obtém-
se uma versão com falha
certificável; reciprocamente,
ao reiniciar o algoritmo
após falhas, recupera-se um
algoritmo sem erro, com
tempo de execução aleató-
rio.
18O problema do Isomor-
fismo de Subgrafos é, em
geral, NP-completo. Ainda
assim, admite algoritmos
polinomiais para algumas
classes de grafos [16].

19Para além de encontrar
caminhos simples de com-
primento reduzido em gra-
fos, o método também pode
ser usado para lidar com
outras classes, como ciclos
e árvores.

aproximações de alta qualidade para problemas computacionalmente difí-
ceis. Técnicas como amostragem aleatória e arredondamento probabilístico
de programas lineares são amplamente empregadas em problemas que en-
volvem cortes, emparelhamentos e fluxos em grafos [11,12,13,14].

2.1.2 Las Vegas

A seguir, apresentamos a definição formal de um algoritmo do tipo Las
Vegas17.

Definição 2 (Algoritmo Las Vegas). Um algoritmo aleatorizado 𝐴 é dito Las
Vegas se sempre produz uma resposta correta e se o seu tempo de execução em
uma instância 𝑥 do problema, denotado por 𝑇𝐴(𝑥), é uma variável aleatória.

Dizemos que um algoritmo Las Vegas é eficiente se seu tempo de execu-
ção esperado é polinomial no tamanho da entrada.

Para exemplificar os conceitos apresentados, considere o problema do
Isomorfismo de Subgrafos18:

Isomorfismo de subgrafos

Dado um grafo 𝐺 e um grafo 𝐻 , determine se 𝐻 é isomorfo a algum
subgrafo de 𝐺.

𝐺 𝐻 ≅ 𝐶5 𝐻 ⊂ 𝐺

Figura 2: Exemplo de
isomorfismo de subgrafo,
mostrando a identificação
de um subgrafo 𝐻 (em
preto) dentro de um grafo
𝐺.

Nos restringiremos a uma versão específica do problema: encontrar um
caminho simples de comprimento 𝑘 − 1 em 𝐺, que é computacionalmente
difícil para 𝑘 arbitrário, pois generaliza o problema do Caminho Hamilto-
niano, que consiste em decidir se um grafo admite um caminho simples
que visita todos os seus vértices, problema já demonstrado ser NP-completo
[17].

Para isso, usaremos uma técnica introduzida por Alon, Yuster e Zwick
[16], chamada de codificação por cores19. O método consiste em colorir
aleatoriamente os vértices do grafo 𝐺 usando 𝑘 cores, a fim de encontrar
um caminho colorido de comprimento 𝑘 − 1, isto é, um caminho em que

14

cada vértice recebe uma cor distinta. Note que, por ser colorido, o caminho
encontrado é necessariamente simples.

Lema 2. Seja 𝐺 = (𝑉 , 𝐸) um grafo e 𝑐 ∶ 𝑉 → {1, 2, … , 𝑘} uma 𝑘-coloração
escolhida uniformemente ao acaso. Então, qualquer caminho de comprimento
𝑘 − 1 em 𝐺 é um caminho colorido segundo 𝑐 com probabilidade 𝑘!/𝑘𝑘 > 𝑒−𝑘 .

Demonstração. Há 𝑘𝑘 colorações distintas possíveis para um caminho de
comprimento 𝑘 − 1, das quais 𝑘! são coloridas. Logo, a probabilidade de um
caminho ser colorido segundo 𝑐 é 𝑘!/𝑘𝑘 . �

Agora apresentaremos um algoritmo determinístico de programação
dinâmica que, dada uma 𝑘-coloração dos vértices de 𝐺 = (𝑉 , 𝐸) e um vértice
inicial 𝑠 ∈ 𝑉 , identifica todos os vértices 𝑣 ∈ 𝑉 ∖ {𝑠} para os quais existe um
caminho colorido de comprimento 𝑘 − 1 que começa em 𝑠 e termina em 𝑣 .
Além disso, para cada vértice alcançável, é possível reconstruir um caminho
colorido de comprimento 𝑘 − 1 que o conecte a 𝑠.

Suponha que, no passo 𝑖, já tenhamos determinado, para cada vértice
𝑣 ∈ 𝑉 ∖ {𝑠}, todos os conjuntos de cores que podem aparecer em algum
caminho colorido de comprimento 𝑖−1 ligando 𝑠 a 𝑣 . Denotemos essa coleção
por C 𝑖−1𝑣 . Observe que ela contém, no máximo, (𝑘

𝑖−1) conjuntos de cores.

Opcionalmente, para cada conjunto de cores 𝐶 ∈ C 𝑖−1𝑣 , podemos arma-
zenar um caminho que o realize – o que nos permitirá reconstruir caminhos
de comprimento 𝑘 − 1 ao final do algoritmo. Então, denotamos por P 𝑖−1

𝑣 a
coleção correspondente de caminhos e por P 𝑖−1

𝑣 (𝐶) o caminho associado ao
conjunto de cores 𝐶 .

Examinamos então cada conjunto 𝐶 ∈ C 𝑖−1𝑣 e cada aresta {𝑣 , 𝑢} ∈ 𝐸. Se
𝑐(𝑢) ∉ 𝐶 , adicionamos o conjunto

𝐶′ = 𝐶 ∪ {𝑐(𝑢)}

à coleção C 𝑖𝑢 , correspondente aos caminhos coloridos de comprimento 𝑖
que terminam em 𝑢. Opcionalmente, se 𝑃 = P 𝑖−1

𝑣 (𝐶) é o caminho colorido
associado a 𝐶 , adicionamos o caminho estendido 𝑃 ⋅ 𝑢 à P 𝑖

𝑢 , como o caminho
que realiza 𝐶′.

Ao final do algoritmo, verificamos se 𝐺 contém um caminho colorido de
comprimento 𝑘−1 segundo a coloração 𝑐 observando se alguma coleção final
C𝑘−1𝑣 é não vazia para algum 𝑣 ∈ 𝑉 ∖ {𝑠}. Para recuperar um dos caminhos
que conecta 𝑠 a tal vértice 𝑣 , basta recuperar algum caminho 𝑃 ∈ P𝑘−1

𝑣 .

Algoritmo 3 (Caminhos coloridos)

A função CaminhosColoridos recebe um grafo 𝐺, um inteiro 𝑘, uma
𝑘-coloração dos vértices e um vértice 𝑠, e identifica todos os vértices

15

alcançáveis a partir de 𝑠 por um caminho colorido de comprimento 𝑘 −1.
Opcionalmente, também permite recuperar algum desses caminhos para
cada vértice alcançado.

Entrada: Grafo 𝐺 = (𝑉 , 𝐸) com 𝑛 vértices e 𝑚 arestas, uma coloração
𝑐 ∶ 𝑉 → {1, 2, … , 𝑘} e um vértice inicial 𝑠 ∈ 𝑉 .

Saída: O conjunto de vértices 𝑣 ∈ 𝑉 ∖ {𝑠} para os quais existe um
caminho colorido de comprimento 𝑘 − 1 conectando 𝑠 a 𝑣 , e algum
caminho correspondente para cada um deles.

CaminhosColoridos(𝐺, 𝑘, 𝑐, 𝑠)
1. Para cada vértice 𝑣 ∈ 𝑉 faça
2. C0𝑣 ← {𝑐(𝑣)}
3. P0

𝑣 ← {𝑣}

4. Para 𝑖 = 1 até 𝑘 − 1 faça
5. Para cada vértice 𝑣 ∈ 𝑉 faça
6. C 𝑖𝑣 ,P 𝑖

𝑣 ← ∅

7. Para 𝑖 = 1 até 𝑘 − 1 faça
8. Para cada vértice 𝑣 ∈ 𝑉 faça
9. Para cada conjunto 𝐶 ∈ C 𝑖−1𝑣 faça
10. 𝑃 ← P 𝑖−1

𝑣 (𝐶)
11. Para cada aresta {𝑣 , 𝑢} ∈ 𝐸 faça
12. Se 𝑐(𝑢) ∉ 𝐶 então
13. 𝐶′ = 𝐶 ∪ {𝑐(𝑢)}
14. C 𝑖𝑢 ← C 𝑖𝑢 ∪ {𝐶′}
15. P 𝑖

𝑢(𝐶′) ← 𝑃 ⋅ 𝑢

16. Retorne {𝑣 ∈ 𝑉 ∶ C𝑘−1𝑣 ≠ ∅}, {𝑃 ∈ P𝑘−1
𝑣 ∶ 𝑣 ∈ 𝑉 ,P𝑘−1

𝑣 ≠ ∅}

Note que o tempo de execução do Algoritmo 3 é dado por ∑𝑘
𝑖=0 𝑖(

𝑘
𝑖)𝑚 =

O(𝑘2𝑘𝑚).

Para encontrar um caminho de comprimento 𝑘 − 1 em 𝐺 que inicie em
qualquer vértice, basta adicionar um novo vértice 𝑠′ em 𝑉 , atribuir-lhe uma
nova cor insignificante e conectá-lo a todos os vértices de 𝑉 . Nesse cenário,
buscamos um caminho colorido de comprimento 𝑘 que começa em 𝑠′.

Não é difícil de ver que o algoritmo pode ser adaptado para encontrar
ciclos de comprimento 𝑘: execute-o tomando cada vértice 𝑣 ∈ 𝑉 como
vértice inicial. Em seguida, para cada par {𝑢, 𝑣} conectado por um caminho
de comprimento 𝑘 − 1, verifique se {𝑢, 𝑣} ∈ 𝐸. Em caso afirmativo, obtém-se
um ciclo de comprimento 𝑘. Observe que um resultado análogo ao Lema 2

16

aplica-se igualmente a ciclos. No trabalho original, Alon, Yuster e Zwick
[16] apresentam um algoritmo mais sofisticado, capaz de encontrar todos os
caminhos simples de comprimento 𝑘 − 1 em 𝐺.

Assim, combinando os dois resultados anteriores, obtemos um algoritmo
aleatorizado Las Vegas que encontra um caminho de comprimento 𝑘 − 1 em
𝐺, caso exista: repetidamente colorimos o grafo aleatoriamente e tentamos
encontrar um caminho colorido de comprimento 𝑘 − 1.

Algoritmo 4 (Caminho simples)

A função CaminhoSimples recebe um grafo 𝐺 e um inteiro 𝑘, e encontra
um caminho simples de comprimento 𝑘 − 1 em 𝐺, caso exista. A fun-
ção auxiliar InteiroAleatório retorna um número inteiro escolhido
uniformemente ao acaso no intervalo especificado.

Entrada: Grafo 𝐺 = (𝑉 , 𝐸), com 𝑛 vértices e 𝑚 arestas.

Saída: Caminho simples 𝑃 de comprimento 𝑘 − 1, caso exista.

CaminhoSimples(𝐺, 𝑘)
1. 𝐻 = (𝑉 ∪ {𝑠}, 𝐸 ∪ {{𝑠, 𝑣} ∶ 𝑣 ∈ 𝑉 })
2. Repita
3. 𝑐(𝑠) ← 0
4. Para cada vértice 𝑣 ∈ 𝑉 faça
5. 𝑐(𝑣) ← InteiroAleatório([1, 𝑘])
6. 𝑆,P ← CaminhosColoridos(𝐻, 𝑘 + 1, 𝑐, 𝑠)
7. Se P ≠ ∅ então
8. Retorne 𝑃 ∈ P

Teorema 6. Dado um grafo 𝐺 = (𝑉 , 𝐸) com 𝑚 arestas, o Algoritmo 4 retorna
um caminho de comprimento 𝑘 −1, caso exista, em tempo de execução esperado
O(2𝑘𝑘𝑘+1𝑚/𝑘!).

Demonstração. Note que o algoritmo tem sucesso sempre que a coloração
aleatória dos vértices torna algum caminho de comprimento 𝑘 − 1 colorido.
Uma vez fixada a coloração, a verificação é totalmente determinística.

Seja 𝐾 o número de colorações escolhidas ao acaso até que uma de-
las permita encontrar um caminho colorido desejado. Então, o tempo de
execução 𝑇 (𝑥) é dado por

𝑇 (𝑥) = 𝐾 ⋅O(𝑘2𝑘𝑚).

Pelo Lema 2, sabemos que cada coloração aleatória é bem-sucedida
com probabilidade ao menos 𝑘!/𝑘𝑘 . Portanto, 𝐾 é uma variável aleatória

17

20Existe, entretanto, uma
forma de derandomizar o
algoritmo apresentado, isto
é, eliminar o uso de alea-
toriedade (veja Seção 2.3),
com um acréscimo de ape-
nas um fator lg 𝑛 no tempo
de execução [16]. Essa de-
randomização substitui a
enumeração exponencial de
colorações por uma família
determinística de tamanho
2O(𝑘) lg 𝑛, superando a limi-
tação mencionada.

21A probabilidade de cauda
de uma variável aleatória 𝑋
é simplesmente a probabi-
lidade de que 𝑋 exceda ou
fique abaixo de um limiar
de interesse 𝜆.

geométrica com probabilidade de sucesso 𝑝 = 𝑘!/𝑘𝑘 , e assim

𝔼[𝐾] = 1
𝑝
= 𝑘𝑘

𝑘!
.

Logo,
𝔼[𝑇 (𝑥)] = 𝔼[𝐾] ⋅O(𝑘2𝑘𝑚) = O(2𝑘𝑘𝑘+1𝑚/𝑘!).

�

Corolário 2. Para 𝑘 = O(lg 𝑛), em que lg 𝑛 = log2 𝑛, o Algoritmo 4 encontra
um caminho de comprimento 𝑘 em𝐺 em tempo de execução esperado polinomial
– mais precisamente, O(𝑛1+lg 𝑒√lg 𝑛 𝑚).

É importante ressaltar que o Algoritmo 4 não é eficiente quando usado
para decidir se o grafo 𝐺 contém um caminho de comprimento 𝑘 − 1, mesmo
para 𝑘 constante. Embora um certificado de SIM possa ser obtido em tempo
esperadoO(2𝑘𝑘𝑘+1𝑚/𝑘!), o certificado de NÃO requer a verificação de todas
as 𝑘𝑛 colorações possíveis de 𝐺, implicando tempo exponencial no tamanho
da entrada20.

Um questionamento interessante surge no estudo de algoritmos do tipo
Las Vegas. Considere um algoritmo Las Vegas que realiza decisões alea-
tórias incrementalmente, de forma que, à medida que a execução avança,
seus passos dependem cada vez mais das escolhas aleatórias anteriores. Se
observarmos que a execução está consumindo um tempo significativamente
maior do que o esperado, poderíamos inferir que as escolhas aleatórias feitas
até então foram desfavoráveis e, nesse caso, reiniciar o algoritmo com uma
nova sequência de decisões aleatórias. Será que tal estratégia é capaz de
reduzir o tempo de execução esperado?

Formalmente, uma estratégia de reinicialização para um algoritmo Las
Vegas 𝐴 é uma sequência

𝑆 = (𝑡1, 𝑡2, …),

em que 𝐴 é executado por 𝑡1 passos, interrompido e reiniciado. Em seguida,
é executado novamente por 𝑡2 passos de forma independente, e assim su-
cessivamente. O processo termina assim que alguma dessas execuções é
concluída com sucesso.

Denotamos por 𝑆(𝐴) o algoritmo Las Vegas resultante da aplicação de 𝑆
em 𝐴. Naturalmente, 𝑇𝑆(𝐴)(𝑥) denota a variável aleatória correspondente ao
tempo total de execução do algoritmo 𝐴 na instância 𝑥 sob essa estratégia, e
𝔼[𝑇𝑆(𝐴)(𝑥)] denota seu tempo de execução esperado.

Como exemplo ilustrativo, mostramos como uma estratégia particular-
mente simples já é suficiente para reduzir significativamente a probabilidade
de cauda21 do tempo de execução de um algoritmo Las Vegas arbitrário, i.e., a

18

probabilidade de o algoritmo demorar muito tempo decai exponencialmente
[18]. Observe que, na ausência de qualquer informação adicional sobre a
distribuição do tempo de execução, a desigualdade de Markov fornece o
melhor limitante geral disponível para a probabilidade de cauda:

Pr(𝑇𝐴(𝑥) ≥ 𝑡) ≤
𝔼[𝑇𝐴(𝑥)]

𝑡
.

Teorema 7. Dado um algoritmo Las Vegas 𝐴 e uma instância 𝑥 , seja 𝜇 =
𝔼[𝑇𝐴(𝑥)]. A estratégia de reinicialização

𝑆 = (𝑡𝑖 = 2𝜇)𝑖≥1 ,

isto é, a estratégia que consiste em executar 𝐴 por 2𝜇 passos e repetir esse
processo até obter sucesso, garante que a probabilidade de cauda do tempo de
execução satisfaz

Pr(𝑇𝑆(𝐴)(𝑥) ≥ 𝑡) ≤ 2−⌊𝑡/2𝜇⌋.

Demonstração. Pela desigualdade de Markov, vale que

Pr(𝑇𝐴(𝑥) ≥ 2𝜇) ≤
𝜇
2𝜇

≤ 1
2
.

