Universidade de Sao Paulo
Instituto de Matematica e Estatistica

Bacharelado em Ciéncia da Computacdo

Usando aleatoriedade para lidar com problemas

computacionalmente dificeis em grafos

Guilherme Vinicius Ferreira de Assis

Supervisor: Prof.° Dr.° Fabio Happ Botler

Monografia

MAC0499 — Trabalho de Formatura Supervisionado

Sao Paulo
2025

O contetido deste trabalho é publicado sob a licenga CC BY 4.0.

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Resumo

ASSIS, G. V. F. de. Usando aleatoriedade para lidar com problemas
computacionalmente dificeis em grafos. 2025. Monografia (Bachare-
lado em Ciéncia da Computacio) — Instituto de Matemaética e Estatistica,
Universidade de Sao Paulo, Sao Paulo, 2025.

Muitos problemas relevantes em computagio sio computacionalmente di-
ficeis — ndo se conhecem algoritmos polinomiais para resolvé-los —, o que
motiva a busca por abordagens alternativas, como algoritmos para subclasses
especificas, solu¢des aproximadas, paralelizagao e, particularmente, o uso
de aleatoriedade. Este trabalho apresenta uma revisdo bibliografica sobre
a aplicacéo de aleatoriedade em problemas dificeis em grafos, abordando
duas formas principais: algoritmos aleatorizados e anélise probabilistica
de algoritmos. Na primeira, considera-se algoritmos que tém acesso a bits
aleatorios, permitindo o desenvolvimento de solu¢des mais simples, embora
a aleatoriedade provavelmente nfo aumente o poder computacional. Na se-
gunda, substituimos, de forma justificada, a analise de pior caso pela analise
de caso médio ou pela analise suavizada, possibilitando resultados positivos
para problemas complexos sob essa perspectiva.

Palavras-chave: Algoritmos aleatorizados. Anélise probabilistica de algo-
ritmos. Complexidade computacional. Grafos.

Abstract

ASSIS, G. V. F. de. Using randomness to address computationally
hard problems in graphs. 2025. Undergraduate thesis (Bachelor’s degree
in Computer Science) — Institute of Mathematics and Statistics, University
of Sao Paulo, Sao Paulo, 2025.

Many relevant problems in computer science are computationally hard - no
polynomial-time algorithms are known to solve them — which motivates the
search for alternative approaches, such as algorithms for specific subclasses,
approximation methods, parallelization, and particularly the use of random-
ness. This work presents a literature review on the use of randomness to
tackle hard graph problems, addressing two main approaches: randomized
algorithms and probabilistic analysis of algorithms. In the first, algorithms
have access to random bits, allowing the development of simpler solutions,
although randomness is unlikely to increase computational power. In the
second, for good reason reasons, worst-case analysis is replaced by average-
case analysis or smoothed analysis, allowing for positive results in complex
problems from this perspective.

Keywords: Randomized algorithms. Probabilistic analysis of algorithms.
Computational complexity. Graphs.

1
2

3

4

Sumario

Introducao

Algoritmos aleatorizados

2.1 Classificagdo de algoritmos
211 MonteCarlo.
212 LasVegas
2.1.3 Conversio entre algoritmos Monte Carlo e Las Vegas

2.2 Modelo computacional e classes de complexidade

2.3 Pseudoaleatoriedade e derandomizacdo

Analise probabilistica de algoritmos

3.1 Grafosaleatérios. L.

3.2 Analisedecasomédio.
3.2.1 Ciclo hamiltoniano em tempo esperado polinomial
3.22 LemaMinimaxdeYao

3.2.2.1 Analisando algoritmos através de jogos .
3.3 Analisesuavizada

Conclusao

[BN T~ TN

1 Introducao

Uma das questdes fundamentais na anéalise de algoritmos e na complexi-
dade computacional é identificar quais problemas sdo faceis ou dificeis de
resolver, adotando estratégias apropriadas para cada caso. Embora muitas
questdes fundamentais permanecam abertas, como a conjectura P = NP,
pesquisadores desenvolveram diversas ferramentas para lidar com proble-
mas computacionalmente dificeis, para os quais ndo se conhecem algoritmos
polinomiais. Entre elas estdo algoritmos eficientes para subclasses especifi-
cas, aproximagdes, paralelizacio, analise parametrizada da complexidade e

heuristicas [1].

A aleatoriedade surge na computacio na década de 1950 como uma ferra-
menta promissora, cuja compreensdo tem promovido avancos significativos
em complexidade e desenvolvimento de algoritmos. O estudo da aleato-
riedade computacional oferece uma perspectiva diferente das abordagens
matematicas classicas, como sera brevemente discutido na Secédo 2.3. Entre
suas contribuicdes, destacam-se resultados fundamentais em criptografia
e profundas contribui¢des conceituais em complexidade computacional,

reconhecidas recentemente pelo prémio Turing concedido a Avi Wigderson
(2].