Assim, cada execução limitada a 2𝜇 passos falha com probabilidade no
máximo 1/2. Como as execuções são independentes, a probabilidade de que
𝑘 ∈ ℕ execuções consecutivas falhem é no máximo 2−𝑘 .

Logo,
Pr(𝑇𝑆(𝐴)(𝑥) ≥ 𝑘2𝜇) ≤ 1

2𝑘
,

ou, equivalentemente,

Pr(𝑇𝑆(𝐴)(𝑥) ≥ 𝑡) ≤ 2−⌊𝑡/2𝜇⌋,

como desejado. �

De forma mais geral, podemos definir o tempo de execução esperado
ótimo de 𝐴, tomado sobre todas as estratégias de reinicialização 𝑆, como

ℓ𝐴(𝑥) = inf
𝑆
𝔼[𝑇𝑆(𝐴)(𝑥)].

Luby, Sinclair e Zuckerman [19] demonstraram a existência de uma
estratégia universal 𝑆univ que, para todo algoritmo Las Vegas 𝐴, vale que

𝔼[𝑇𝑆univ(𝐴)(𝑥)] = O(ℓ𝐴(𝑥) ⋅ lg ℓ𝐴(𝑥)),

ou seja, a estratégia 𝑆univ alcança um tempo de execução esperado ótimo

19

entre todas as estratégias, a menos de um fator logarítmico. A demonstração
desse resultado foge ao escopo deste texto.

Diversos trabalhos posteriores aprofundaram o estudo de estratégias de
reinicialização, abordando, por exemplo, estratégias ótimas no contexto de
múltiplos processadores executando em paralelo [20], estratégias adaptativas
que se atualizam com base no comportamento de execuções anteriores
[21], bem como o estudo de portfólios de algoritmos, nos quais diferentes
algoritmos randomizados são intercalados com o objetivo de reduzir o tempo
de execução esperado total [22].

Algoritmos do tipo Las Vegas são particularmente relevantes para pro-
blemas computacionalmente difíceis, especialmente em grafos e otimização
combinatória. Entre outras razões, sua importância decorre do fato de per-
mitirem a exploração do espaço de soluções de forma aleatorizada, o que
frequentemente possibilita contornar o crescimento exponencial do con-
junto de soluções candidatas sem comprometer a validade da resposta obtida.
Problemas que se enquadram nesse paradigma são conhecidos como proble-
mas de busca, isto é, aqueles que envolvem encontrar uma testemunha que
satisfaça determinadas condições – categoria que inclui muitos problemas
NP-completos.

Considere, por exemplo, o procedimento de busca por backtracking alea-
torizada, no qual o algoritmo constrói incrementalmente uma solução parcial
e, quando se torna evidente que o caminho de solução atual não é viável
ou não conduz a uma solução ótima, o procedimento retrocede e faz es-
colhas aleatórias diferentes, explorando o espaço de soluções de maneira
probabilística até encontrar uma solução satisfatória. As questões discutidas
anteriormente – estratégias de reinicialização e redução da probabilidade
de cauda do tempo de execução – estão diretamente ligadas a esse tipo de
abordagem e surgem com frequência nesse contexto [23].

2.1.3 Conversão entre algoritmos Monte Carlo e Las
Vegas

Uma propriedade interessante a respeito dos dois tipos de algoritmos
abordados anteriormente é que, sob determinadas condições, é possível
converter um algoritmo eficiente de um tipo em outro. Formalizamos esses
resultados a seguir.

Teorema 8. Seja 𝐴 um algoritmo Monte Carlo eficiente com probabilidade
de erro 𝜀 ∈ (0, 1) suficientemente pequena. Mais especificamente, 𝜀 ≤ 1 −
1/ poly(𝑛), em que 𝑛 denota o tamanho da entrada. Se a validade da resposta

20

retornada por 𝐴 pode ser verificada em tempo polinomial, então 𝐴 pode ser
transformado em um algoritmo Las Vegas 𝐵 eficiente.

Demonstração. Definimos 𝐵 como o algoritmo que executa 𝐴 repetidamente
até que a resposta retornada seja verificada como correta. Claramente 𝐵
produz apenas respostas corretas, e seu tempo de execução 𝑇𝐵(𝑥) é uma
variável aleatória que depende da aleatoriedade de 𝐴. Portanto, 𝐵 é um
algoritmo Las Vegas. Resta mostrar que seu tempo de execução esperado é
polinomial.

Seja 𝑝(𝑛) um polinômio que limita o tempo de execução de uma chamada
de 𝐴 seguida da verificação. Seja 𝐾 a variável aleatória que conta quantas
repetições de 𝐴 são necessárias até obtermos uma resposta correta. Então,

𝑇𝐵(𝑥) = 𝐾 ⋅ 𝑝(𝑛).

Como cada execução tem probabilidade de sucesso 1 − 𝜀, a variável 𝐾 é
geométrica com probabilidade de sucesso 𝑝 = 1 − 𝜀. Logo,

𝔼[𝐾] = 1
𝑝
= 1

1 − 𝜀
.

Pela hipótese, existe um polinômio 𝑞(𝑛) tal que

𝜀 ≤ 1 − 1
𝑞(𝑛)

.

Logo,
1 − 𝜀 ≥ 1

𝑞(𝑛)
⟹ 𝔼[𝐾] = 1

1 − 𝜀
≤ 𝑞(𝑛).

Portanto,
𝔼[𝑇𝐵(𝑥)] = 𝔼[𝐾] ⋅ 𝑝(𝑛) ≤ 𝑞(𝑛) ⋅ 𝑝(𝑛),

que é polinomial em 𝑛. Assim, 𝐵 é um algoritmo Las Vegas eficiente. �

Para ilustrar o resultado, considere o Algoritmo 1. A validade da resposta
pode ser verificada em O(1): basta comparar o tamanho do corte gerado
com ⌊𝑚/2⌋. Aplicando o Teorema 8, obtemos um algoritmo Las Vegas que
sempre retorna um corte de tamanho pelo menos ⌊𝑚/2⌋ e cujo tempo de
execução esperado é O(𝑚 ⋅ (𝑛 + 𝑚)).

Teorema 9. Seja 𝐴 um algoritmo Las Vegas eficiente. Então, 𝐴 pode ser
transformado em um algoritmo Monte Carlo 𝐵 eficiente, com probabilidade de
erro arbitrariamente pequena.

Demonstração. Escolhemos uma função 𝑡 = 𝑡(𝑛) polinomial em 𝑛, o tamanho
da entrada, e definimos 𝐵 como o algoritmo que executa 𝐴 por no máximo
𝑡 passos: caso 𝐴 não termine nesse limite, 𝐵 é interrompido e retorna um

21

resultado de Erro.

Como 𝐵 sempre executa no máximo 𝑡 passos, e escolhemos 𝑡 polinomial
em 𝑛, segue que 𝐵 é um algoritmo Monte Carlo eficiente. Resta então estimar
sua probabilidade de erro 𝜀 ∈ (0, 1).

Note que
𝜀 = Pr(𝑇𝐴(𝑥) > 𝑡).

Aplicando a desigualdade de Markov, temos

𝜀 = Pr(𝑇𝐴(𝑥) > 𝑡) ≤ Pr(𝑇𝐴(𝑥) ≥ 𝑡) ≤
𝔼[𝑇𝐴(𝑥)]

𝑡
.

Como 𝐴 é um algoritmo Las Vegas eficiente, o tempo de execução espe-
rado 𝔼[𝑇𝐴(𝑥)] é polinomial em 𝑛. Portanto, podemos escolher 𝑡 arbitraria-
mente grande – desde que ainda polinomial – de modo que 𝑡 ≫ 𝔼[𝑇𝐴(𝑥)].

Com essa escolha, vale que

𝜀 ≤
𝔼[𝑇𝐴(𝑥)]

𝑡
→ 0,

quando 𝑛 → ∞, o que garante que 𝐵 retorne a resposta correta com alta
probabilidade e execute em tempo polinomial. �

Para ilustrar o resultado, considere o Algoritmo 4. Suponha que sejam
testadas exatamente 𝑘𝑘 colorações. Nesse caso, temos 𝑡 = O(2𝑘𝑘𝑘+1𝑚).
Aplicando o Teorema 9, obtemos um algoritmo Monte Carlo que encontra o
caminho desejado em tempo de execução determinístico O(2𝑘𝑘𝑘+1𝑚), cuja
probabilidade de erro, isto é, de não encontrar o caminho mesmo quando
ele existe, é no máximo 1/𝑘!.

2.2 Modelo computacional e classes de
complexidade

Agora formalizaremos o modelo computacional probabilístico, permi-
tindo generalizar naturalmente as classes de complexidade convencionais e
incorporar as ferramentas aleatorizadas apresentadas.

Seguindo a abordagem usual, adotamos o modelo de máquina de Tu-
ring, estendido ao contexto aleatorizado pela noção de máquina de Turing
probabilística.

Definição 3 (Máquina de Turing probabilística). Uma máquina de Turing

22

probabilística 𝑀 é uma máquina de Turing com duas funções de transição, 𝛿0 e
𝛿1, tal que, a cada passo da computação, uma delas é selecionada uniformemente
ao acaso, independentemente das escolhas anteriores.

O objetivo desta seção é investigar o poder computacional desse tipo de
máquina de Turing.

Observe que, em uma execução de uma máquina de Turing probabilística
com 𝑡 passos, existem 2𝑡 ramos possíveis de execução, cada um escolhido com
probabilidade 1/2𝑡 . Assim, para uma entrada 𝑥 , a probabilidade Pr[𝑀(𝑥) =
1] corresponde simplesmente à fração dos ramos de execução nos quais a
máquina 𝑀 termina retornando 1.

Primeiramente, a fim de demonstrar a generalidade do modelo, mostra-
remos – de forma análoga ao resultado que trata da simulação de máquinas
de Turing com alfabetos maiores que o binário – que a suposição feita na
introdução da Seção 2 é justificada. Em particular, provaremos que o acesso
apenas a bits aleatórios é suficiente para simular, em tempo eficiente, uma
distribuição uniforme sobre o conjunto {1, … , 𝑛}. Assim, o modelo RAM
estendido descrito anteriormente é equivalente, a menos de fatores polino-
miais, ao modelo de máquina de Turing probabilística.

Teorema 10. Dada uma fonte de bits aleatórios cujo custo de obtenção é unitá-
rio e um inteiro 𝑛 ∈ ℕ, é possível simular eficientemente a amostragem de um
inteiro aleatório uniformemente distribuído em {1, … , 𝑛}. Mais precisamente,
para todo 𝑛 ∈ ℕ e todo 𝜀 > 0, existe um algoritmo aleatorizado que executa
em tempo O(lg(1/𝜀) ⋅ lg 𝑛) e retorna um inteiro escolhido uniformemente ao
acaso no intervalo desejado com probabilidade ao menos 1 − 𝜀.

Demonstração. Considere o seguinte algoritmo 𝐴. Sorteamos ⌈lg 𝑛⌉ bits
aleatórios, obtendo um inteiro 𝑟 uniformemente distribuído no intervalo
{0, … , 2⌈lg 𝑛⌉ − 1}. Se 𝑟 < 𝑛, retornamos 𝑟 + 1. De fato, como 𝑟 é uniforme
em {0, … , 2⌈lg 𝑛⌉ − 1}, a distribuição de 𝑟 + 1 condicionada ao evento 𝑟 < 𝑛 é
uniforme em {1, … , 𝑛}, como gostaríamos. Caso contrário, se 𝑟 ≥ 𝑛, dizemos
que a execução falhou.

Para 𝑛 = 2, o algoritmo é trivialmente correto. Suponha então 𝑛 ≥ 3.
Como

2⌈lg 𝑛⌉−1 ≤ 𝑛 ≤ 2⌈lg 𝑛⌉ − 1,

o número de valores de 𝑟 tais que 𝑟 ≥ 𝑛 é no máximo 𝑛/2.

Logo, a probabilidade de falha de uma única execução de𝐴 é estritamente
menor que 1/2.

Considere agora o procedimento 𝐴𝑘 , que repete o algoritmo 𝐴 indepen-
dentemente por 𝑘 = ⌈lg(1/𝜀)⌉ vezes, interrompendo assim que uma execução

23

22A classe PP (probabilistic
polynomial-time) corres-
ponde ao caso limítrofe em
que entradas pertencentes
à 𝐿 são aceitas com proba-
bilidade estritamente maior
que 1/2, enquanto entradas
fora de 𝐿 são aceitas com
probabilidade no máximo
1/2. Essa classe não consti-
tui um modelo razoável de
computação probabilística
eficiente, pois a amplifica-
ção pode exigir um número
exponencial de repetições
independentes, uma vez
que não há garantia de que
a probabilidade de acerto
seja suficientemente maior
que 1/2.

é bem-sucedida. A probabilidade de que todas as 𝑘 execuções falhem é então

Pr(𝐴𝑘 falhar) =
𝑘

∏
𝑖=1

Pr(𝑖-ésima execução de 𝐴 falhar) < 2−𝑘 ≤ 𝜀.

Evidentemente, o tempo total de execução de𝐴𝑘 éO(lg(1/𝜀) ⋅ lg 𝑛), como
queríamos. �

Definimos então a classe de complexidade BPP , análoga à classe P ,
com o objetivo de capturar a noção de computação probabilística eficiente
com erro limitado.

Definição 4 (BPP). A classe BPP (bounded-error probabilistic polynomial-
time) consiste no conjunto das linguagens 𝐿 ⊂ {0, 1}∗ para as quais existe um
algoritmo aleatorizado 𝐴 que executa em tempo polinomial tal que, para toda
entrada 𝑥 ∈ {0, 1}∗,

• 𝑥 ∈ 𝐿 ⟹ Pr(𝐴(𝑥) aceita) ≥ 2/3;
• 𝑥 ∉ 𝐿 ⟹ Pr(𝐴(𝑥) aceita) ≤ 1/3.

Como visto na Seção 2.1, a técnica de amplificação permite reduzir expo-
nencialmente a probabilidade de erro de um algoritmo aleatorizado por meio
de um número apenas polinomial de repetições independentes, desde que a
probabilidade de erro inicial seja pequena o suficiente. Consequentemente,
o limitante de erro 1/3 adotado na definição de BPP torna-se arbitrário:
poderíamos, por exemplo, trocá-lo por uma margem do tipo 1/2−1/ poly(𝑛)
sem impactar significativamente a definição da classe22.

Note que a classe tem profunda relação com algoritmos Monte Carlo
com erro bilateral suficientemente pequeno.

Como as máquinas de Turing determinísticas constituem um caso par-
ticular de máquinas de Turing probabilísticas, obtemos imediatamente o
resultado a seguir.

Proposição 1. P ⊆ BPP .

Utilizando técnicas triviais de derandomização, que serão apresentadas
posteriormente (veja Teorema 12), obtemos também o resultado abaixo de
forma direta.

Proposição 2. BPP ⊆ EXP .

Convém ainda introduzir outras classes de complexidade associadas a
algoritmos Monte Carlo com erro unilateral suficientemente pequeno.

Definição 5 (RP). A classe RP (randomized polynomial-time) consiste
no conjunto das linguagens 𝐿 ⊂ {0, 1}∗ para as quais existe um algoritmo

24

aleatorizado 𝐴 que executa em tempo polinomial tal que, para toda entrada
𝑥 ∈ {0, 1}∗,

• 𝑥 ∈ 𝐿 ⟹ Pr(𝐴(𝑥) aceita) ≥ 1/2;
• 𝑥 ∉ 𝐿 ⟹ Pr(𝐴(𝑥) aceita) = 0.

Novamente, pelos mesmos argumentos discutidos anteriormente, a esco-
lha do limitante 1/2 para a probabilidade de erro é essencialmente arbitrária:
qualquer constante 𝛿 ∈ (0, 1), ou mesmo 1 − 1/ poly(𝑛), levaria à mesma
classe de linguagens por meio da técnica de amplificação.

A classe co-RP é definida de maneira análoga à classe RP , consistindo
das linguagens que admitem algoritmos aleatorizados de tempo polinomial
que podem errar apenas quando 𝑥 ∉ 𝐿.

Note que o seguinte resultado decorre naturalmente das definições das
classes.

Proposição 3. RP ⊆ BPP e co-RP ⊆ BPP .

Observando que emRP (resp. co-RP) toda computação que aceita (resp.
rejeita) fornece um certificado de que a entrada pertence à linguagem (resp.
não pertence), ou, de forma equivalente, que a sequência de bits aleatórios
utilizada – de tamanho polinomial – pode ser usada como testemunha,
obtemos imediatamente o seguinte resultado.

Proposição 4. RP ⊆ NP e co-RP ⊆ co-NP .

Por fim, introduzimos a classe de complexidade associada a algoritmos
do tipo Las Vegas.

Definição 6 (ZPP). A classe ZPP (zero-error probabilistic polynomial-
time) consiste no conjunto das linguagens 𝐿 ⊂ {0, 1}∗ para as quais existe um
algoritmo aleatorizado 𝐴 que decide corretamente a linguagem 𝐿 e cujo tempo
de execução esperado é polinomial.