Dada a relevancia da aleatoriedade no contexto computacional, este
trabalho apresenta uma revisdo bibliografica introdutéria sobre o uso de
aleatoriedade para lidar com problemas computacionalmente dificeis, com
énfase em grafos. De forma geral, a aleatoriedade pode ser incorporada dire-
tamente nos algoritmos, na esperanca de ampliar o que podemos computar
em tempo polinomial, ou aplicada na analise probabilistica de algoritmos,
buscando resultados mais favoraveis que os sugeridos pela analise de pior

caso.

Na Secéo 2, exploramos algoritmos com acesso a bits aleatorios, inclu-
indo exemplos introdutodrios e a investigacdo do poder computacional desses
algoritmos através de classes de complexidade probabilisticas. Na Secéo 3,
discutimos a motivacao para substituir a analise de pior caso por abordagens
alternativas, como caso médio ou suavizada, apresentando os métodos cor-
respondentes e seus principais resultados positivos. Também examinaremos
a relacdo curiosa entre o desempenho médio de algoritmos deterministicos
e o de algoritmos aleatorizados. Embora o trabalho se restrinja ao contexto
de grafos, muitos dos resultados apresentados se aplicam a outros dominios
de problemas. Ao longo do texto, usamos conceitos e termos convencionais

de teoria da computacéo, grafos e probabilidade.

Este trabalho concentra-se exclusivamente na complexidade de tempo
de algoritmos offline, cujas entradas sdo totalmente conhecidas antecipada-
mente. Entretanto, a aleatoriedade também pode ser aplicada para reduzir a
memoria utilizada ou resolver problemas online. Detalhes de implementacio
de estruturas de dados sdo omitidos, mantendo o foco nas ideias algoritmi-
cas, e algumas suposi¢des simplificadoras sdo feitas implicitamente, como
consultas a arestas de grafos em tempo constante, facilmente realizaveis em

implementacdes concretas.

Por fim, este é um trabalho estritamente introdutoério. Para um estudo

mais aprofundado sobre aleatoriedade em computacio, veja [3,4,5].

2 Algoritmos aleatorizados

Uma maneira natural de incorporar aleatoriedade no contexto de algo-
ritmos é por meio de algoritmos aleatorizados (ou probabilisticos), nos quais
certo grau de aleatoriedade é integrado a logica de execugao. Contrario ao
que uma primeira impressao possa sugerir, o comportamento cadtico intro-

duzido pelo acaso pode, em muitos casos, ser explorado de forma vantajosa.

A origem dos algoritmos aleatorizados remonta aos métodos de Monte
Carlo, empregados em analise numérica, fisica estatistica e simulacao, de-
senvolvidos no final da década de 1940 [6]. Atualmente, seu uso estende-se
a diversas outras areas, incluindo sistemas distribuidos, hashing, criptografia
e otimizacdo combinatéria [7].

Formalmente, um algoritmo A é dito aleatorizado se utiliza uma sequén-
cia S €{0,1}¢ composta por d bits aleatérios, independentes e imparciais?
como entrada auxiliar para guiar seu comportamento. Algoritmos alea-
torizados séo tuteis porque, em muitos casos, sdo significativamente mais
rapidos e/ou mais simples que alternativas deterministicas. Contudo, tais
vantagens tém um custo: o resultado pode ter uma pequena probabilidade

3

de erro”, ou a eficiéncia do algoritmo pode ser garantida apenas com certa

probabilidade.

A analise desses algoritmos busca entdo estabelecer limitantes para o
valor esperado de uma medida de desempenho — como o tempo de execu¢io
ou a corre¢io da saida — que sejam validos para qualquer entrada. Essa me-
dida é, entdo, uma variavel aleatoria, cuja distribuicio depende das escolhas

guiadas pelos bits aleatorios.

Em certo sentido, um algoritmo deterministico eficiente pode ser visto
como um caso particular de algoritmo aleatorizado: correto e eficiente com
probabilidade 1. Isso sugere que o modelo de algoritmos aleatorizados é

estritamente mais geral do que o deterministico.

A aleatoriedade oferece um meio eficaz de explorar o espago de solu-
¢des de forma nio trivial, o que sugere ser possivel construir algoritmos
aleatorizados eficientes para problemas dificeis com a utilizagao de passos
aleatorios. Embora essa abordagem possa ocasionalmente produzir respostas
incorretas, muitas vezes é possivel controlar rigorosamente a probabilidade

de erro, resultando em algoritmos probabilisticamente corretos.

J& sob a ética da eficiéncia algoritmica, algoritmos aleatorizados podem
ser especialmente eficientes. Por exemplo, suponha que um adversario es-

colha a entrada de modo a maximizar o tempo de execugdo do algoritmo,

Tais técnicas foram ide-
alizadas por Stanistaw
Ulam com o advento dos
primeiros computadores
eletronicos. O nome faz re-
feréncia ao famoso cassino
de Monte Carlo, em Mo6-
naco, associado aos habitos
de jogo do tio de Ulam.

“Note que os bits seguem
uma distribui¢io de pro-
babilidade uniforme. Isso
é suficiente para gerar
todas as distribuicdes de
probabilidade usualmente
consideradas [8].