Note que trivialmente também vale o resultado abaixo.

Proposição 5. P ⊆ ZPP .

Demonstramos então um resultado fundamental a respeito da classe
ZPP .

Teorema 11. ZPP = RP ∩ co-RP .

Demonstração. Começamos mostrando que ZPP ⊆ RP ∩ co-RP . Seja
𝐿 ∈ ZPP . Então, existe um algoritmo 𝐴 que decide 𝐿 corretamente e
satisfaz

𝔼[𝑇𝐴(𝑥)] ≤ 𝑝(𝑛),

para algum polinômio 𝑝.

25

Pela desigualdade de Markov,

Pr(𝑇𝐴(𝑥) ≥ 2𝑝(𝑛)) ≤ 1
2
.

Definimos então um algoritmo 𝐵 que executa 𝐴 por no máximo 2𝑝(𝑛)
passos: se 𝐴 termina dentro desse limite, 𝐵 devolve sua resposta. Caso
contrário, 𝐵 rejeita. Assim,

• 𝑥 ∈ 𝐿 ⟹ Pr(𝐵(𝑥) aceita) = Pr(𝑇𝐴(𝑥) ≤ 2𝑝(𝑛)) ≥ 1/2;
• 𝑥 ∉ 𝐿 ⟹ Pr(𝐵(𝑥) aceita) = 0.

Logo, 𝐿 ∈ RP . Um argumento análogo, agora aceitando quando o limite
de tempo é excedido, mostra que 𝐿 ∈ co-RP . Portanto,

ZPP ⊆ RP ∩ co-RP .

Por fim, mostraremos que RP ∩ co-RP ⊆ ZPP .

Seja 𝐿 ∈ RP ∩ co-RP . Então, existe um algoritmo 𝐴 tal que, para toda
entrada 𝑥 :

• 𝑥 ∈ 𝐿 ⟹ Pr(𝐴(𝑥) aceita) ≥ 1/2;
• 𝑥 ∉ 𝐿 ⟹ Pr(𝐴(𝑥) aceita) = 0.

Além disso, existe um algoritmo 𝐵 tal que, para toda entrada 𝑥 :

• 𝑥 ∈ 𝐿 ⟹ Pr(𝐵(𝑥) aceita) = 1;
• 𝑥 ∉ 𝐿 ⟹ Pr(𝐵(𝑥) aceita) ≤ 1/2.

Construímos um algoritmo 𝐶 que executa 𝐴 e 𝐵 de forma intercalada,
repetindo suas execuções de maneira independente. O algoritmo 𝐶 aceita
a entrada 𝑥 assim que 𝐴 aceita e rejeita 𝑥 assim que 𝐵 rejeita. Note que 𝐶
sempre decide corretamente a linguagem 𝐿:

• 𝑥 ∈ 𝐿 ⟹ Pr(𝐶(𝑥) rejeita 𝑥) = Pr(𝐵(𝑥) rejeita 𝑥) = 0;
• 𝑥 ∉ 𝐿 ⟹ Pr(𝐶(𝑥) aceita 𝑥) = Pr(𝐴(𝑥) aceita 𝑥) = 0.

Resta analisar o tempo de execução esperado de 𝐶 . Seja 𝐾𝐴 (resp. 𝐾𝐵) a
variável aleatória que denota o número de execuções de 𝐴 (resp. 𝐵) até que
uma decisão definitiva seja obtida. Como cada execução tem probabilidade
de sucesso ao menos 1/2, 𝐾𝐴 e 𝐾𝐵 são variáveis geométricas com

𝔼[𝐾𝐴] ≤ 2 e 𝔼[𝐾𝐵] ≤ 2.

26

O tempo total de execução satisfaz

𝑇𝐶(𝑥) = 𝐾𝐴 ⋅ 𝑇𝐴(𝑥) + 𝐾𝐵 ⋅ 𝑇𝐵(𝑥).

Pela linearidade da esperança,

𝔼[𝑇𝐶(𝑥)] = 𝔼[𝐾𝐴] ⋅ 𝑇𝐴(𝑥) + 𝔼[𝐾𝐵] ⋅ 𝑇𝐵(𝑥) ≤ 2(𝑇𝐴(𝑥) + 𝑇𝐵(𝑥)).

Como 𝑇𝐴(𝑥) e 𝑇𝐵(𝑥) são polinomiais, segue que 𝔼[𝑇𝐶(𝑥)] é limitado por
um polinômio.

Concluímos que 𝐿 ∈ ZPP , e portanto

RP ∩ co-RP ⊆ ZPP .

Os dois resultados completam a prova. �

Corolário 3. ZPP ⊆ BPP .

Dessa forma, ilustramos as seguintes relações entre as classes de com-
plexidade discutidas:







Figura 3: Relação entre
algumas das classes de
complexidade
computacional
probabilística. As inclusões
podem não ser estritas.

Apesar desses resultados, muitas relações entre classes probabilísticas
permanecem em aberto. Encerramos a seção enunciando uma das questões
mais fundamentais da teoria da complexidade computacional probabilística.

Conjectura 1. BPP = P .

O interesse por essa questão é natural, pois demonstrar que BPP = P
levaria a uma conclusão extremamente forte: a aleatoriedade não confere
poder computacional adicional, isto é, não torna tratáveis problemas que já
não sejam tratáveis por máquinas determinísticas.

Embora a Conjectura 1 possa parecer contraintuitiva à primeira vista,
na Seção 2.3 apresentaremos argumentos que sustentam a possibilidade de
que ela seja verdadeira – de fato, muitos especialistas acreditam que esse
seja o caso [5]. Essa crença baseia-se na expectativa de que todo algoritmo
probabilístico eficiente possa ser derandomizado, isto é, convertido em um
algoritmo determinístico equivalente, com apenas uma sobrecarga polino-

27

23Alternativamente, no caso
de algoritmos de otimiza-
ção, produzirá sempre uma
solução que satisfaz as ga-
rantias de qualidade do
algoritmo original, e assim
por diante.
24Apresentamos a enume-
ração de algoritmos para
problemas de decisão, mas
argumentos semelhantes se
aplicam a algoritmos para
outros tipos de problemas,
como problemas de otimiza-
ção.

mial. Discutiremos esse tema em detalhe na Seção 2.3, onde buscaremos
esclarecer por que essa conjectura é plausível.

2.3 Pseudoaleatoriedade e derandomização

Como vimos na introdução da Seção 2, algoritmos aleatorizados ne-
cessitam de bits aleatórios, independentes e imparciais para funcionarem
corretamente. Naturalmente, nos perguntamos então como poderíamos
obter tais bits, e, mais importante ainda, se é possível remover, total ou
parcialmente, a necessidade de bits aleatórios nesses algoritmos.

Deve ficar claro que, ao longo desta seção, ao nos referirmos a um algo-
ritmo aleatorizado, salvo menção em contrário, estaremos tratando de um
algoritmo aleatorizado eficiente, com probabilidade de erro razoavelmente
pequena, ou seja, o problema decidido pelo algoritmo pertencente à BPP ,
pois constitui o foco principal de nosso estudo.

Apresentamos inicialmente uma forma trivial de derandomizar um algo-
ritmo aleatorizado, isto é, construir um algoritmo equivalente que não utilize
aleatoriedade – e que, portanto, seja determinístico – à custa de alguma
sobrecarga no tempo de execução. Observe que, como o algoritmo obtido é
determinístico, não há mais probabilidade associada à validade da resposta:
o algoritmo estará sempre correto23. A técnica a seguir é conhecida como
enumeração24.

Teorema 12. Seja 𝐴 um algoritmo aleatorizado que utiliza 𝑑 bits aleatórios e
cuja probabilidade de erro é 𝜀 < 1/2.

Então, existe um algoritmo determinístico 𝐵 equivalente a 𝐴, que sempre
retorna a resposta correta, com tempo de execução

𝑇𝐵(𝑥) = 2𝑑 ⋅ 𝑇𝐴(𝑥),

para qualquer entrada 𝑥 .

Demonstração. Observe que o número de sequências possíveis de bits alea-
tórios de 𝐴 é finito e igual a 2𝑑 .

Construímos então o algoritmo determinístico 𝐵 da seguinte forma: para
uma entrada 𝑥 , 𝐵 simula 𝐴(𝑥) com todas as 2𝑑 sequências possíveis de bits
aleatórios. Como a probabilidade de erro de 𝐴 é 𝜀 < 1/2, por definição,
a maioria dessas sequências produz a saída correta. Portanto, 𝐵 retorna a
saída que aparece com maior frequência. Dessa forma, 𝐵 sempre fornece a

28

25De fato, até onde sabemos,
o universo pode ser comple-
tamente determinístico, de
modo que a chamada alea-
toriedade verdadeira sequer
possa existir.
26Na prática, essas fontes
de aleatoriedade frequente-
mente apresentam vieses
e correlações indesejáveis,
sendo denominadas fontes
fracas de aleatoriedade. Para
lidar com esse problema,
utilizam-se extratores, algo-
ritmos determinísticos ca-
pazes de extrair bits quase
uniformes – mais precisa-
mente, estatisticamente
próximos da distribuição
uniforme – a partir de fon-
tes enviesadas e correla-
cionadas, produzindo bits
adequados para aplicações
práticas [5].
27Esse aspecto é particu-
larmente relevante em
criptografia, pois a “quali-
dade” da aleatoriedade está
diretamente relacionada
à segurança do processo
criptográfico [5].

resposta correta.

Cada simulação de 𝐴 leva tempo 𝑇𝐴(𝑥), e como existem 2𝑑 sequências, a
complexidade total de 𝐵 é dada por

𝑇𝐵(𝑥) = 2𝑑 ⋅ 𝑇𝐴(𝑥).

�

Note que, em geral, essa técnica é inviável, pois implica uma sobrecarga
exponencial no tempo de execução. Entretanto, quando o algoritmo uti-
liza poucos bits aleatórios, essa abordagem simples passa a ser aplicável,
resultando no corolário a seguir.

Corolário 4. Seja 𝐴 um algoritmo aleatorizado que utiliza 𝑑 = O(lg 𝑛) bits
aleatórios em entradas de tamanho 𝑛, com probabilidade de erro 𝜀 < 1/2.

Então, existe um algoritmo determinístico 𝐵 equivalente a 𝐴, que sempre
retorna a resposta correta, com tempo de execução

𝑇𝐵(𝑥) = 2O(lg 𝑛) ⋅ 𝑇𝐴(𝑥) = O(𝑛)𝑇𝐴(𝑥),

para qualquer entrada 𝑥 de tamanho 𝑛.

Dessa forma, a derandomização de qualquer algoritmo aleatorizado pode-
ria ser alcançada demonstrando que o número de bits aleatórios necessários
sempre pode ser reduzido a O(lg 𝑛). Aqui, o conceito de pseudoaleatoriedade
se torna particularmente relevante. Porém, antes de introduzi-lo formal-
mente, é necessário compreender melhor o que se entende por aleatoriedade
computacional e como ela é obtida.

É essencial esclarecer que, na teoria da aleatoriedade computacional,
a aleatoriedade – ou, mais precisamente, a imprevisibilidade – não é con-
siderada uma propriedade intrínseca de um fenômeno, mas sim uma ca-
racterística que depende do observador25. Portanto, se não somos capazes
de distinguir um processo genuinamente aleatório de um processo deter-
minístico complexo, ambos são considerados aleatórios do ponto de vista
computacional [5].

Dessa forma, para obter bits verdadeiramente aleatórios – isto é, bits
independentes, imparciais e distribuídos uniformemente – é necessário
recorrer a fenômenos imprevisíveis, o que normalmente significa explorar
atributos do ambiente que são praticamente impossíveis de modelar com
precisão, como o clima, o decaimento radioativo, dados extraídos do próprio
hardware do computador, entre outros26.

Naturalmente, algumas fontes de aleatoriedade são mais robustas e con-
fiáveis do que outras27, e o processo de obtenção de bits verdadeiramente

29

aleatórios torna-se, em geral, custoso. Surge, então, novamente, o ques-
tionamento de se é possível economizar a quantidade necessária de bits
verdadeiramente aleatórios para que um algoritmo aleatorizado funcione
corretamente. Observe que, se essa economia for suficientemente grande,
torna-se possível até mesmo derandomizar completamente o algoritmo,
conforme mencionado anteriormente como consequência do Corolário 4.

É aqui que a observação anterior se torna fundamental: se a aleatorie-
dade de um objeto depende do observador, talvez seja possível “enganar” um
algoritmo fornecendo-lhe bits que não são verdadeiramente aleatórios, mas
que se assemelham o suficiente à distribuição uniforme de forma que o algo-
ritmo não consiga distingui-los em tempo computacionalmente viável. Nesse
caso, o algoritmo continuaria a funcionar com uma probabilidade de sucesso
semelhante à original, mesmo sem utilizar aleatoriedade perfeita. Formal-
mente, essa intuição significa exigir que nenhuma computação eficiente
consiga distinguir entre bits verdadeiramente aleatórios e bits produzidos
por um determinado processo determinístico.

Isso motiva o conceito de distribuições indistinguíveis.

Definição 7 (Distribuições 𝜀-indistinguíveis). Sejam {𝑋𝑛}𝑛∈ℕ e {𝑌𝑛}𝑛∈ℕ duas
sequências de distribuições, com 𝑋𝑛, 𝑌𝑛 distribuídas sobre {0, 1}𝑛.

Dizemos que {𝑋𝑛}𝑛∈ℕ e {𝑌𝑛}𝑛∈ℕ são computacionalmente 𝜀-indistinguíveis
se, para todo algoritmo aleatorizado polinomial 𝐴 e para 𝑛 suficientemente
grande, vale que

| Pr[𝐴(𝑋𝑛) = 1] − Pr[𝐴(𝑌𝑛) = 1]| < 𝜀(𝑛),

em que 𝜀(𝑛) é uma função negligenciável em 𝑛 (i.e., decresce mais rápido que o
inverso de qualquer polinômio em 𝑛) e a probabilidade é tomada sobre 𝑋𝑛, 𝑌𝑛 e
as decisões aleatórias de 𝐴.

Em outras palavras, nenhuma computação eficiente – nem mesmo alea-
torizada – consegue distinguir 𝑋𝑛 de 𝑌𝑛 com vantagem não negligenciável.

Portanto, qualquer algoritmo aleatório eficiente mantém seu desempe-
nho probabilístico mesmo quando suas escolhas internas, originalmente ale-
atórias, são substituídas por uma sequência pseudoaleatória 𝜀-indistinguível
de 𝑈𝑑 , a distribuição uniforme sobre {0, 1}𝑑 .

Nosso objetivo, então, é construir de forma determinística uma distri-
buição pseudoaleatória 𝐷 sobre 𝑑 bits que seja 𝜀-indistinguível de 𝑈𝑑 . Para
minimizar o uso de bits verdadeiramente aleatórios, idealmente gostaríamos
que 𝐷 pudesse ser gerada sem nenhum bit aleatório, permitindo uma simula-
ção determinística direta de qualquer algoritmo aleatorizado. Contudo, isso
é claramente impossível, pois a aleatoriedade não pode ser gerada de forma

30

puramente determinística. Portanto, em vez disso, buscamos construir 𝐷 a
partir de um número significativamente menor de bits aleatórios, digamos
𝑘 ≪ 𝑑 , por meio de um gerador pseudoaleatório.

Definição 8 (Gerador pseudoaleatório). Uma função determinística

𝐺 ∶ {0, 1}𝑘 → {0, 1}ℓ(𝑘)

é chamada de 𝜀-gerador pseudoaleatório se 𝐺(𝑈𝑘) é 𝜀-indistinguível de 𝑈ℓ(𝑘).

Em outras palavras, um gerador pseudoaleatório é capaz de “esticar”
uma sequência curta de 𝑘 bits aleatórios em uma sequência maior de ℓ(𝑘)
bits que, do ponto de vista de qualquer algoritmo eficiente, é praticamente
indistinguível de uma sequência verdadeiramente aleatória de ℓ(𝑘) bits. Note
que é trivial construir um gerador pseudoaleatório para ℓ(𝑘) ≤ 𝑘.

Observe que, se nosso objetivo final é uma simulação totalmente deter-
minística de um algoritmo aleatorizado, não podemos, de fato, utilizar 𝑘 bits
aleatórios para gerar 𝐷. No entanto, explorando ideias semelhantes às do
Teorema 12, podemos contornar essa limitação por meio de uma abordagem
por enumeração.

Dado um algoritmo aleatorizado 𝐴 que utiliza 𝑑 bits aleatórios, um ge-
rador pseudoaleatório 𝐺 ∶ {0, 1}𝑘 → {0, 1}ℓ(𝑘) com ℓ(𝑘) = 𝑑 , e uma entrada 𝑥 ,
enumeramos todas as sequências possíveis 𝑠 ∈ {0, 1}𝑘 . Para cada uma delas,
computamos 𝑟 = 𝐺(𝑠) e executamos o algoritmo 𝐴 em 𝑥 utilizando 𝑟 como
sua fonte de aleatoriedade. Após obter os 2𝑘 resultados correspondentes, to-
mamos o resultado majoritário e o declaramos como resposta para a entrada
𝑥 . Note que esse procedimento determinístico fornece sempre a resposta
correta para toda entrada 𝑥 .