*Ainda que possa parecer
contraproducente projetar
um algoritmo que ocasio-
nalmente produza respostas
incorretas, uma taxa de erro
suficientemente pequena
pode ser aceitavel se pro-
porcionar uma redugéo
significativa no tempo de
execucao.

como na analise de pior caso. As decisoes aleatdorias impedem que o adver-
sario preveja o comportamento do algoritmo, tornando impossivel escolher
antecipadamente uma entrada que garanta o pior desempenho. Por esse
motivo, certos algoritmos aleatorizados sdo probabilisticamente eficientes,

isto é, seu tempo de execugio esperado é eficiente.

E importante destacar que essa abordagem difere da analise de caso
médio (veja Secdo 3.2), na qual a variacdo do desempenho decorre de uma
distribuicdo de probabilidade sobre as entradas do problema, e ndo da alea-

toriedade interna do algoritmo.

Na Secéo 2.1, examinaremos com mais detalhe esses dois principais tipos

de algoritmos aleatorizados: Monte Carlo e Las Vegas.

Em seguida, na Secéo 2.2, apresentaremos os modelos computacionais
probabilisticos e discutiremos as classes de complexidade computacional

definidas sobre algoritmos aleatorizados e suas relacdes com classes classicas,

como P e N'P.

A obtencéo dos bits aleatdrios utilizados nesses algoritmos é, por si s6, um
problema complexo®. Como de costume, assumiremos que os algoritmos aqui
apresentados e analisados operam no modelo computacional RAM®, agora
estendido: por simplicidade, consideramos que o modelo dispde de acesso
em tempo constante a uma fonte perfeita de niimeros inteiros aleatérios,
uniformemente distribuidos em um intervalo de cardinalidade polinomial no
tamanho da entrada®. As questdes relacionadas a obtencio de bits aleatérios

serdo discutidas com mais detalhes na Sec¢io 2.3.

Um resultado fundamental da teoria de algoritmos aleatorizados, o Lema
Minimax de Yao, que estabelece uma conexao direta entre algoritmos alea-
torizados e a analise de caso médio, é apresentado posteriormente na Secdo
3.2.2.

2.1 Classificacao de algoritmos

Os algoritmos aleatorizados podem ser classificados de acordo com qual
aspecto de seu comportamento é tratado como variavel aleatéria. Quando a
validade da resposta depende das escolhas probabilisticas, o algoritmo é do
tipo Monte Carlo. Quando, ao contrario, a duracdo da execucéo é que varia
de acordo com as decisdes aleatérias, o algoritmo é classificado como Las

Vegas’.

Embora seja possivel combinar as duas abordagens em um mesmo algo-

“Bits aleatérios sdo um
recurso computacional ndo
trivial. Na pratica, usam-se
geradores pseudoaleatérios
(veja Segdo 2.3) em vez de
aleatoriedade genuina.

>0 modelo RAM assume
um computador com acesso
instantaneo a memoria e
capacidade de realizar ope-
racdes aritméticas basicas
em tempo constante. Trata-
se do modelo padréo na
analise de algoritmos.

0 limitante no tamanho
do intervalo garante que
apenas um numero poli-
nomial de bits aleatorios
seja necessario, permitindo
que o modelo seja simu-
lado em tempo polinomial
por uma maquina de Tu-
ring probabilistica (cuja
definicdo é apresentada na
Sec¢do 2.2), mantendo as-
sim a consisténcia tedrica
dos resultados sobre com-
plexidade computacional
probabilistica.

"Um algoritmo aleato-
rizado que fosse sempre
correto e eficiente seria,
na verdade, um algoritmo
deterministico eficiente.
Portanto, é necessario abrir
méo de um desses aspectos.

ritmo — os quais sdo, em geral, também classificados como do tipo Monte
Carlo -, por simplicidade, estudaremos apenas algoritmos que se enquadram

inteiramente em uma ou outra categoria.

2.1.1 Monte Carlo

A seguir, apresentamos a definicdo formal de um algoritmo Monte Carlo®.

Definicao 1 (Algoritmo Monte Carlo). Um algoritmo aleatorizado A é dito
Monte Carlo se existe ¢ € (0, 1) tal que, para toda entrada x, A(x) retorna
uma resposta correta com probabilidade ao menos 1 — ¢, em que € representa a
probabilidade de erro.

O tempo de execucdo de um algoritmo de Monte Carlo é, em geral, de-
terministico. Contudo, estamos particularmente interessados em algoritmos

Monte Carlo eficientes.

No caso de problemas de decisdo, um algoritmo Monte Carlo pode apre-

sentar erro unilateral ou erro bilateral’:

« O erro é unilateral quando a probabilidade de erro é nula para uma das
duas possiveis respostas (SIM ou NAO). Isto ¢, sempre que o algoritmo
responde SIM (ou, analogamente, NAO), essa resposta é necessaria-
mente correta.

 Dizemos que o erro é bilateral quando existe probabilidade ndo nula

de erro tanto ao responder SIM quanto ao responder NAO.

Para ilustrar esses conceitos, apresentaremos um algoritmo aleatorizado
simples que aproxima o problema do CoRTE MAxim0'® com alta probabili-

dade!!.

Dado um grafo G = (V, E), um corte é um subconjunto S C E induzido
por uma biparti¢do (X,Y) dos vértices V, de modo que S consiste de todas

as arestas que possuem uma extremidade em X e outraem Y.

Enunciamos entio o problema proposto:

8A denominaciio Monte
Carlo tem origem nos mé-
todos de Monte Carlo,
empregados para resolver
problemas matematicos por
meio da aproximacao de
resultados via amostragem
estatistica computacional.

°Perceba que a defini¢io
de algoritmo Monte Carlo
ainda se aplica: se & é a
probabilidade de erro ao
responder SIM e ey é a pro-
babilidade de erro ao res-
ponder NAO, simplesmente
definimos ¢ = max{eg, ey}

“Mesmo em sua versio
simples (i.e., sem pesos as-
sociados as arestas), o pro-
blema do CorTE MAXIMO é
NP-completo [9].

"Uma sequéncia de eventos
{€,},,en Ocorre com alta
probabilidade se Pr(€,) — 1

quando n — oo.

Figura 1: Conjunto de
arestas S (em preto) que
forma um corte definido por
uma biparticdo dos vértices
do grafo.

CORTE MAXIMO

Dado grafo G = (V,E), encontre um corte S C E de cardinalidade

maxima.

Apresentamos entdo o seguinte resultado classico:

Teorema 1. Seja G = (V, E) um grafo com m arestas. Entdo existe um corte
S C E tal que |S| > |m/2].

Demonstragdo. Considere uma bipartigdo aleatéria (X,Y) de V, em que cada
vértice é atribuido a X ou Y de forma independente, com probabilidade 1/2

cada.

Seja S o corte induzido por essa biparticédo e, para cada aresta e € E,

definimos 1, como a variavel indicadora do evento e € S.

Como E[1,] = 1/2, pela linearidade da esperanca, temos,

1= E1]= %

ecE ecE

E[|S[] = E[

Logo, segue que, com probabilidade positiva, existe um corte S tal que
S| > |m/2]. 0

Uma questdo natural é se o método acima'? pode ser adaptado para
construir um algoritmo aleatorizado que produza, com alta probabilidade,

um corte de tamanho ao menos |m/2] em qualquer grafo!®.

Algoritmo 1 (Corte aleatorio)

A fungdo CORTEALEATORIO recebe um grafo G e retorna o corte in-
duzido por uma biparticio aleatoria dos vértices. A funcdo auxiliar

BITALEATORIO retorna um bit escolhido uniformemente ao acaso.
Entrada: Grafo G = (V, E), com n vértices e m arestas.

Saida: Um corte S C E tal que |S| > [m/2].

CorteAleatdério(G)

1. X, Y<0©

2. Para cada vértice veV faga
3. Se BITALEATORIO() entdo
4. X « Xu{v}

5. Sendo

6. Y <« Yu{v}

2A técnica empregada na
demonstragio é conhecida
como método probabilistico,
amplamente utilizada em
combinatdria para demons-
trar, de forma nio constru-
tiva, a existéncia de objetos
com certas propriedades
desejadas [10].

Blsso corresponderia a
uma 0, 5-aproximacado
para o problema do CORTE
MAXIMO, uma vez que o
nimero maximo possivel de
arestas em um corte é m.

10

8. Para cada aresta e={u,v} € E faga
9. Se (ueX eveY) ou (WueY e ve X) entdo
10. S« Suiet

11. Retorme S

O Algoritmo 1 tem tempo de execu¢ido deterministico ©(n + m), mas
produz um resultado aleatdrio: o corte S retornado pode nao satisfazer

IS| > |m/2]. Isto o caracteriza como do tipo Monte Carlo.

Teorema 2. Dado um grafo G = (V, E) com m arestas, o Algoritmo 1 retorna
um corte S C E com tamanho |S| > |m/2] com probabilidade de erro ¢ <
m/(m+ 2).

Demonstragdo. Queremos estimar
¢ = Pr($| < [m/2]) = Pr(S| < [m/2] - 1),

ja que |S] é inteiro.

Considere a variavel aleatoria X = m—|S| > 0. Aplicando a desigualdade

14 7 .z
de Markov'4, temos: Se X ¢ uma varia-
vel aleatdria ndo nega-

tiva, a desigualdade de
E[X] m — E[|S]] Markov estabelece que

Pr(|S| < |m/2] = 1) =Pr(X > [m/2] +1) < 2] 1 = 21 Pr(X > 2) < E[X]/A.

Sabemos que E[|S|] = m/2 pela demonstra¢do do Teorema 1. Logo,

m-—m/2 m
T [m/21+1 " m+2

g

Embora o limitante pareca fraco'®, podemos reduzir arbitrariamente a ~ *Note que ¢ — 1 quando
m — o0,
probabilidade de erro aplicando uma técnica conhecida como amplificacao.