Se 𝑘 for suficientemente pequeno – por exemplo, 𝑘 = O(lg 𝑛), de modo
que 2𝑘 = O(𝑛), em que 𝑛 denota o tamanho da entrada – e se o gerador 𝐺
puder ser computado eficientemente, a sobrecarga total será apenas polino-
mial. Assim, obtemos uma simulação determinística em tempo polinomial
do algoritmo aleatorizado, como desejado.

Perceba como a viabilidade do processo descrito implica diretamente a
Conjectura 1. Infelizmente, ainda não conseguimos demonstrar a existência
de geradores pseudoaleatórios suficientemente bons, isto é, que satisfaçam
todas as condições acima, mas, sem entrar em detalhes, há fortes evidências
e uma ampla crença na comunidade de que tais geradores existem [5]. É
nesse contexto que se fundamenta a Conjectura 1.

Existem outras técnicas para derandomizar algoritmos aleatorizados,
embora todas apresentem limitações intrínsecas. A seguir, apresentamos
algumas dessas abordagens.

31

Uma maneira não construtiva de derandomizar algoritmos pode ser
obtida por meio do método probabilístico:

Teorema 13. Seja 𝐴 um algoritmo aleatorizado que utiliza 𝑑 = 𝑑(𝑛) bits
aleatórios e cuja probabilidade de erro é 𝜀 < 2−𝑛, em que 𝑛 denota o tamanho
da entrada. Então, para todo 𝑛, existe uma sequência de bits 𝑟∗𝑛 ∈ {0, 1}𝑑 tal
que 𝐴𝑟∗𝑛 (𝑥) retorna a resposta correta para toda entrada 𝑥 de tamanho 𝑛.

Demonstração. Para simplificar o argumento, sem perda de generalidade,
representamos uma entrada 𝑥 de tamanho 𝑛 em binário, i.e., 𝑥 ∈ {0, 1}𝑛.
Denotamos por 𝐴𝑟 (𝑥) o resultado da execução de 𝐴 na entrada 𝑥 quando
𝑟 ∈ {0, 1}𝑑 é usada como sua sequência de aleatoriedade.

Considere então uma sequência de bits 𝑅 ∈ {0, 1}𝑑 escolhida uniforme-
mente ao acaso. Segue que

Pr (∃𝑥 ∈ {0, 1}𝑛 ∶ 𝐴𝑅(𝑥) incorreto) ≤ ∑
𝑥∈{0,1}𝑛

Pr (𝐴𝑅(𝑥) incorreto)

Pr (∃𝑥 ∈ {0, 1}𝑛 ∶ 𝐴𝑅(𝑥) incorreto) < 2𝑛 ⋅ 2−𝑛 = 1

Como a probabilidade de falha é estritamente menor que 1, existe pelo
menos uma sequência 𝑟∗𝑛 ∈ {0, 1}𝑑 que funciona corretamente para todas as
entradas 𝑥 de tamanho 𝑛. �

Note que, uma vez conhecida a sequência 𝑟∗𝑛 , computar 𝐴 utilizando 𝑟∗𝑛
como sequência aleatória pode ser feito em tempo polinomial. No entanto,
como a demonstração é não construtiva, não é imediato saber como obter
𝑟∗𝑛 de forma eficiente.

Vale ressaltar que, por amplificação, a probabilidade de erro de qualquer
algoritmo aleatorizado pode ser reduzida, em tempo polinomial, para um
valor menor que 2−𝑛. Dessa forma, o Teorema 13 é sempre aplicável aos
algoritmos de interesse.

32

28Observe que os resultados
sobre a dificuldade e a in-
tratabilidade de problemas
computacionais geralmente
pressupõem uma análise
de pior caso. Dizemos que
provavelmente não exis-
tem algoritmos polinomiais
para resolver problemas
NP-difíceis no sentido de
que não há algoritmo capaz
de resolvê-los em tempo
polinomial para todas as
instâncias, isto é, adotando
explicitamente o critério de
pior caso.

29Embora, à primeira vista,
esse possa parecer um mo-
delo arbitrário de instâncias,
sua utilidade prática se tor-
nará clara na Seção 3.3.

3 Análise probabilística de algoritmos

Se a aleatoriedade provavelmente não é capaz de aumentar o poder
computacional de algoritmos, então precisamos usá-la de outra forma para
tratar problemas difíceis.

Outra estratégia – um pouco mais radical – para introduzir aleatoriedade
é substituir a análise de pior caso por uma análise probabilística de algorit-
mos28. Em vez de exigir eficiência em todas as entradas – algo irrealista para
problemas difíceis – buscamos algoritmos que sejam “tipicamente” eficien-
tes. Há boas razões para considerar essa mudança de perspectiva. A análise
de algoritmos busca, afinal, avaliar o desempenho dessas ferramentas na
resolução de problemas, fornecendo um modelo no qual algoritmos distintos
podem ser comparados. Nesse sentido, a análise de pior caso fornece, de
fato, a melhor garantia possível de eficiência. No entanto, quando resulta em
uma estimativa negativa, tal resultado pode ser excessivamente pessimista
para aplicações práticas. Note que, nesse paradigma, uma única instância
problemática já é suficiente para que um algoritmo seja classificado como
exponencial.

Mas e se conseguíssemos projetar um algoritmo para um problema difícil
que, em média, executasse em tempo polinomial? Ou, ainda, se considerás-
semos as instâncias de pior caso, mas as perturbássemos levemente de forma
aleatória, eliminando estruturas patológicas raras29? Talvez isso bastasse
para assegurar que tais algoritmos são suficientemente práticos, justificando
seu uso em aplicações reais em detrimento de outras alternativas.

Embora o termo análise probabilística de algoritmos seja frequentemente
usado para se referir apenas à análise de caso médio, neste trabalho adotamos
um sentido mais amplo, incluindo qualquer tipo de análise de algoritmos
que envolva aleatoriedade nas instâncias.

Nesta seção, investigaremos como esse paradigma pode oferecer resulta-
dos menos pessimistas sobre a tratabilidade desses problemas computacio-
nalmente difíceis. Naturalmente, tal paradigma de análise pressupõe algum
tipo de aleatoriedade na geração das instâncias sobre as quais o desem-
penho do algoritmo será avaliado. Por simplicidade, analisaremos apenas
algoritmos determinísticos, de modo que a única fonte de aleatoriedade pro-
venha da escolha das instâncias. Contudo, as definições e os resultados aqui
apresentados estendem-se naturalmente também a algoritmos aleatorizados.

No contexto de grafos, instâncias médias correspondem a grafos gerados
aleatoriamente. Na Seção 3.1 introduziremos o modelo de grafo aleatório
frequentemente estudado, bem como algumas terminologias e resultados

33

30A teoria dos grafos aleató-
rios foi fundamentada por
Erdős e Rényi no final da
década de 1950, após Erdős
perceber, a partir de resul-
tados obtidos alguns anos
antes, que métodos proba-
bilísticos eram frequente-
mente úteis na resolução
de problemas extremais em
teoria dos grafos [24].

31Deve ficar claro que essa
distinção é, em grande me-
dida, irrelevante: em geral,
as propriedades estudadas
são invariantes por isomor-
fismo, além de que grafos
rotulados constituem um
modelo natural para en-
tradas de algoritmos. Do
ponto de vista assintótico,
a rotulação não introduz
novos fenômenos e apenas
traz uma complexidade
técnica residual. Uma dis-
cussão mais detalhada a
respeito desse tema pode
ser encontrada em [24].

básicos.

Posteriormente, nas Seções 3.2 e 3.3, apresentaremos dois paradigmas
distintos de análise probabilística de algoritmos: a análise de caso médio e
a análise suavizada, respectivamente. No primeiro, a complexidade de um
algoritmo é definida como o tempo médio de execução, assumindo que as
instâncias são amostradas segundo uma dada distribuição de probabilidade.
No segundo, considera-se o pior caso entre os tempos médios resultantes de
pequenas perturbações aleatórias das instâncias.

3.1 Grafos aleatórios

Grafos definidos segundo modelos probabilísticos são denominados gra-
fos aleatórios30. Em modelos clássicos de grafos aleatórios, dado um número
fixo de vértices 𝑛, construímos um grafo aleatório 𝐺 selecionando aleatoria-
mente quais arestas estarão presentes no grafo. O modo como sorteamos
essas arestas define diferentes construções de grafos aleatórios. Dentre os
diversos modelos propostos e estudados ao longo do tempo, um se destaca
por sua relevância: o modelo de Erdős–Rényi, denotado por 𝐺(𝑛, 𝑝) [24].

Nesse modelo, define-se um espaço de probabilidade 𝐺(𝑛, 𝑝) sobre todos
os grafos com 𝑛 vértices. Em um grafo aleatório 𝐺 ∼ 𝐺(𝑛, 𝑝), cada aresta
é incluída de forma independente com probabilidade 0 < 𝑝 < 1. Por
conveniência, 𝐺(𝑛, 𝑝) é definido sobre grafos rotulados, isto é, os 𝑛 vértices
recebem rótulos em {1, 2, … , 𝑛}, e grafos com rotulações distintas são tratados
como objetos distintos, ainda que sejam isomorfos, pois isso simplifica
significativamente os cálculos realizados31.

Em particular, a probabilidade de um dado grafo 𝐻 ser sorteado nesse
modelo é dada por

Pr(𝐺 ≅ 𝐻) = 𝑝𝑒(𝐻)(1 − 𝑝)(
𝑛
2)−𝑒(𝐻),

em que 𝑒(𝐻) representa o número de arestas de 𝐻 .

Observe que, para 𝑝 = 1/2, todos os grafos com 𝑛 vértices são equiprová-
veis, de modo que 𝐺(𝑛, 1/2) induz a distribuição uniforme sobre o conjunto
de grafos rotulados.

Em geral, 𝑝 é uma função de 𝑛, isto é, 𝑝 = 𝑝(𝑛). Consideramos, então,
uma sequência de espaços de probabilidade, um para cada 𝑛 ∈ ℕ, formada
por todos os grafos com exatamente 𝑛 vértices. Nosso interesse recai sobre
as propriedades assintóticas desses espaços quando 𝑛 → ∞.

34

Dizemos que um grafo aleatório possui uma propriedade P com alta
probabilidade se a probabilidade de que um grafo com 𝑛 vértices tenha P
tende a 1 à medida que 𝑛 → ∞. Equivalentemente, afirmamos que quase
todo grafo satisfaz a propriedade P .

Como um exercício ilustrativo, analisaremos para quais valores de 𝑝
um grafo aleatório contém ou não um triângulo. A demonstração será
apresentada em duas etapas.

Teorema 14. Seja 𝐺 ∼ 𝐺(𝑛, 𝑝). Se 𝑝 ≪ 1/𝑛, então

Pr(𝐾3 ⊂ 𝐺) → 0,

quando 𝑛 → ∞.

Demonstração. Seja 𝑋 a variável aleatória que conta o número de triângulos
em 𝐺. Claramente,

Pr(𝐾3 ⊂ 𝐺) = Pr(𝑋 ≥ 1).

Seja T o conjunto de todos os triângulos contidos em 𝐾𝑛. Podemos
escrever

𝑋 = ∑
𝑇∈T

𝟙𝑇 ,

em que 𝟙𝑇 é a variável indicadora do triângulo 𝑇 , isto é, 𝟙𝑇 = 1 se 𝑇 ⊂ 𝐺 e
𝟙𝑇 = 0 caso contrário.

Pela linearidade da esperança e usando a desigualdade (𝑛𝑘) ≤ 𝑛𝑘 , temos
que

𝔼[𝑋] = ∑
𝑇∈T

𝔼[𝟙𝑇] = (
𝑛
3
)𝑝3 ≤ (𝑛𝑝)3 → 0,

quando 𝑛 → ∞, pois 𝑝 ≪ 1/𝑛.

Aplicando a desigualdade de Markov, concluímos que

Pr(𝐾3 ⊂ 𝐺) = Pr(𝑋 ≥ 1) ≤ 𝔼[𝑋] → 0,

como afirmado. �

Teorema 15. Seja 𝐺 ∼ 𝐺(𝑛, 𝑝). Se 𝑝 ≫ 1/𝑛, então

Pr(𝐾3 ⊂ 𝐺) → 1,

quando 𝑛 → ∞.

Demonstração. Seja 𝑋 a variável aleatória que conta o número de triângulos
em 𝐺. Note que

Pr(𝐾3 ⊂ 𝐺) = Pr(𝑋 ≥ 1) = 1 − Pr(𝑋 = 0).

35

32Para uma variável aleató-
ria 𝑋 com variância finita
e diferente de 0, a desigual-
dade de Chebyshev deter-
mina que 𝑃𝑟(|𝑋 − 𝔼[𝑋]| ≥
𝜆) ≤ Var(𝑋)/𝜆2.

Assim, basta mostrar que Pr(𝑋 = 0) → 0 quando 𝑛 → ∞. Para isso,
usaremos a desigualdade de Chebyshev32, o que exige estimar𝔼[𝑋] eVar(𝑋).

Como antes,
𝑋 = ∑

𝑇∈T
𝟙𝑇 ,

em que T é o conjunto de todos os triângulos em 𝐾𝑛 e 𝟙𝑇 é a variável
indicadora do evento {𝑇 ⊂ 𝐺}.

Pela linearidade da esperança e usando a desigualdade (𝑛𝑘) ≥ (𝑛/𝑘)𝑘 ,
temos

𝔼[𝑋] = ∑
𝑇∈T

𝔼[𝟙𝑇] = (
𝑛
3
)𝑝3 ≥ (

𝑛𝑝
3
)
3
.

Em particular, como 𝑝 ≫ 1/𝑛, segue que 𝔼[𝑋] → ∞.

Para limitar a variância de 𝑋 , calculamos 𝔼[𝑋 2]. Pela linearidade da
esperança,

𝔼[𝑋 2] = ∑
𝑆∈T

∑
𝑇∈T

𝔼[𝟙𝑆𝟙𝑇].

Note que
𝟙𝑆𝟙𝑇 = 1 ⟺ 𝑆 ∪ 𝑇 ⊂ 𝐺.

Então, particionando a soma dupla de acordo com a interseção entre os
triângulos 𝑆 e 𝑇 , temos

𝔼[𝑋 2] = ∑
𝑆,𝑇∈T
|𝑆∩𝑇 |=3

𝔼[𝟙𝑆𝟙𝑇] + ∑
𝑆,𝑇∈T
|𝑆∩𝑇 |=1

𝔼[𝟙𝑆𝟙𝑇] + ∑
𝑆,𝑇∈T
|𝑆∩𝑇 |=0

𝔼[𝟙𝑆𝟙𝑇].

Observe que não há caso |𝑆 ∩ 𝑇 | = 2, pois dois triângulos que comparti-
lham duas arestas são idênticos, e portanto |𝑆 ∩ 𝑇 | = 3.

Analisamos então os seguintes casos:

• Se |𝑆 ∩ 𝑇 | = 3, então 𝑆 = 𝑇 e, neste caso, 𝟙𝑆𝟙𝑇 = 𝟙2𝑇 = 𝟙𝑇 e 𝔼[𝟙𝑆𝟙𝑇] =
𝔼[𝟙𝑇];

• Se |𝑆 ∩ 𝑇 | = 1, então a ocorrência simultânea exige a presença de cinco
arestas distintas, logo 𝔼[𝟙𝑆𝟙𝑇] = 𝑝5;

• Se |𝑆 ∩ 𝑇 | = 0, então 𝟙𝑇 e 𝟙𝑆 são variáveis independentes e vale que
𝔼[𝟙𝑆𝟙𝑇] = 𝔼[𝟙𝑆]𝔼[𝟙𝑇].

Assim,

𝔼[𝑋 2] = ∑
𝑇∈T

𝔼[𝟙𝑇] + ∑
𝑆,𝑇∈T
|𝑆∩𝑇 |=1

𝑝5 + ∑
𝑆,𝑇∈T
|𝑆∩𝑇 |=0

𝔼[𝟙𝑆]𝔼[𝟙𝑇].

36

Como o número de pares de triângulos que compartilham exatamente
uma aresta é 𝑂(𝑛4), e o último somatório é limitado superiormente por

∑
𝑆,𝑇∈T
|𝑆∩𝑇 |=0

𝔼[𝟙𝑆]𝔼[𝟙𝑇] ≤ ∑
𝑆,𝑇∈T

𝔼[𝟙𝑆]𝔼[𝟙𝑇] = 𝔼[𝑋]2,

concluímos que
𝔼[𝑋 2] ≤ 𝔼[𝑋] + 𝑛4𝑝5 + 𝔼[𝑋]2.

Logo,

Var(𝑋) = 𝔼[𝑋 2] − 𝔼[𝑋]2 ≤ 𝔼[𝑋] + 𝑛4𝑝5 ≪ 𝔼[𝑋]2.