Suponha que executemos k vezes o Algoritmo 1 de forma independente,
mantendo o maior corte obtido entre as execucdes. Mostraremos que essa

estratégia reduz exponencialmente a probabilidade de erro.

Algoritmo 2 (Maior corte aleatorio)

A funcdo MAIORCORTEALEATORIO recebe um grafo G e um inteiro k,
retornando o maior corte encontrado em k execug¢des independentes de

CORTEALEATORIO.

Entrada: Grafo G = (V, E), com n vértices e m arestas.

Saida: Um corte S C E tal que |S| > [m/2].

MaiorCorteAleatdrio (G,k)
1. S«

2. Para i=1 até k faga

3. S; < CORTEALEATORIO(G)
4. Se |S;| > |S| ent&o
5. S « Si

6. Retorne S

Lema 1. Dado um grafo G = (V, E) com m arestas, o Algoritmo 2 retorna um

corte corte S C E com |S| > |m/2]| com probabilidade de erro

k
££<L> .
m+2

Demonstragdo. Seja S; o corte obtido na i-ésima execu¢do de CORTEALEATO-

Rr1O. Pela independéncia das execucoes, segue que:
e = Pr(Sy] < lm/2] 0I5 < m/2]),

k
£ = HPr(lS,l < [m/ZJ),
i=1

k
ES(m)
m+2

g

Se escolhermos k > m, entdo, pelo Lema 1 e usando a desigualdade

1 —x < e ¥, obtemos:

2 \F 2
gS(l—) <e m2 >0,
m+ 2
quando m — oo.

Corolario 1. Para k > m, o Algoritmo 2 produz, com alta probabilidade, uma

0, 5-aproximagdo para o problema do CorRTE MAximo, em tempo O(k-(n+m)).

Em particular, k pode ser escolhido como uma funcao polinomial de m,

e o algoritmo resultante mantém-se polinomial.

Assim, a amplificacdo permite reduzir a probabilidade de erro arbitraria-
mente, ao custo de aumentar o tempo de execucdo. Para amplificar algorit-
mos de decisao, basta executar o algoritmo k vezes de forma independente
e retornar a resposta majoritaria. Em problemas de otimizacéo, é natural
executar o algoritmo diversas vezes e devolver a melhor solucdo obtida.
Em todos os casos, a amplificacdo baseia-se em argumentos probabilisticos

semelhantes, que levam ao seguinte resultado geral.

11

Teorema 3. Seja A um algoritmo Monte Carlo com probabilidade de erro
ea. Para qualquer ¢ tal que 0 < ¢ < ¢4, € possivel construir, por repeticoes
independentes de A, um novo algoritmo Monte Carlo B cuja probabilidade de

erro eg satisfaz eg < ¢.

Uma primeira ideia é investigar se a técnica de amplificacdo poderia
tornar o Algoritmo 2 capaz de resolver de forma 6tima o problema do
CoRrTE MAXIMO com alta probabilidade em tempo polinomial. Mostraremos,
contudo, que isso ndo é possivel sem hipdteses adicionais sobre o grafo de

entrada.

Teorema 4. Dado um grafo G = (V, E) com n vértices, o Algoritmo 1 resolve

o problema do COoRTE MAxiMO com probabilidade de erro

Demonstragdo. Existem 2"~ ! biparti¢des distintas de V, todas equiprovaveis.
A probabilidade de escolher uma biparti¢do que resulte em um corte maximo
é, portanto, pelo menos 1/2""1, uma vez que o grafo pode possuir um tinico

corte maximo. Logo,
1

s<1—2n_1.

O

Nao é dificil se convencer de que grafos bipartidos completos possuem
um tnico corte maximo, o que torna o limitante anterior justo!® nesses
casos. Assim, na auséncia de suposi¢des adicionais, ndo é possivel reduzir o

limitante superior do erro.
Analogamente ao Lema 1, segue que:

Teorema 5. Dado um grafo G = (V, E) com n vértices, o Algoritmo 2 resolve

o problema do COoRTE MAxiMO com probabilidade de erro
k
e< (1 -) .
on—1

Por uma argumentac¢io semelhante a do Corolario 1, verifica-se que,

para que ¢ — 0 quando m — oo, é necessario que k = w(2"), resultando em

um algoritmo exponencial.

Portanto, a principio, o Algoritmo 2 ndo pode ser utilizado para resolver

o problema do CorRTE MAxX1MO com alta probabilidade em tempo polinomial.

Algoritmos do tipo Monte Carlo desempenham um papel importante
no desenvolvimento de algoritmos eficientes para diversos problemas em
grafos e otimizagdo combinatéria. Em muitos casos, obtemos algoritmos

assintoticamente mais rapidos do que as solucdes deterministicas, ou ainda

12

16Um limitante é justo
quando vale com igualdade.

aproximacdes de alta qualidade para problemas computacionalmente difi-
ceis. Técnicas como amostragem aleato6ria e arredondamento probabilistico
de programas lineares sdo amplamente empregadas em problemas que en-

volvem cortes, emparelhamentos e fluxos em grafos [11,12,13,14].

2.1.2 Las Vegas

A seguir, apresentamos a defini¢do formal de um algoritmo do tipo Las
Vegas!”.

Definicao 2 (Algoritmo Las Vegas). Um algoritmo aleatorizado A é dito Las
Vegas se sempre produz uma resposta correta e se o seu tempo de execugdo em

uma instancia x do problema, denotado por To(x), é uma variavel aleatéria.

Dizemos que um algoritmo Las Vegas é eficiente se seu tempo de execu-

¢éo esperado é polinomial no tamanho da entrada.

Para exemplificar os conceitos apresentados, considere o problema do

ISOMORFISMO DE SUBGRAFOS18 :

ISOMORFISMO DE SUBGRAFOS

Dado um grafo G e um grafo H, determine se H é isomorfo a algum

subgrafo de G.

G H=CGCs HcG

Nos restringiremos a uma verséo especifica do problema: encontrar um
caminho simples de comprimento k — 1 em G, que é computacionalmente
dificil para k arbitrario, pois generaliza o problema do CaAMiNHO HaMILTO-
NIANO, que consiste em decidir se um grafo admite um caminho simples

que visita todos os seus vértices, problema ja demonstrado ser NP-completo
[17].

Para isso, usaremos uma técnica introduzida por Alon, Yuster e Zwick
[16], chamada de codificacdo por cores'®. O método consiste em colorir
aleatoriamente os vértices do grafo G usando k cores, a fim de encontrar

um caminho colorido de comprimento k — 1, isto é, um caminho em que

13

7A denominacio Las Vegas
foi introduzida por Babai
em 1979 [15] para caracte-
rizar algoritmos duais aos
Monte Carlo — dai o nome,
em alusdo a outra cidade
célebre por seus cassinos.
Na formulacéo original, um
algoritmo Las Vegas possui
tempo de execucdo finito e
falha aleatéria certificavel,
definicdo equivalente a for-
mulac¢io moderna adotada
neste trabalho: ao limitar o
tempo de execucdo obtém-
se uma versdo com falha
certificavel; reciprocamente,
ao reiniciar o algoritmo
apos falhas, recupera-se um
algoritmo sem erro, com
tempo de execucéo aleato-
rio.

80 problema do IsoMOR-
FISMO DE SUBGRAFOS ¢, em
geral, N"P-completo. Ainda
assim, admite algoritmos
polinomiais para algumas
classes de grafos [16].

Figura 2: Exemplo de
isomorfismo de subgrafo,
mostrando a identificacao
de um subgrafo H (em
preto) dentro de um grafo
G.

“Para além de encontrar
caminhos simples de com-
primento reduzido em gra-
fos, 0 método também pode
ser usado para lidar com
outras classes, como ciclos
e arvores.

cada vértice recebe uma cor distinta. Note que, por ser colorido, o caminho

encontrado é necessariamente simples.

Lema 2. SejaG = (V,E) um grafoec: V — {1,2,...,k} uma k-coloragio
escolhida uniformemente ao acaso. Entdo, qualquer caminho de comprimento

k—1 em G é um caminho colorido segundo ¢ com probabilidade k!/kE > ek,

Demonstragio. Ha kX coloracdes distintas possiveis para um caminho de
comprimento k — 1, das quais k! sdo coloridas. Logo, a probabilidade de um

caminho ser colorido segundo ¢ é k! /k¥. g

Agora apresentaremos um algoritmo deterministico de programacéio
dinadmica que, dada uma k-coloracéo dos vértices de G = (V, E) e um vértice
inicial s € V, identifica todos os vértices v € V \ {s} para os quais existe um
caminho colorido de comprimento k — 1 que comeca em s e termina em v.
Além disso, para cada vértice alcancéavel, é possivel reconstruir um caminho

colorido de comprimento k — 1 que o conecte a s.

Suponha que, no passo i, ja tenhamos determinado, para cada vértice
v € V \ {s}, todos os conjuntos de cores que podem aparecer em algum
caminho colorido de comprimento i—1 ligando s a v. Denotemos essa cole¢éo

— . (o k .
por Ci1. Observe que ela contém, no méximo, (i—l) conjuntos de cores.

Opcionalmente, para cada conjunto de cores C € C!, podemos arma-
zenar um caminho que o realize — 0 que nos permitira reconstruir caminhos
de comprimento k — 1 ao final do algoritmo. Entdo, denotamos por P! a
colecdo correspondente de caminhos e por P}1(C) o caminho associado ao

conjunto de cores C.

Examinamos entio cada conjunto C € C;"! e cada aresta {v,u} € E. Se

c(u) ¢ C, adicionamos o conjunto
C' =CuU{c(u)}

a colegdo C,,, correspondente aos caminhos coloridos de comprimento i
que terminam em u. Opcionalmente, se P = P"}(C) é o caminho colorido
associado a C, adicionamos o caminho estendido P-u a P}, como o caminho

que realiza C’.