Finalmente, aplicando a desigualdade de Chebyshev, temos

Pr(𝑋 = 0) ≤ Pr(𝔼[𝑋] − 𝑋 ≥ 𝜆) ≤ Pr(|𝑋 − 𝔼[𝑋]| ≥ 𝜆) ≤
Var(𝑋)
𝜆2

.

Tomando 𝜆 = 𝔼[𝑋]/2, temos

Pr(𝑋 = 0) ≤
4Var(𝑋)
𝔼[𝑋]2

→ 0,

quando 𝑛 → ∞, como gostaríamos. �

A função 1/𝑛 é chamada de limiar para a presença de triângulos em
𝐺(𝑛, 𝑝). Isso significa que, se 𝑝 ≫ 1/𝑛, então com alta probabilidade um
grafo 𝐺 ∼ 𝐺(𝑛, 𝑝) contém um triângulo, enquanto que, se 𝑝 ≪ 1/𝑛, então
com alta probabilidade o grafo não contém nenhum triângulo.

Diversas outras propriedades de grafos apresentam limiares, como co-
nexidade e a presença de qualquer subgrafo fixo. Em particular, Bollobás e
Thomason [25] demonstraram que toda propriedade crescente não trivial
em grafos, isto é, toda propriedade que é preservada pela adição de arestas,
apresenta um limiar no modelo 𝐺(𝑛, 𝑝).

É evidente a importância do estudo de grafos aleatórios em áreas como
combinatória e teoria dos grafos, pois permite demonstrar a existência de
grafos com propriedades específicas sem a necessidade construí-los explici-
tamente. Na ciência da computação, grafos aleatórios são muito relevantes
na análise de algoritmos, no estudo da complexidade computacional e na
investigação de estruturas em redes e problemas de otimização.

37

3.2 Análise de caso médio

Uma alternativa frequentemente empregada na análise probabilística
de algoritmos é a análise de caso médio, na qual assumimos uma distribu-
ição de probabilidade sobre o espaço de possíveis entradas e estimamos o
desempenho esperado do algoritmo em relação a essa distribuição.

Definição 9 (Complexidade de caso médio). Seja 𝐴 um algoritmo para um
dado problema Π, e seja Ω𝑛 o conjunto de todas as instâncias de Π de tamanho
𝑛. Dada uma distribuição de probabilidade D sobre Ω𝑛, a complexidade de
caso médio de 𝐴 é definida por

MédioD𝐴 (𝑛) ∶= 𝔼
𝑥∼𝐷

[𝑇𝐴(𝑥)],

em que 𝑥 ∈ Ω𝑛.

Note que a análise é altamente dependente da distribuição de probabili-
dade escolhida para o conjunto de entradas possíveis. Quando não dispomos
de informações adicionais sobre uma distribuição adequada – o que é muito
frequente –, é natural assumirmos uma distribuição uniforme, i.e., uma
distribuição na qual toda entrada é equiprovável. No contexto de grafos,
por exemplo, isso equivale a considerar a entrada como um grafo aleatório
𝐺 ∼ 𝐺(𝑛, 1/2), como discutido na Seção 3.1. Embora essa abordagem possa
ser considerada irrealista, ela provavelmente não é mais artificial do que
os exemplos extremos usados para demonstrar a ineficiência de algoritmos
e, em certo sentido, talvez possa oferecer uma análise mais próxima da
realidade.

Por outro lado, poderíamos também demonstrar que um algoritmo quase
sempre apresenta um desempenho ruim em instâncias aleatórias, resultando
numa crítica mais severa de seu desempenho do que os exemplos patológicos
considerados na análise de pior caso.

Na Seção 3.2.1, apresentaremos um algoritmo para resolver um problema
NP-completo em tempo esperado polinomial, assumindo uma distribuição
uniforme sobre as instâncias.

Em seguida, na Seção 3.2.2, exploraremos a relação entre algoritmos
aleatorizados e a análise de caso médio por meio da teoria dos jogos, o que
resulta no Lema Minimax de Yao.

Recomendamos ao leitor as excelentes revisões introdutórias [26,27]
sobre análise de caso médio em algoritmos para grafos e sobre algoritmos
em grafos aleatórios.

38

33O problema do Ciclo Ha-
miltoniano está entre os
21 problemas clássicos que
Karp caracterizou como
NP-completos, em uma
das primeiras demonstra-
ções de que diversos proble-
mas computacionais recor-
rentes são intrinsecamente
difíceis [17].

3.2.1 Ciclo hamiltoniano em tempo esperado
polinomial

Inicialmente, definimos o problema de interesse, o problema do Ciclo
Hamiltoniano33:

Ciclo hamiltoniano

Dado um grafo 𝐺, encontre um ciclo 𝐶 que visita cada vértice de 𝐺
exatamente uma vez.

𝐺 𝐶 ⊂ 𝐺

Figura 4: Exemplo de ciclo
hamiltoniano 𝐶 (em preto)
em um grafo 𝐺, isto é, um
ciclo que visita cada vértice
exatamente uma vez.

Apresentaremos dois algoritmos para resolver esse problema: um al-
goritmo exato, com tempo de execução exponencial no pior caso, e um
algoritmo polinomial e determinístico, que pode falhar em encontrar um ci-
clo hamiltoniano mesmo quando ele existe. Ao combinar ambos, recorrendo
ao algoritmo exponencial apenas quando o algoritmo polinomial falhar,
obteremos um algoritmo cujo tempo de execução esperado é polinomial sob
a distribuição uniforme de grafos.

Para resolver o problema de forma exata, utilizaremos um algoritmo
clássico de programação dinâmica, desenvolvido independentemente por
Bellman [28] e por Held e Karp [29].

Seja 𝐺 o grafo de entrada. Sem perda de generalidade, fixamos um vértice
inicial 𝑟 ∈ 𝑉 (𝐺) – como buscamos um ciclo, a escolha de 𝑟 é irrelevante.
Dado um subconjunto 𝑆 ⊆ 𝑉 (𝐺) ∖ {𝑟} e um vértice 𝑣 ∈ 𝑆, definimos a função

DP(𝑆, 𝑣) =
⎧⎪
⎨⎪
⎩

1, se existe um caminho simples 𝑃 tal que

𝑃 começa em 𝑟 , termina em 𝑣 , e 𝑉 (𝑃) = 𝑆 ∪ {𝑟},

0, caso contrário.

Observe que o valor de DP(𝑆, 𝑣) é trivial para conjuntos 𝑆 pequenos e
que a função pode ser determinada recursivamente. Mais precisamente,

DP({𝑣}, 𝑣) = 1 ⟺ 𝑣 ∈ 𝑁(𝑟),

39

e
DP(𝑆, 𝑣) = 1 ⟺ ∃𝑢 ∈ 𝑆 ∩ 𝑁(𝑣) tal que DP(𝑆 ∖ {𝑣}, 𝑢) = 1,

em que 𝑁(𝑣) denota a vizinhança de um vértice 𝑣 em 𝐺.

𝑆

𝑟

𝑢

𝑣

Figura 5: Representação de
um caminho considerado ao
calcular DP(𝑆, 𝑣), com 𝑟
como vértice inicial e
𝑢, 𝑣 ∈ 𝑆 como vértices
finais.

Claramente, o grafo 𝐺 contém um ciclo hamiltoniano se, e somente se,
existe um vértice 𝑣 ∈ 𝑁(𝑟) tal que DP(𝑉 (𝐺) ∖ {𝑟}, 𝑣) = 1. Nesse caso, o ciclo
pode ser recuperado armazenando, para cada estado (𝑆, 𝑣) com DP(𝑆, 𝑣) = 1,
um vértice predecessor 𝜋(𝑆, 𝑣) que justifique a recorrência. Ao final, o ciclo
é reconstruído recursivamente. Com isso, obtemos o algoritmo descrito a
seguir.

Algoritmo 5 (BellmanHeldKarp)

A função BellmanHeldKarp recebe como entrada um grafo 𝐺 e retorna
um ciclo hamiltoniano em 𝐺, se existir, e ∅, caso contrário.

Entrada: Grafo 𝐺 = (𝑉 , 𝐸) com 𝑛 vértices.

Saída: Um ciclo hamiltoniano 𝐶 em 𝐺 ou ∅, caso tal ciclo não exista.

BellmanHeldKarp(𝐺)
1. Escolha um vértice 𝑟 ∈ 𝑉 (𝐺)

2. Para cada vértice 𝑣 ∈ 𝑉 (𝐺) ∖ {𝑟} faça
3. Se 𝑣 ∈ 𝑁(𝑟) então
4. DP({𝑣}, 𝑣) ← 1
5. 𝜋({𝑣}, 𝑣) ← 𝑟
6. Senão
7. DP({𝑣}, 𝑣) ← 0

8. Para 𝑘 = 2 até 𝑛 − 1 faça
9. Para cada subconjunto 𝑆 ⊆ 𝑉 (𝐺) ∖ {𝑟} com |𝑆| = 𝑘 faça
10. Para cada vértice 𝑣 ∈ 𝑆 faça
11. DP(𝑆, 𝑣) ← 0
12. Para cada vértice 𝑢 ∈ 𝑆 ∖ {𝑣} faça
13. Se 𝑢 ∈ 𝑁(𝑣) e DP(𝑆 ∖ {𝑣}, 𝑢) = 1 então

40

34Apesar de exponencial,
esse desempenho é substan-
cialmente melhor do que
o do algoritmo trivial que
testa todas as permutações
dos vértices, o qual apre-
senta custo O(𝑛!). Além
disso, note que o algoritmo
requer espaço Θ(𝑛2𝑛) para
armazenar a tabela de pro-
gramação dinâmica.

35Note que ambas as propri-
edades podem ser verifica-
das em tempo O(𝑛).

14. DP(𝑆, 𝑣) ← 1
15. 𝜋(𝑆, 𝑣) ← 𝑢
16. Interrompa

17. Para cada vértice 𝑣 ∈ 𝑁(𝑟) faça
18. Se DP(𝑉 (𝐺) ∖ {𝑟}, 𝑣) = 1 então
19. 𝐶 ← {𝑟, 𝑣}
20. 𝑆 ← 𝑉 (𝐺) ∖ {𝑟}
21. Enquanto 𝑆 ≠ ∅
22. 𝑢 ← 𝜋(𝑆, 𝑣)
23. 𝐶 ← 𝐶 ∪ 𝑣, 𝑢
24. 𝑆 ← 𝑆 ∖ {𝑣}
25. 𝑣 ← 𝑢
26. Retorne 𝐶

27. Retorne ∅

A complexidade do algoritmo é claramente dominada pelo laço principal
responsável pelo cálculo recursivo da função DP. Observando que são
considerados Θ(2𝑛) subconjuntos possíveis 𝑆 e que, para cada um deles, o
tempo de processamento é da ordem de O(𝑛2), concluímos que o tempo
total de execução do algoritmo é O(𝑛22𝑛), portanto exponencial34.

Já o algoritmo polinomial e determinístico que admite falhas, denomi-
nado HAM, foi proposto por Bollobás, Fenner e Frieze [30], e baseia-se na
técnica de rotação de caminhos introduzida por Pósa [31]. Dado um caminho
𝑃 = (𝑣1, 𝑣2, … , 𝑣𝑘) e uma aresta 𝑒 = {𝑣𝑖, 𝑣𝑘}, para algum 1 ≤ 𝑖 ≤ 𝑘 − 2, é
possível rotacionar 𝑃 removendo a aresta {𝑣𝑖, 𝑣𝑖+1} e adicionando 𝑒, obtendo
um novo caminho 𝑄 = (𝑣1, … , 𝑣𝑖, 𝑣𝑘 , … , 𝑣𝑖+1) de mesmo comprimento e com
o mesmo conjunto de vértices, mas com uma extremidade distinta.

𝑣1 𝑣𝑖 𝑣𝑖+1 𝑣𝑘

𝑒 Figura 6: Rotação de Pósa,
em que a aresta tracejada é
removida e a aresta 𝑒 é
adicionada ao caminho
original.

O algoritmo assume que o grafo de entrada 𝐺 é conexo e possui grau
mínimo 𝛿(𝐺) ≥ 2, pois, caso contrário, 𝐺 certamente não contém um ciclo
hamiltoniano35. A estratégia do algoritmo consiste em analisar caminhos
candidatos de comprimento 𝑘, tentando estendê-los para obter um caminho
de comprimento 𝑘 + 1 ou, eventualmente, um ciclo hamiltoniano.

Suponha que, no estágio 𝑘, o algoritmo analise um caminho 𝑃𝑘 . Se existir
um vértice fora de 𝑃𝑘 adjacente a uma de suas extremidades, o caminho é

41

estendido diretamente (operação de extensão), e o algoritmo avança para o
estágio 𝑘 + 1. Caso as extremidades de 𝑃𝑘 sejam adjacentes, obtém-se um
ciclo 𝐶𝑘+1, que pode ser convertido em um caminho de comprimento 𝑘 + 1
explorando a conectividade de 𝐺, isto é, utilizando uma aresta que conecta
𝐶𝑘+1 a um vértice fora de 𝐶𝑘+1 (operação de extensão de ciclo), permitindo
novamente avançar para o estágio 𝑘 + 1. Se nenhuma dessas condições
for satisfeita, a hipótese 𝛿(𝐺) ≥ 2 garante a existência de uma aresta entre
uma extremidade de 𝑃𝑘 e um vértice interno do caminho, possibilitando a
realização de uma rotação de 𝑃𝑘 (operação de rotação) e a obtenção de um
novo caminho candidato 𝑄𝑘 , também de comprimento 𝑘. O algoritmo então
reaplica os procedimentos anteriores aos novos caminhos gerados, até que
seja possível avançar para o estágio 𝑘 + 1 ou até que o número de rotações
realizadas sobre um mesmo caminho ultrapasse um determinado limite.

Algoritmo 6 (HAM)

A função HAM recebe como entrada um grafo conexo 𝐺 com grau
mínimo 𝛿(𝐺) ≥ 2 e retorna um ciclo hamiltoniano em 𝐺 ou a resposta
Erro. A função auxiliar Rotacionar realiza a rotação de um caminho 𝑃
utilizando uma aresta 𝑒. Denotamos porP o conjunto atual de caminhos
candidatos em 𝐺, e por 𝛿(𝑃𝑘) o número de rotações efetuadas para obter
o caminho 𝑃𝑘 a partir do caminho inicial de comprimento 𝑘. Por fim,
denotamos por 𝑁(𝑣) a vizinhança de um vértice 𝑣 em 𝐺.

Entrada: Grafo conexo 𝐺 = (𝑉 , 𝐸) com 𝑛 vértices tal que 𝛿(𝐺) ≥ 2.

Saída: Um ciclo hamiltoniano 𝐶 em 𝐺 ou Erro.

HAM(𝐺)
1. Escolha uma aresta {𝑢, 𝑣} ∈ 𝐸(𝐺)
2. 𝑃1 ← (𝑢, 𝑣)
3. 𝛿(𝑃1) ← 0
4. P ← {𝑃1}

5. Enquanto P ≠ ∅ faça
6. Escolha um caminho 𝑃𝑘 = (𝑣1, … , 𝑣𝑘+1) ∈ P
7. P ← P ∖ {𝑃𝑘}
8. Para cada vértice extremo 𝑣 ∈ {𝑣1, 𝑣𝑘+1} faça
9. Para cada vértice 𝑢 ∈ 𝑁(𝑣) faça
10. Se 𝑢 ∉ 𝑃𝑘 então
11. 𝑃𝑘+1 ← 𝑃𝑘 ∪ {𝑢, 𝑣} ▷ Extensão

12. 𝛿(𝑃𝑘+1) ← 0
13. P ← {𝑃𝑘+1} ▷ Sobrescreve P
14. Continue o laço principal
15. Senão se 𝑢 ∈ {𝑣1, 𝑣𝑘+1} então

42

36Os resultados poderiam
ser formulados em termos
de 𝜀𝑛, para alguma cons-
tante 𝜀 ∈ (0, 1/2). Por
simplicidade, tomamos
𝜀 = 1/10.