Ao final do algoritmo, verificamos se G contém um caminho colorido de
comprimento k—1 segundo a coloracéo ¢ observando se alguma colecéo final
Ck=1 ¢ nao vazia para algum v € V \ {s}. Para recuperar um dos caminhos

que conecta s a tal vértice v, basta recuperar algum caminho P € PE-1,

Algoritmo 3 (Caminhos coloridos)

A fun¢do CAMINHOSCOLORIDOS recebe um grafo G, um inteiro k, uma

k-coloracdo dos vértices e um vértice s, e identifica todos os vértices

14

alcancaveis a partir de s por um caminho colorido de comprimento k —1.
Opcionalmente, também permite recuperar algum desses caminhos para

cada vértice alcancado.

Entrada: Grafo G = (V, E) com n vértices e m arestas, uma coloracio

c:V —=1{1,2,..,k} e um vértice inicial s € V.

Saida: O conjunto de vértices v € V \ {s} para os quais existe um
caminho colorido de comprimento k — 1 conectando s a v, e algum

caminho correspondente para cada um deles.

CaminhosColoridos(G,k,c,s)

1. Para cada vértice veV faga
2. Cy < {c()}

3. P {v}

4., Para i=1 até k—1 faga
5. Para cada vértice veV faga

6. CLPL« o

7. Para i=1 até k—1 faga

8. Para cada vértice veV faga

9. Para cada conjunto CEC{,_1 faga

10. P « PIYC)

11. Para cada aresta {v,u} € E faga
12. Se c(u) ¢ C entéo

13. C’ =Cu{c(u)}

14. C « CLu{C’}

15. PLC) < P-u

16. Retorne {V eV : C‘If_l * @}, {P c 73‘]5_1 CvEV, P‘],C_l + ®}

Note que o tempo de execucédo do Algoritmo 3 é dado por ZII;O i(’;)m =
O(k2km).

Para encontrar um caminho de comprimento k — 1 em G que inicie em
qualquer vértice, basta adicionar um novo vértice s’ em V, atribuir-lhe uma
nova cor insignificante e conecta-lo a todos os vértices de V. Nesse cenario,

buscamos um caminho colorido de comprimento k que comeca em s’.

Nao ¢é dificil de ver que o algoritmo pode ser adaptado para encontrar
ciclos de comprimento k: execute-o tomando cada vértice v € V como
vértice inicial. Em seguida, para cada par {u, v} conectado por um caminho
de comprimento k — 1, verifique se {u,v} € E. Em caso afirmativo, obtém-se

um ciclo de comprimento k. Observe que um resultado analogo ao Lema 2

15

aplica-se igualmente a ciclos. No trabalho original, Alon, Yuster e Zwick
[16] apresentam um algoritmo mais sofisticado, capaz de encontrar todos os

caminhos simples de comprimento k — 1 em G.

Assim, combinando os dois resultados anteriores, obtemos um algoritmo
aleatorizado Las Vegas que encontra um caminho de comprimento k — 1 em
G, caso exista: repetidamente colorimos o grafo aleatoriamente e tentamos

encontrar um caminho colorido de comprimento k — 1.

Algoritmo 4 (Caminho simples)

A funcdo CAMINHOSIMPLES recebe um grafo G e um inteiro k, e encontra
um caminho simples de comprimento k — 1 em G, caso exista. A fun-
¢do auxiliar INTEIROALEATORIO retorna um numero inteiro escolhido

uniformemente ao acaso no intervalo especificado.
Entrada: Grafo G = (V, E), com n vértices e m arestas.
Saida: Caminho simples P de comprimento k — 1, caso exista.
CaminhoSimples (G, k)
H=WVU{sLEu{{s,v} : veV}
Repita
c(s) <0

Para cada vértice veV faga

[y

c(v) < INTEIROALEATORIO([1,k])
S,P « CaminHosCoLoriDos(H,k + 1,c,s)
Se P # @ entéo

Retorne PP

o N o O b w N

Teorema 6. Dado um grafo G = (V, E) com m arestas, o Algoritmo 4 retorna

um caminho de comprimento k — 1, caso exista, em tempo de execugdo esperado
OCF K m /k).

Demonstragdo. Note que o algoritmo tem sucesso sempre que a coloragao
aleatoria dos vértices torna algum caminho de comprimento k — 1 colorido.

Uma vez fixada a coloracéo, a verificacdo é totalmente deterministica.

Seja K o nimero de coloracdes escolhidas ao acaso até que uma de-
las permita encontrar um caminho colorido desejado. Entéo, o tempo de

execuc¢io T(x) é dado por

T(x) = K - O(k2km).

Pelo Lema 2, sabemos que cada coloragio aleatéria é bem-sucedida

com probabilidade ao menos k!/ kK. Portanto, K é uma variavel aleatéria

16

geométrica com probabilidade de sucesso p = k!/ k¥, e assim

1Kk

Logo,
E[T(x)] = E[K] - O(k2km) = OQkkK+1m/k?).