16. 𝐶𝑘+1 ← 𝑃𝑘 ∪ {𝑣1, 𝑣𝑘+1}
17. Se 𝑉 (𝐶𝑘+1) = 𝑉 (𝐺) então
18. Retorne 𝐶𝑘+1 ▷ Ciclo hamiltoniano

19. Para cada vértice 𝑣𝑖 ∈ 𝑃𝑘 ∖ {𝑣1, 𝑣𝑘+1} faça
20. Para cada vértice 𝑤 ∈ 𝑁(𝑣𝑖) faça
21. Se 𝑤 ∉ 𝑃𝑘 então
22. 𝑃𝑘+1 ← 𝐶𝑘+1 ∪ {𝑣𝑖, 𝑤} ∖ {𝑣𝑖−1, 𝑣𝑖}
▷ Extensão

23. 𝛿(𝑃𝑘+1) ← 0
24. P ← {𝑃𝑘+1} ▷ Sobrescreve P
25. Continue o laço principal
26. Senão se 𝛿(𝑃𝑘) ≤ 2 então
27. 𝑄𝑘 ← Rotacionar(𝑃𝑘 , {𝑢, 𝑣}) ▷ Rotação

28. 𝛿(𝑄𝑘) ← 𝛿(𝑃𝑘) + 1
29. P ← P ∪ {𝑄𝑘}

30. Retorne Erro

Observando que um caminho de comprimento 𝑘 pode gerar no máximo
2(𝑘 − 2) rotações, segue que, no estágio 𝑘, o algoritmo analisa no máximo
O(𝑘3) caminhos. A análise de cada caminho requer tempo O(𝑘), exceto
no caso de uma extensão de ciclo, que demanda tempo O(𝑘2), porém, tal
extensão ocorre no máximo uma vez por estágio. Assim, o tempo total
de execução no estágio 𝑘 é O(𝑘4). Consequentemente, o tempo total de
execução do algoritmo é dado por

𝑛−1
∑
𝑘=1

O(𝑘4) = O(𝑛5).

Mostraremos que o Algoritmo 6 falha num grafo 𝐺 ∼ 𝐺(𝑛, 1/2) com
probabilidade exponencialmente baixa. Incentivamos o leitor a consultar a
Seção 3.1 para se familiarizar com as técnicas de análise em grafos aleatórios.

Primeiro, demonstraremos dois resultados auxiliares36. Para simplificar
os cálculos, ignoramos questões de arredondamento, que não afetam as
estimativas assintóticas.

Para um grafo 𝐺, denotamos por 𝑑(𝑣) o grau do vértice 𝑣 ∈ 𝑉 (𝐺) no
grafo 𝐺.

Lema 3. Seja 𝐺 ∼ 𝐺(𝑛, 1/2). Dizemos que um vértice 𝑣 ∈ 𝑉 (𝐺) é pequeno se
𝑑(𝑣) ≤ 𝑛/10. Então,

Pr(𝐺 contém ao menos dois vértices pequenos) = O(𝑛42−𝑛).

43

Demonstração. Seja 𝑋 a variável aleatória que conta o número de vértices
pequenos em 𝐺.

Suponha que 𝑋 ≥ 2. Então, existe um conjunto 𝑆 ⊆ 𝑉 (𝐺) com |𝑆| = 2 tal
que, para todo vértice 𝑣 ∈ 𝑆,

𝑑𝑉 (𝐺)∖𝑆(𝑣) ≤ 𝑛/10,

em que 𝑑𝑉 (𝐺)∖𝑆 denota o grau de 𝑣 restrito a 𝑉 (𝐺) ∖ 𝑆.

Consequentemente, pela cota da união sobre todos os pares de vértices
𝑆 ⊆ 𝑉 (𝐺), temos

Pr(𝑋 ≥ 2) ≤ (
𝑛
2
) Pr (∀𝑣 ∈ 𝑆 ∶ 𝑑𝑉 (𝐺)∖𝑆(𝑣) ≤ 𝑛/10) .

Fixado um par de vértices 𝑆, note que o número de vizinhos de cada
vértice de 𝑆 em 𝑉 (𝐺) ∖ 𝑆 é uma variável aleatória com distribuição bino-
mial com parâmetros 𝑛 − 2 e 1/2. Além disso, 𝑑𝑉 (𝐺)∖𝑆(𝑢) e 𝑑𝑉 (𝐺)∖𝑆(𝑣) são
independentes para quaisquer 𝑢, 𝑣 ∈ 𝑆. Portanto, utilizando a função de
distribuição acumulada da variável aleatória binomial, obtemos

Pr(∀𝑣 ∈ 𝑆 ∶ 𝑑𝑉 (𝐺)∖𝑆(𝑣) ≤ 𝑛/10) = [Pr(𝑑𝑉 (𝐺)∖𝑆(𝑣) ≤ 𝑛/10)]2 ,

Pr(∀𝑣 ∈ 𝑆 ∶ 𝑑𝑉 (𝐺)∖𝑆(𝑣) ≤ 𝑛/10) = [2−(𝑛−2)
𝑛/10
∑
𝑘=0

(
𝑛 − 2
𝑘

)]

2

.

Observe que o somatório é dominado pelo último termo, de modo que

𝑛/10
∑
𝑘=0

(
𝑛 − 2
𝑘

) ≤ (𝑛/10 + 1)(
𝑛 − 2
𝑛/10

).

Usando (𝑛𝑘) ≤ (𝑒𝑛/𝑘)𝑘 , obtemos

Pr(𝑋 ≥ 2) ≤ 𝐶 𝑛42−2𝑛(10𝑒)𝑛/5 = 𝐶 𝑛42(−2+lg(10𝑒)/5)𝑛,

para alguma constante absoluta 𝐶 .

Como lg(10𝑒)/5 < 1, então

Pr(𝑋 ≥ 2) = O(𝑛42−𝑛),

concluindo a prova. �

Lema 4. Seja 𝐺 ∼ 𝐺(𝑛, 1/2). Então,

Pr (∃𝑋 , 𝑌 ⊆ 𝑉 (𝐺)∶ 𝑋 ∩ 𝑌 = ∅, |𝑋 | = |𝑌 | = 𝑛/20 e 𝐸(𝑋 , 𝑌) = ∅) = O(2−𝑛),

44

em que 𝐸(𝑋 , 𝑌) denota o conjunto de arestas entre 𝑋 e 𝑌 .

Demonstração. O número de escolhas para conjuntos disjuntos 𝑋, 𝑌 ⊆ 𝑉 (𝐺)
com |𝑋 | = |𝑌 | = 𝑛/20 é dado por

(
𝑛

𝑛/20
)(

𝑛 − 𝑛/20
𝑛/20

) ≤ (
𝑛

𝑛/20
)
2

.

Para um dado par𝑋, 𝑌 , há (𝑛/20)2 possíveis arestas entre𝑋 e 𝑌 . Portanto,

Pr(𝐸(𝑋 , 𝑌) = ∅) = 2−(𝑛/20)
2
.

Logo, pela cota da união,

Pr (∃𝑋 , 𝑌 ⊆ 𝑉 (𝐺)∶ 𝑋 ∩ 𝑌 = ∅, |𝑋 | = |𝑌 | = 𝑛/20 e 𝐸(𝑋 , 𝑌) = ∅) ≤ (
𝑛

𝑛/20
)
2

2−(𝑛/20)
2
.

Usando (𝑛𝑘) ≤ (𝑒𝑛/𝑘)𝑘 , segue que

(
𝑛

𝑛/20
)
2

2−(𝑛/20)
2
≤ (20𝑒)𝑛/10 2−(𝑛/20)

2
= 2−Θ(𝑛

2) = O(2−𝑛),

como desejado. �

Podemos então enunciar o resultado principal:

Teorema 16. Seja 𝐺 ∼ 𝐺(𝑛, 1/2). Então,

Pr(HAM falha em 𝐺) = O(𝑛42−𝑛).

Demonstração. Novamente, chamamos de pequeno qualquer vértice 𝑣 ∈ 𝑉 (𝐺)
com 𝑑(𝑣) ≤ 𝑛/10. Definimos então a variável aleatória

𝐾 = |{𝑣 ∈ 𝑉 (𝐺) ∶ 𝑑(𝑣) ≤ 𝑛/10}|,

que conta o número de vértices pequenos em 𝐺.

Logo, podemos decompor a probabilidade de falha do algoritmo segundo
os valores de 𝐾 , de forma que

Pr(HAM falha em 𝐺) = Pr(HAM falha em 𝐺 ∩ 𝐾 ≤ 1)

+ Pr(HAM falha em 𝐺 ∩ 𝐾 ≥ 2),

Pr(HAM falha em 𝐺) ≤ Pr(HAM falha em 𝐺 ∣ 𝐾 ≤ 1) + Pr(𝐾 ≥ 2),

em que a desigualdade segue diretamente de desigualdades fundamentais
de probabilidade.

45

Pelo Lema 3, segue que

Pr(𝐾 ≥ 2) = O(𝑛42−𝑛).

Assim, basta mostrar que a probabilidade de falha do algoritmo quando
𝐾 ≤ 1 também é exponencialmente baixa. Mostraremos que a falha de HAM
nesse caso implica a existência de dois subconjuntos lineares sem arestas
entre si, evento que, pelo Lema 4, tem probabilidade exponencialmente
pequena.

Suponha, portanto, que 𝐾 ≤ 1 e que o algoritmo falhe em 𝐺 no estágio
𝑘. Seja 𝑃𝑘 = (𝑣1, … , 𝑣𝑘) o caminho inicial considerado no estágio 𝑘. Perceba
que a falha do algoritmo implica que {𝑣1, 𝑣𝑘} ∉ 𝐸(𝐺) e que todo vizinho de
𝑣1 e de 𝑣𝑘 pertence à 𝑃𝑘 .

Além disso, podemos supor, sem perda de generalidade, que 𝑑(𝑣1) > 𝑛/10
e 𝑑(𝑣𝑘) > 𝑛/10. De fato, como 𝐾 ≤ 1, no máximo um dos extremos pode ter
grau pequeno. Note que o algoritmo certamente executa uma rotação nesse
extremo, obtendo um novo caminho 𝑄𝑘 no qual a suposição se aplica. Os
argumentos abaixo permanecem válidos para esse novo caminho.

Seja 𝑖 o menor índice tal que ocorre uma das seguintes situações:

• Pelo menos metade dos vizinhos de 𝑣1 estão à esquerda de 𝑣𝑖, isto é,
estão em {𝑣2, … , 𝑣𝑖−1};

• Pelo menos metade dos vizinhos de 𝑣𝑘 estão à esquerda de 𝑣𝑖, isto é,
estão em {𝑣2, … , 𝑣𝑖−1}.

Como todos os vizinhos de 𝑣1 e 𝑣𝑘 pertencem a 𝑃𝑘 , tal índice certamente
existe. Analisamos então os seguintes casos:

• Se metade dos vizinhos de 𝑣1 estão à esquerda de 𝑣𝑖, então existe um
conjunto

𝑋 ⊆ {𝑣2, … , 𝑣𝑖−1}, com |𝑋 | ≥ 𝑛/20,

tal que, para todo 𝑥 ∈ 𝑋 , é possível obter, por uma rotação de 𝑃𝑘 , um
caminho 𝑄𝑘 = (𝑥, … , 𝑣𝑖, … , 𝑣𝑘).

De fato, para cada vizinho 𝑣𝑗 de 𝑣1, com 3 ≤ 𝑗 ≤ 𝑖 − 1, a rotação de 𝑃𝑘
através da aresta {𝑣1, 𝑣𝑗} produz um caminho com extremo esquerdo
𝑣𝑗−1.

Observe também que, no caminho 𝑄𝑘 , a ordem dos vértices {𝑣𝑖, … , 𝑣𝑘}
é preservada em relação à 𝑃𝑘 . Como mais da metade dos vizinhos de
𝑣𝑘 estão à direita de 𝑣𝑖, existe um conjunto

𝑌 ⊆ {𝑣𝑖+1, … , 𝑣𝑘−1}, com |𝑌 | ≥ 𝑛/20,

46

tal que, para todo 𝑦 ∈ 𝑌 e todo 𝑥 ∈ 𝑋 , é possível obter, por uma rotação
de 𝑄𝑘 , um caminho 𝑅𝑘 = (𝑥, … , 𝑣𝑖, … , 𝑦).

De fato, para cada vizinho 𝑣ℓ de 𝑣𝑘 , com 𝑖 ≤ ℓ ≤ 𝑘 − 2, a rotação de 𝑄𝑘
através da aresta {𝑣ℓ, 𝑣𝑘} produz um caminho com extremo direito 𝑣ℓ+1.

𝑣1 𝑣𝑗−1 𝑣𝑗 𝑣𝑖 𝑣𝓁 𝑣𝓁+1 𝑣𝑘

Figura 7: Exemplo de
rotações sucessivas no
estágio 𝑘 via vizinhos de 𝑣1
e de 𝑣𝑘 , em que as arestas
tracejadas são removidas e
as curvas adicionadas,
produzindo novos extremos.

Finalmente, note que {𝑥, 𝑦} ∉ 𝐸(𝐺), para todo 𝑥 ∈ 𝑋 e 𝑦 ∈ 𝑌 . Caso
contrário, o algoritmo faria uma extensão de ciclo em 𝑅𝑘 ∪ {𝑥, 𝑦}, o que
contradiz a hipótese de falha.

Concluímos que existem dois subconjuntos disjuntos 𝑋, 𝑌 ⊆ 𝑉 (𝐺),
ambos de tamanho ao menos 𝑛/20, sem arestas entre si;

• No caso contrário, em que pelo menos metade dos vizinhos de 𝑣𝑘
estão à esquerda de 𝑣𝑖, o argumento é análogo, bastando adaptar a
segunda rotação para levar em conta a inversão da ordem de alguns
vértices de 𝑃𝑘 . Em particular, concluímos novamente a existência de
dois subconjuntos disjuntos 𝑋, 𝑌 ⊆ 𝑉 (𝐺), ambos de tamanho ao menos
𝑛/20, sem arestas entre si.

Logo, pelo Lema 4,

Pr(HAM falha em 𝐺 ∣ 𝐾 ≤ 1) = O(2−𝑛).

Portanto,

Pr(HAM falha em 𝐺) = O(2−𝑛) +O(𝑛42−𝑛) = O(𝑛42−𝑛),

como afirmado. �

Podemos então combinar os dois algoritmos apresentados, resultando
no algoritmo descrito abaixo.

Algoritmo 7 (HAMCombinado)

A função HAMCombinado recebe como entrada um grafo 𝐺 e retorna
um ciclo hamiltoniano em 𝐺, se existir, e ∅, caso contrário.

Entrada: Grafo 𝐺 = (𝑉 , 𝐸) com 𝑛 vértices.

Saída: Um ciclo hamiltoniano 𝐶 em 𝐺 ou ∅, caso tal ciclo não exista.

47

37Embora algumas ideias
relacionadas já existissem
anteriormente, a teoria dos
jogos consolidou-se como
área de estudo apenas na
década de 1920, sobretudo a
partir do trabalho de John
von Neumann. Esse desen-
volvimento culminou na
obra Theory of Games and
Economic Behavior (1944),
escrita em coautoria com
Oskar Morgenstern, que
marcou o estabelecimento
formal do campo. A par-
tir de então, a teoria dos
jogos expandiu-se signi-
ficativamente e passou a
ser aplicada em diversas
áreas, incluindo economia e
ciência política a partir da
década de 1950, e biologia
evolutiva a partir da década
de 1970 [32].

HAMCombinado(𝐺)
1. Se 𝐺 não é conexo ou 𝛿(𝐺) < 2 então
2. Retorne ∅
3. Senão
4. 𝑅 ← HAM(𝐺)
5. Se 𝑅 ≠ Erro então
6. Retorne 𝑅
7. Senão
8. Retorne BellmanHeldKarp(𝐺)

Corolário 5. Seja 𝐺 um grafo com 𝑛 vértices escolhido uniformemente ao
acaso. Então, o Algoritmo 7 resolve o problema do Ciclo Hamiltoniano em 𝐺
em tempo de execução esperado

O(𝑛5) +O(𝑛42−𝑛) ⋅O(𝑛22𝑛) = O(𝑛6).

É importante ressaltar que, no trabalho original, Bollobás, Fenner e Frieze
[30] demonstraram, com argumentos mais sofisticados, um resultado ainda
mais significativo sobre o algoritmo: a probabilidade assintótica de sucesso
de HAM coincide com a probabilidade de que o grafo aleatório contenha um
ciclo hamiltoniano.

3.2.2 Lema Minimax de Yao

A teoria dos jogos é um ramo da matemática dedicado à modelagem
e análise de interações estratégicas entre agentes racionais, chamadas de
jogos. Seus conceitos são amplamente aplicados em ciências econômicas,
sociais e comportamentais37. Apresentamos a seguir alguns conceitos bási-
cos necessários para compreender o resultado de Yao. Para uma introdução
completa à teoria dos jogos, veja [32].

Considere o seguinte jogo. Alice esconde um objeto em uma de suas
mãos, sem que Bruno observe sua escolha. Em seguida, Bruno tenta adivi-
nhar em qual das mãos o objeto foi escondido. Se Bruno acertar, Alice lhe
paga R$ 1. Caso contrário, Alice recebe R$ 1 de Bruno.

Trata-se de um jogo de dois jogadores com soma nula, pois o ganho de
um jogador coincide com a perda do outro. As possíveis recompensas de

48

Alice podem ser representadas pela seguinte matriz:

M =

Esq. Dir.

[
−1 1
1 −1

]
Esq.

Dir.
.

As linhas correspondem às ações de Alice (esconder o objeto na mão
esquerda ou direita), enquanto as colunas correspondem às ações de Bruno
(apostar na mão esquerda ou direita). A entrada M𝑖,𝑗 representa o ganho de
Alice (resp. perda de Bruno) quando Alice escolhe a ação 𝑖 e Bruno escolhe
a ação 𝑗. De modo geral, qualquer jogo de dois jogadores com soma nula
pode ser descrito por uma matriz de recompensas M ∈ ℝ𝑛×𝑚.

Assumimos que ambos os jogadores desejam maximizar seus próprios
ganhos. Como os interesses são opostos, o jogo é inerentemente adversarial.

Chamamos de estratégia uma regra que determina a ação escolhida pelo
jogador. Quando essa escolha é determinística, a estratégia é dita pura. No
jogo acima, uma estratégia pura consiste simplesmente em escolher uma das
mãos. Assumiremos que este é um jogo de informação nula, isto é, nenhum
jogador possui informação prévia sobre a estratégia do adversário.

Se Alice escolher uma estratégia pura 𝑖, então, no pior caso, sua recom-
pensa será

min
𝑗

M𝑖,𝑗 ,

independentemente da ação de Bruno. Assim, uma estratégia pura ótima
para Alice consiste em escolher a linha 𝑖 que maximiza essa quantidade,
garantindo-lhe um ganho de

max
𝑖

min
𝑗

M𝑖,𝑗 .

De forma análoga, se Bruno escolher uma estratégia pura 𝑗, sua maior perda
possível é

max
𝑖

M𝑖,𝑗 ,

de modo que a menor perda que ele pode garantir é

min
𝑗

max
𝑖

M𝑖,𝑗 .

Quando esses dois valores coincidem, dizemos que o jogo admite um
equilíbrio puro: um par de ações (𝑖, 𝑗) tal que nenhum dos jogadores tem
incentivo a desviar unilateralmente, pois cada um já está obtendo o melhor
resultado que pode garantir sem conhecer a escolha do oponente.

Não é difícil verificar que o jogo descrito acima não possui equilíbrio
puro. Isso motiva a introdução do conceito de estratégia mista. Uma estraté-

49

gia mista é um vetor x = (𝑥1, … , 𝑥𝑛), em que 𝑥𝑖 representa a probabilidade
do jogador escolher a ação 𝑖, com ∑𝑛

𝑖=1 𝑥𝑖 = 1. Assim, o jogador passa a
escolher suas ações de forma aleatória, segundo uma distribuição de proba-
bilidade. Observe que estratégias puras são casos particulares de estratégias
mistas, nas quais uma ação é escolhida com probabilidade 1 e as demais com
probabilidade 0.

Dadas estratégias mistas x para Alice e y para Bruno, a recompensa
esperada de Alice é dada por

x⊤My =
𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

𝑥𝑖M𝑖,𝑗𝑦𝑗

Por argumentos análogos aos anteriores, a maior recompensa esperada
que Alice pode garantir, independentemente da estratégia de Bruno, é

max
x

min
y

x⊤My,

enquanto a menor perda esperada que Bruno pode garantir, independente-
mente da estratégia de Alice, é

min
y

max
x

x⊤My,

em que o máximo e o mínimo variam sobre todas as distribuições de proba-
bilidade válidas.

O Teorema Minimax de von Neumann [33], enunciado a seguir, afirma
que esses dois valores coincidem para todo jogo de dois jogadores com soma
nula, garantindo assim a existência de um equilíbrio misto.

Teorema 17. Para todo jogo de dois jogadores com soma nula especificado
por uma matriz de recompensas M, vale que

max
x

min
y

x⊤My = min
y

max
x

x⊤My

Em outras palavras, o maior valor esperado que Alice pode garantir
escolhendo uma estratégia mista é igual à menor perda esperada que Bruno
pode assegurar ao escolher uma estratégia mista. Esse valor comum é
chamado de valor do jogo.

A demonstração desse teorema foge ao escopo deste trabalho.

Note que, para uma estratégia mista fixa x, a expressão x⊤My é uma
função linear em y e, portanto, é minimizada ao concentrar toda a massa
de probabilidade em uma coordenada 𝑦𝑗 que minimize o coeficiente corres-
pondente. Então, se Bruno conhece a distribuição x utilizada por Alice, sua
melhor estratégia é sempre uma estratégia pura. O mesmo argumento vale

50

38Note que poderíamos
igualmente considerar
outras medidas de custo,
como uso de espaço ou
qualidade da solução.

de forma simétrica para Alice.

Essa observação leva a uma versão simplificada do Teorema Minimax,
atribuída a Loomis [34].

Corolário 6. Seja e𝑘 o vetor unitário com 1 na 𝑘-ésima coordenada e 0 nas
demais.

Para todo jogo de dois jogadores com soma nula especificado por uma
matriz de recompensas M, vale que

max
x

min
𝑗

x⊤Me𝑗 = min
y

max
𝑖

e⊤𝑖 My

A seguir, descrevemos como esses resultados de teoria dos jogos podem
ser utilizados para estabelecer limitantes inferiores para o desempenho de
algoritmos aleatorizados.

3.2.2.1 Analisando algoritmos através de jogos

Considere um problema Π e seja Ω𝑛 o conjunto de todas as instâncias de
Π de tamanho 𝑛. Seja A o conjunto de todos os algoritmos determinísticos
que resolvem Π. Para que a técnica seja aplicável, supomos que A e Ω𝑛
sejam finitos.

Definimos então um jogo de soma nula associado a Π, descrito por uma
matriz M: cada linha corresponde a uma instância 𝑥 ∈ Ω𝑛 e cada coluna
corresponde a um algoritmo 𝐴 ∈ A. A entrada M𝑥,𝐴 = 𝑇𝐴(𝑥) representa o
tempo de execução38 do algoritmo 𝐴 na instância 𝑥 . Nesse jogo, escolhemos
um algoritmo (coluna) com o objetivo de minimizar o custo, enquanto um
adversário escolhe uma instância (linha) com o objetivo de maximizá-lo.

Fixado um algoritmo determinístico 𝐴 ∈ A, o resultado do jogo cor-
responde exatamente à análise de pior caso: o adversário seleciona uma
instância 𝑥 ∈ Ω𝑛 de forma a maximizar 𝑇𝐴(𝑥). Assim, uma estratégia pura
ótima para o jogador das colunas corresponde a um algoritmo determinístico
ótimo, e

min
𝐴∈A

max
𝑥∈Ω𝑛

𝑇𝐴(𝑥)

é o tempo de execução no pior caso do melhor algoritmo determinístico para
Π, que chamamos de complexidade determinística do problema.

A abordagem torna-se mais interessante quando consideramos algorit-
mos aleatorizados. Um algoritmo Las Vegas R pode ser visto como uma
distribuição de probabilidade sobre o conjunto A de algoritmos determinís-
ticos. Note que isso corresponde exatamente a uma estratégia mista no jogo

51

39É importante ressaltar que
o algoritmo determinístico
é assumido conhecer a
distribuição D.

M. Naturalmente, o tempo de execução deR em uma instância 𝑥 é dado por

𝑇R(𝑥) = 𝔼
𝐴∼R

[𝑇𝐴(𝑥)],

isto é, o tempo de execução esperado. Uma estratégia mista ótima corres-
ponde, portanto, a um algoritmo Las Vegas ótimo. Definimos a complexidade
aleatorizada do problema como

min
R

max
𝑥∈Ω𝑛

𝑇R(𝑥),

ou seja, o melhor desempenho esperado no pior caso entre todos os algorit-
mos Las Vegas.

Analogamente, seja D uma distribuição de probabilidade sobre Ω𝑛. Tal
distribuição pode ser interpretada como uma estratégia mista do adversário.
Para um algoritmo determinístico 𝐴, o tempo de execução esperado sob D é

𝔼
𝑥∼𝐷

[𝑇𝐴(𝑥)] = MédioD𝐴 (𝑛).

Definimos então a complexidade distribucional do problema como

max
D

min
𝐴∈A

MédioD𝐴 (𝑛),

isto é, o desempenho esperado do melhor algoritmo determinístico contra
a pior distribuição de entradas. Observe que essa quantidade é, em geral,
menor ou igual à complexidade determinística, pois o algoritmo conhece a
distribuição D.

Pelo Teorema 17 a complexidade aleatorizada e a complexidade dis-
tribucional coincidem. Esse é precisamente o Lema Minimax de Yao, que
enunciamos a seguir em uma forma relaxada, obtida a partir do Corolário 6,
suficiente para obter limites inferiores.

Corolário 7. Seja Π um problema, Ω𝑛 o conjunto (finito) de todas as instâncias
deΠ de tamanho 𝑛, eA o conjunto (finito) de todos os algoritmos determinísticos
que resolvem Π. Então, para quaisquer distribuições D sobre Ω𝑛 e R sobre A,
vale que

min
𝐴∈A

MédioD𝐴 (𝑛) ≤ max
𝑥∈Ω𝑛

𝑇R(𝑥)

Em particular, o desempenho médio do melhor algoritmo determinístico
sob uma distribuição arbitráriaD fornece um limitante inferior para o tempo
de execução esperado de qualquer algoritmo Las Vegas para o problema Π.
Isso é extremamente útil, pois permite escolher uma distribuição conveniente
D e provar que todo algoritmo determinístico39 tem custo esperado ao
menos 𝐶 . Pelo Lema de Yao, segue então que a complexidade aleatorizada

52

do problema também é ao menos 𝐶 .

3.3 Análise suavizada

Como vimos na Seção 3.2, a análise de caso médio é a alternativa fre-
quentemente adotada na análise probabilística de algoritmos. Embora tal
abordagem evite o pessimismo do pior caso, ela depende fortemente da
distribuição de probabilidade atribuída ao espaço de instâncias, o que pode
torná-la tão artificial quanto a análise de pior caso. Na prática, é difícil
determinar qual distribuição descreve adequadamente as instâncias reais de
um problema. Além disso, instâncias aleatórias frequentemente apresen-
tam, com alta probabilidade, certas propriedades estruturais que dominam o
comportamento médio, o que pode enviesar a interpretação do desempe-
nho. Assim, instâncias aleatórias não devem ser confundidas com instâncias
típicas: instâncias aleatórias são, na verdade, um tipo bem particular de
instâncias [35].

Com o objetivo de contornar as limitações de ambos os paradigmas
anteriores, Spielman e Teng propuseram a análise suavizada de algoritmos
[36]. Essa abordagem parte da observação de que, no mundo real, as instân-
cias de problemas estão frequentemente sujeitas a pequenas perturbações
aleatórias, decorrentes de diversas fontes, como erros de medição, restrições
de projeto e, de maneira geral, por fatores de aleatoriedade inerentes à ocor-
rência de instâncias particulares. Dessa forma, as instâncias reais não são
completamente adversariais, mas também não são totalmente aleatórias.

A partir dessa ideia, define-se a medida suavizada de um algoritmo em
uma dada instância como o valor esperado de seu desempenho sob pequenas
perturbações aleatórias dessa instância. Já sua complexidade suavizada é
definida como o máximo dessa medida suavizada sobre todas as instâncias
possíveis de entrada.

Definição 10 (𝜎–perturbação). Dado um grafo 𝐺 com 𝑛 vértices e 𝜎 ∈ (0, 1),
definimos a 𝜎–perturbação de 𝐺 como o grafo aleatório obtido pela remoção
de cada aresta de 𝐺 com probabilidade 𝜎 e pela adição de cada não aresta de 𝐺
com probabilidade 𝜎 . Denotamos por G(𝐺, 𝜎) a distribuição sobre grafos com
𝑛 vértices assim obtida.

Equivalentemente, se 𝐺𝜎 ∼ G(𝐺, 𝜎), então

Pr[𝑒 ∈ 𝐸(𝐺𝜎)] = (1 − 𝜎)𝟙𝑒 + 𝜎(1 − 𝟙𝑒),

53

em que 𝟙𝑒 = 1 se 𝑒 ∈ 𝐸(𝐺) e 𝟙𝑒 = 0 caso contrário.

Note também que
𝐺𝜎 = 𝐺Δ𝐻,

em que 𝐻 ∼ 𝐺(𝑛, 𝜎) é um grafo aleatório de Erdős–Rényi e 𝐺Δ𝐻 denota o
grafo sobre o mesmo conjunto de vértices de 𝐺, cujas arestas são dadas pela
diferença simétrica entre as arestas de 𝐺 e de 𝐻 .

Definimos então a complexidade suavizada de um algoritmo em grafos.

Definição 11 (Complexidade suavizada). Seja 𝐴 um algoritmo e seja G𝑛 o
conjunto de todos os grafos com 𝑛 vértices. Para cada grafo 𝐺 ∈ G𝑛, seja
𝐺𝜎 ∼ G(𝐺, 𝜎) uma 𝜎–perturbação de 𝐺. Então, a complexidade suavizada de
𝐴 é definida por

Suavizada 𝜎
𝐴(𝑛) ∶= max

𝐺∈G𝑛
𝔼 [𝑇𝐴(𝐺𝜎)] .

Observe que, ao variar o grafo 𝐺 ∈ G𝑛, obtemos distribuições de proba-
bilidade distintas sobre o espaço G𝑛. A complexidade suavizada considera,
portanto, o pior caso, dentre todas essas distribuições, do tempo de execução
esperado de 𝐴.

Na análise suavizada o parâmetro 𝜎 determina o grau de poder do ad-
versário, estabelecendo uma transição contínua entre os paradigmas de pior
caso e de caso médio: quando a perturbação tende a zero, voltamos à análise
de pior caso; por outro lado, quando a perturbação é suficientemente grande
a ponto de dominar as instâncias, a análise aproxima-se do caso médio. Por
exemplo, se 𝜎 = 1/2 então 𝐺𝜎 ∼ 𝐺(𝑛, 1/2) para todo grafo 𝐺.

Note que o tempo de execução é analisado em função tanto do tamanho
da entrada (𝑛) quanto da magnitude da perturbação (𝜎). Podemos então
caracterizar algoritmos que apresentam complexidade suavizada polinomial.

Definição 12 (Complexidade suavizada polinomial). Dizemos que um al-
goritmo 𝐴 possui complexidade suavizada polinomial se existem constantes
positivas 𝑛0, 𝜎0, 𝑐, 𝑘, e 𝛼 tais que, para todo 𝑛 ≥ 𝑛0 e 𝜎 ≥ 𝜎0,

Suavizada 𝜎
𝐴(𝑛) ≤ 𝑐 ⋅ 𝑛

𝑘

𝜎𝛼
.

Observe que um algoritmo ter complexidade suavizada polinomial in-
dica que as instâncias de desempenho superpolinomial (caso existam) são
“instáveis”, e, portanto, é razoável esperar que não ocorram em situações
práticas.

É importante ressaltar que definimos a análise suavizada restrita ao con-
texto de algoritmos em grafos, considerando ainda um modelo específico de

54

40Isso ocorre porque, ao
modificar com alta probabi-
lidade propriedades estrutu-
rais relevantes da instância
original, a perturbação pode
introduzir características
que tornam o problema
artificialmente mais fácil,
descaracterizando a difi-
culdade intrínseca que se
deseja analisar, num efeito
análogo ao viés presente na
análise de caso médio.

41O problema do Isomor-
fismo de Grafos é um dos
poucos problemas conheci-
dos que pertencem a NP ,
mas cuja NP-dificuldade
permanece em aberto. Não
se conhecem algoritmos
polinomiais para o pro-
blema. László Babai [47]
reivindicou a existência de
um algoritmo quase–po-
linomial para o problema,
isto é, com tempo de exe-
cução O(𝑒(log 𝑛)O(1)), mas sua
versão final ainda não foi
completamente publicada.

perturbação. Entretanto, naturalmente, a noção de complexidade suavizada
se estende a diversos outros domínios e, mesmo no contexto de grafos, exis-
tem vários modelos distintos de perturbação (veja, por exemplo, [37,38], e
os modelos citados em [35]). Optamos por este modelo em particular por
sua proximidade com os ideais originais propostos na análise suavizada.

Contudo, note que esse modelo simples pode ser inadequado para certos
problemas, pois as entradas são perturbadas aleatoriamente de maneira
indiscriminada. Por exemplo, ao analisarmos um algoritmo que decide
se um grafo é hamiltoniano, é desejável que a perturbação não altere a
hamiltonicidade do grafo original; caso contrário, a análise perde o sentido40.
Nesses contextos, torna-se necessário impor restrições às perturbações, de
modo que certas estruturas da entrada sejam preservadas. Nesse sentido,
Spielman e Teng propuseram o estudo de 𝜎–perturbações que preservam
propriedades, discutidas brevemente em [39].

Embora já existam alguns resultados a respeito da complexidade suavi-
zada de algoritmos em grafos (e.g., [40,41,42]), o paradigma também pode
ser naturalmente estendido para avaliar outros aspectos do comportamento
de algoritmos. Entre suas possíveis aplicações estão a estimativa da pro-
babilidade de erro de algoritmos aleatórios [39], a avaliação da qualidade
das soluções obtidas por algoritmos de aproximação [43] e a determina-
ção da menor perturbação necessária para que um grafo qualquer adquira
determinada propriedade [46].

Apesar dos avanços existentes na literatura, ainda há amplas oportuni-
dades de investigação, especialmente no contexto de análise de algoritmos
em grafos.

Apresentaremos a seguir um resultado recente sobre a análise suavi-
zada de um algoritmo para o problema do Isomorfismo de Grafos41. As
demonstrações dos resultados apresentados a seguir fogem ao escopo deste
texto.

Isomorfismo de grafos

Dado um grafo 𝐺 e um grafo 𝐻 , determine se 𝐻 é isomorfo a 𝐺.

Na análise probabilística do Isomorfismo de Grafos, não é ideal lidar
com dois grafos aleatórios 𝐺 e 𝐻 , pois, com alta probabilidade, eles não
serão isomorfos. Para contornar esse problema, uma estratégia comumente
adotada consiste em analisar algoritmos de rotulação canônica [26]. Uma
rotulação canônica associa rótulos aos vértices de um grafo 𝐺 de forma
que, se outro grafo 𝐻 for rotulado segundo o mesmo procedimento, então
os grafos coincidem se, e somente se, são isomorfos. Isso permite testar o
isomorfismo de 𝐺 com qualquer outro grafo.

55

42Isso decorre do fato de
que, para 𝐻 ∼ 𝐺(𝑛, 𝑝), o
número de arestas de 𝐻
está concentrado em torno
de 𝑝(𝑛2) ≈ 𝑛2𝑝.

Um algoritmo polinomial que tenta construir uma rotulação canônica
de um grafo 𝐺 é o refinamento de cores. Inicialmente, todos os vértices de
𝐺 recebem a mesma cor. No primeiro passo, os vértices são coloridos de
acordo com seus graus, na tentativa de diferenciá-los; no passo seguinte, essa
informação é refinada levando em conta os graus dos vizinhos; e o processo
prossegue de maneira semelhante, até que a coloração se estabilize, ou seja,
até que não seja mais possível distinguir vértices com base em critérios
adicionais.

Se ao final do processo cada vértice de 𝐺 receber uma cor distinta, a
coloração obtida determina uma rotulação canônica de 𝐺, e o grafo pode
então ser testado quanto ao isomorfismo com qualquer outro em tempo
polinomial.

Entretanto, o refinamento de cores nem sempre é bem-sucedido. Consi-
dere, por exemplo, um grafo regular: como todos os vértices têm o mesmo
grau, o algoritmo não consegue distinguir nenhum vértice dos demais.

Ainda assim, essa situação é “atípica”: de acordo com um resultado de
Babai, Erdős e Selkow [48], o algoritmo é capaz de produzir uma rotulação
canônica para quase todo grafo, como descrito abaixo.

Teorema 18. Seja 𝐺 um grafo escolhido uniformemente ao acaso. Então,
com alta probabilidade, o algoritmo de refinamento de cores distingue todos os
vértices de 𝐺. Como consequência, com alta probabilidade, 𝐺 pode ser testado
quanto ao isomorfismo com qualquer outro grafo em tempo polinomial.

Recentemente, Anastos, Kwan e Moore [40] refinaram esse resultado ao
realizar a análise suavizada do algoritmo, obtendo o resultado a seguir.

Teorema 19. Fixe uma constante 𝛿 > 0 e considere 𝜎 ∈ (0, 1) tal que
𝜎 ≥ (1 + 𝛿) log 𝑛/𝑛. Então, para todo grafo 𝐺, com alta probabilidade o
algoritmo de refinamento de cores rotula canonicamente o grafo 𝐺𝜎 ∼ G(𝐺, 𝜎).
Em particular, com alta probabilidade, uma 𝜎–perturbação de 𝐺 pode ser
testada quanto ao isomorfismo com qualquer outro grafo em tempo polinomial.

Ou seja, para todo grafo 𝐺, a adição e remoção de aproximadamente
𝑛 log 𝑛 arestas aleatórias42 é suficiente para que o refinamento de cores seja
bem-sucedido com alta probabilidade.

Note que não analisamos o tempo de execução do algoritmo – que é
sempre polinomial –, mas sim sua probabilidade de sucesso. Assim, se essa
probabilidade fosse suficientemente alta, poderíamos recorrer a um algo-
ritmo exato apenas nos raros casos de falha do refinamento de cores. Por
argumentos semelhantes aos da Seção 3.2.1, isso resultaria em um algoritmo
que sempre produz uma rotulação canônica e cujo tempo de execução sua-
vizado seria polinomial. No entanto, a probabilidade de erro do refinamento
de cores no contexto suavizado, conforme demonstrado em [40], não parece

56

ser pequena o bastante para viabilizar esse resultado, sendo necessário um
aperfeiçoamento adicional do limitante de erro.

Curiosamente, apesar da origem algorítmica do paradigma da análise
suavizada, há hoje mais trabalhos sobre grafos aleatoriamente perturbados
na teoria extremal de grafos (veja os exemplos em [40]) do que no contexto
algorítmico propriamente dito.

Concluímos a seção com a seguinte questão: seria possível estender os
resultados extremamente positivos da Seção 3.2.1 ao contexto da análise sua-
vizada? Observe que o resultado já vale para 𝜎 = 1/2, pois essa perturbação
equivale a considerar um grafo aleatório segundo o modelo 𝐺(𝑛, 1/2).

Questão 1. O Algoritmo 7 tem tempo suavizado polinomial para algum
𝜎 < 1/2?

57

4 Conclusão

A revisão realizada neste trabalho evidencia que a aleatoriedade vai além
de uma simples ferramenta algorítmica, constituindo um elemento essencial
para compreender mais profundamente o que computadores são capazes de
resolver. Seja pelas contribuições conceituais em complexidade computaci-
onal resultantes do estudo de algoritmos aleatorizados, seja pelos modelos
mais realistas para análise do desempenho algorítmico. Dessa forma, a alea-
toriedade oferece novas perspectivas sobre problemas computacionalmente
difíceis, e o estudo contínuo desse tema é crucial para aprofundar nossa
compreensão de questões fundamentais em ciência da computação.

58

Referências

[1] CORMEN, T. H. et al. Introduction to Algorithms, Third Edition.
3rd. ed. [s.l.] The MIT Press, 2009.

[2] FORTNOW, L. 2023 A.M. Turing Award Laureate. Disponível em:
<https://amturing.acm.org/award_winners/wigderson_3844537.c
fm>.

[3] MOTWANI, R.; RAGHAVAN, P. Randomized algorithms. ACMCom-
put. Surv., v. 28, n. 1, p. 33–37, mar. 1996.

[4] ARORA, S.; BARAK, B. Computational Complexity: A Modern
Approach. [s.l.] Cambridge University Press, 2009.

[5] WIGDERSON, A. Mathematics and computation: A theory re-
volutionizing technology and science. [s.l.] Princeton University
Press, 2019.

[6] METROPOLIS, N. The Beginning of the Monte Carlo Method. Los
Alamos Science Special Issue, p. 125–130, 1987.

[7] MOTWANI, R.; RAGHAVAN, P. Randomized Algorithms. [s.l.]
Cambridge University Press, 1995.

[8] DEVROYE, L. Non-Uniform Random Variate Generation. 1. ed.
New York, NY: Springer, 1986.

[9] GAREY, M. R.; JOHNSON, D. S.; STOCKMEYER, L. Some simplified
NP-complete graph problems. Theoretical Computer Science, v.
1, n. 3, p. 237–267, 1976.

[10] BOTLER, F. H. et al. Combinatória. [s.l.] Impa, 2022.

[11] KARGER, D. R. Global min-cuts in RNC, and other ramifications
of a simple min-cut algorithm. Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms. Anais...: SODA
’93.USA: Society for Industrial; Applied Mathematics, 1993.

[12] KARGE, D. R. Random Sampling in Cut, Flow, and Network Design
Problems. Mathematics of Operations Research, v. 24, n. 2, p.
383–413, 1999.

[13] RAGHAVAN, P.; TOMPSON, C. D. Randomized rounding: A techni-
que for provably good algorithms and algorithmic proofs. Combi-
natorica, v. 7, n. 4, p. 365–374, 1987.

https://amturing.acm.org/award_winners/wigderson_3844537.cfm
https://amturing.acm.org/award_winners/wigderson_3844537.cfm
https://doi.org/10.1145/234313.234327
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1007/BF02579324
https://doi.org/10.1007/BF02579324

59

[14] GOEMANS, M. X.; WILLIAMSON, D. P. Improved approximation
algorithms for maximum cut and satisfiability problems using semi-
definite programming. J. ACM, v. 42, n. 6, p. 1115–1145, nov. 1995.

[15] BABAI, L.Monte-Carlo Algorithms in Graph Isomorphism Tes-
ting. [s.l.] Université de Montréal, Département de Mathématiques
et de Statistique, 1979.

[16] ALON, N.; YUSTER, R.; ZWICK, U. Color-coding: a new method
for finding simple paths, cycles and other small subgraphs
within large graphs. Proceedings of the Twenty-Sixth Annual
ACM Symposium on Theory of Computing. Anais...: STOC ’94.New
York, NY, USA: Association for Computing Machinery, 1994.

[17] KARP, R. M. Reducibility among Combinatorial Problems. Em: MIL-
LER, R. E.; THATCHER, J. W.; BOHLINGER, J. D. (Eds.). Complexity
of Computer Computations: Proceedings of a symposium on
the Complexity of Computer Computations, heldMarch 20–22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, and sponsored by the Office of Naval Rese-
arch, Mathematics Program, IBM World Trade Corporation,
and the IBMResearchMathematical Sciences Department. Bos-
ton, MA: Springer US, 1972. p. 85–103.

[18] ALT, H. et al. A method for obtaining randomized algorithms with
small tail probabilities. Algorithmica, v. 16, n. 4, p. 543–547, 1996.

[19] LUBY, M.; SINCLAIR, A.; ZUCKERMAN, D. Optimal speedup of Las
Vegas algorithms. Information Processing Letters, v. 47, n. 4, p.
173–180, 1993.

[20] LUBY, M.; ERTEL, W. Optimal parallelization of Las Vegas al-
gorithms. (P. Enjalbert, E. W. Mayr, K. W. Wagner, Eds.)STACS 94.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

[21] RUAN, Y.; HORVITZ, E.; KAUTZ, H. Restart Policies with De-
pendence among Runs: A Dynamic Programming Approach.
(P. Van Hentenryck, Ed.)Principles and Practice of Constraint Pro-
gramming - CP 2002. Anais...Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002.

[22] GOMES, C. P.; SELMAN, B. Algorithm portfolios. Artificial Intelli-
gence, v. 126, n. 1, p. 43–62, 2001.

[23] GOMES, C. P. Randomized Backtrack Search. Em: MILANO, M.
(Ed.). Constraint and Integer Programming: Toward a Unified
Methodology. Boston, MA: Springer US, 2004. p. 233–291.

[24] BOLLOBÁS, B. Random Graphs. Em: Cambridge Studies em Advan-
ced Mathematics. 2. ed. [s.l.] Cambridge University Press, 2001.

https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/195058.195179
https://doi.org/10.1145/195058.195179
https://doi.org/10.1145/195058.195179
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BF01940879
https://doi.org/10.1007/BF01940879
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/S0004-3702(00)00081-3
https://doi.org/10.1007/978-1-4419-8917-8_8

60

[25] BOLLOBÁS, B.; THOMASON, A. G. Threshold functions. Combina-
torica, v. 7, n. 1, p. 35–38, 1987.

[26] FRIEZE, A. M. Probabilistic Analysis of Graph Algorithms. Em: TI-
NHOFER, G. et al. (Eds.). Computational Graph Theory. Vienna:
Springer Vienna, 1990. p. 209–233.

[27] FRIEZE, A.; MCDIARMID, C. Algorithmic theory of random graphs.
Random Structures & Algorithms, v. 10, n. 1-2, p. 5–42, 1997.

[28] BELLMAN, R. Dynamic Programming Treatment of the Travelling
Salesman Problem. J. ACM, v. 9, n. 1, p. 61–63, jan. 1962.

[29] HELD, M.; KARP, R. M. A dynamic programming approach to
sequencing problems. Proceedings of the 1961 16th ACM National
Meeting. Anais...: ACM ’61.New York, NY, USA: Association for
Computing Machinery, 1961.

[30] BOLLOBÁS, B.; FENNER, T. I.; FRIEZE, A. M. An algorithm for finding
hamilton paths and cycles in random graphs. Combinatorica, v. 7,
n. 4, p. 327–341, 1987.

[31] PÓSA, L. Hamiltonian circuits in random graphs. Discrete Mathe-
matics, v. 14, n. 4, p. 359–364, 1976.

[32] OSBORNE, M. J. An Introduction to Game Theory. [s.l.] Oxford
University Press, 2004.

[33] NEUMANN, J. VON; MORGENSTERN, O. Theory of Games and
Economic Behavior. Princeton: Princeton University Press, 1944.

[34] LOOMIS, L. H. On A Theorem of von Neumann. Proceedings of
the National Academy of Sciences, v. 32, n. 8, p. 213–215, 1946.

[35] SPIELMAN, D. A.; TENG, S.-H. Smoothed analysis: an attempt to
explain the behavior of algorithms in practice. Commun. ACM, v.
52, n. 10, p. 76–84, out. 2009.

[36] SPIELMAN, D.; TENG, S.-H. Smoothed analysis of algorithms:
why the simplex algorithm usually takes polynomial time.
Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing. Anais...: STOC ’01.New York, NY, USA: Association
for Computing Machinery, 2001.

[37] ETSCHEID, M.; RÖGLIN, H. Smoothed Analysis of Local Search for
the Maximum-Cut Problem. ACM Trans. Algorithms, v. 13, n. 2,
mar. 2017.

[38] ENGLERT, M.; RÖGLIN, H.; VÖCKING, B. Smoothed Analysis of the
2-Opt Algorithm for the General TSP. v. 13, n. 1, set. 2016.

https://doi.org/10.1007/BF02579198
https://doi.org/10.1007/978-3-7091-9076-0_11
https://doi.org/10.1002/(SICI)1098-2418(199701/03)10:1/2%3C5::AID-RSA2%3E3.0.CO;2-Z
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/800029.808532
https://doi.org/10.1145/800029.808532
https://doi.org/10.1007/BF02579321
https://doi.org/10.1007/BF02579321
https://doi.org/10.1016/0012-365X(76)90068-6
https://doi.org/10.1073/pnas.32.8.213
https://doi.org/10.1145/1562764.1562785
https://doi.org/10.1145/1562764.1562785
https://doi.org/10.1145/380752.380813
https://doi.org/10.1145/380752.380813

61

[39] SPIELMAN, D. A.; TENG, S.-H. Smoothed Analysis. (F. Dehne, J.-R.
Sack, M. Smid, Eds.)Algorithms and Data Structures. Anais...Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003.

[40] ANASTOS, M.; KWAN, M.; MOORE, B. Smoothed Analysis for
Graph Isomorphism. Proceedings of the 57th Annual ACM Sym-
posium on Theory of Computing. Anais...: STOC ’25.New York, NY,
USA: Association for Computing Machinery, 2025.

[41] DINITZ, M. et al. Smoothed analysis of dynamic networks. Distri-
buted Computing, v. 31, n. 4, p. 273–287, 2018.

[42] FLAXMAN, A. D.; FRIEZE, A. M. The diameter of randomly per-
turbed digraphs and some applications. Random Structures &
Algorithms, v. 30, n. 4, p. 484–504, 2007.

[43] MANTHEY, B.; PLOCIENNIK, K. Approximating independent set in
perturbed graphs. Discrete Applied Mathematics, v. 161, n. 12, p.
1761–1768, 2013.

[44] KRIVELEVICH, M.; SUDAKOV, B.; TETALI, P. On smoothed analysis
in dense graphs and formulas. Random Structures & Algorithms,
v. 29, n. 2, p. 180–193, 2006.

[45] BÖTTCHER, J. et al. Triangles in randomly perturbed graphs. Com-
binatorics, Probability and Computing, v. 32, n. 1, p. 91–121,
2023.

[46] KRIVELEVICH, M.; REICHMAN, D.; SAMOTIJ, W. Smoothed Analy-
sis on Connected Graphs. SIAM Journal onDiscreteMathematics,
v. 29, n. 3, p. 1654–1669, 2015.

[47] BABAI, L. Graph Isomorphism in Quasipolynomial Time., 2016.
Disponível em: <https://arxiv.org/abs/1512.03547>

[48] BABAI, L.; ERDŐS, P.; SELKOW, S. M. Random Graph Isomorphism.
SIAM Journal on Computing, v. 9, n. 3, p. 628–635, 1980.

https://doi.org/10.1145/3717823.3718173
https://doi.org/10.1145/3717823.3718173
https://arxiv.org/abs/1512.03547
https://doi.org/10.1137/0209047

	Introdução
	Algoritmos aleatorizados
	Classificação de algoritmos
	Monte Carlo
	Las Vegas
	Conversão entre algoritmos Monte Carlo e Las Vegas

	Modelo computacional e classes de complexidade
	Pseudoaleatoriedade e derandomização

	Análise probabilística de algoritmos
	Grafos aleatórios
	Análise de caso médio
	Ciclo hamiltoniano em tempo esperado polinomial
	Lema Minimax de Yao
	Analisando algoritmos através de jogos

	Análise suavizada

	Conclusão