O

Corolario 2. Para k = O(Ign), em quelgn = log, n, o Algoritmo 4 encontra

um caminho de comprimentok em G em tempo de execucdo esperado polinomial

— mais precisamente, O(n'18¢ flg nm).

E importante ressaltar que o Algoritmo 4 nio ¢é eficiente quando usado
para decidir se o grafo G contém um caminho de comprimento k — 1, mesmo
para k constante. Embora um certificado de SIM possa ser obtido em tempo
esperado Q25K 1 m/k!), o certificado de NAO requer a verificaciio de todas
as k" coloragdes possiveis de G, implicando tempo exponencial no tamanho

da entrada?.

Um questionamento interessante surge no estudo de algoritmos do tipo
Las Vegas. Considere um algoritmo Las Vegas que realiza decisoes alea-
torias incrementalmente, de forma que, a medida que a execugéo avanga,
seus passos dependem cada vez mais das escolhas aleatdrias anteriores. Se
observarmos que a execugdo estd consumindo um tempo significativamente
maior do que o esperado, poderiamos inferir que as escolhas aleatorias feitas
até entdo foram desfavoraveis e, nesse caso, reiniciar o algoritmo com uma
nova sequéncia de decisdes aleatorias. Sera que tal estratégia é capaz de

reduzir o tempo de execugdo esperado?

Formalmente, uma estratégia de reinicializa¢do para um algoritmo Las
Vegas A é uma sequéncia
S=(t1,ty,...),

em que A é executado por #; passos, interrompido e reiniciado. Em seguida,
é executado novamente por t, passos de forma independente, e assim su-
cessivamente. O processo termina assim que alguma dessas execugdes é

concluida com sucesso.

Denotamos por S(A) o algoritmo Las Vegas resultante da aplicagio de S
em A. Naturalmente, Tg4)(x) denota a varidvel aleatéria correspondente ao
tempo total de execucdo do algoritmo A na instincia x sob essa estratégia, e

E[Tg(4)(x)] denota seu tempo de execugio esperado.

Como exemplo ilustrativo, mostramos como uma estratégia particular-
mente simples ja é suficiente para reduzir significativamente a probabilidade

de cauda®! do tempo de execuciio de um algoritmo Las Vegas arbitrario, i.e., a

17

NExiste, entretanto, uma
forma de derandomizar o
algoritmo apresentado, isto
é, eliminar o uso de alea-
toriedade (veja Secéo 2.3),
com um acréscimo de ape-
nas um fator Ign no tempo
de execucio [16]. Essa de-
randomizagio substitui a
enumeragdo exponencial de
coloracdes por uma familia
deterministica de tamanho
29® 1g n, superando a limi-
tacdo mencionada.

2L A probabilidade de cauda
de uma variavel aleatéria X
é simplesmente a probabi-
lidade de que X exceda ou
fique abaixo de um limiar
de interesse A.

probabilidade de o algoritmo demorar muito tempo decai exponencialmente
[18]. Observe que, na auséncia de qualquer informacéo adicional sobre a
distribui¢do do tempo de execugdo, a desigualdade de Markov fornece o

melhor limitante geral disponivel para a probabilidade de cauda:

Pr(T4(x) > 1) < M.

Teorema 7. Dado um algoritmo Las Vegas A e uma instdncia x, seja y =

E[T4(x)]. A estratégia de reinicializagdo

S=@= 2.”)121 5

isto €, a estratégia que consiste em executar A por 2y passos e repetir esse
processo até obter sucesso, garante que a probabilidade de cauda do tempo de
execucdo satisfaz

Pr(Ts4)(x) > 1) < 2718/241,

Demonstragdo. Pela desigualdade de Markov, vale que

L

Pr(T4(x) > 2p) < 1
2p 2

Assim, cada execucdo limitada a 2 passos falha com probabilidade no
méaximo 1/2. Como as execugdes sdo independentes, a probabilidade de que

k € N execucdes consecutivas falhem é no maximo 27k,

Logo,
1
Pr(TS(A)(x) > k2p) < g,

ou, equivalentemente,
Pr(Ty(a)(x) > 1) < 271/20,

como desejado. O

De forma mais geral, podemos definir o tempo de execugio esperado

6timo de A, tomado sobre todas as estratégias de reinicializagio S, como
La(x) = iglf]E[Ts(A)(x)]-

Luby, Sinclair e Zuckerman [19] demonstraram a existéncia de uma

estratégia universal Sy,;, que, para todo algoritmo Las Vegas A, vale que

E[Ts . (4)(0)] = O(4(x) - Ig La(x)),

ou seja, a estratégia Sy,;, alcanca um tempo de execucdo esperado 6timo

18

entre todas as estratégias, a menos de um fator logaritmico. A demonstragéo

desse resultado foge ao escopo deste texto.

Diversos trabalhos posteriores aprofundaram o estudo de estratégias de
reinicializagio, abordando, por exemplo, estratégias 6timas no contexto de
multiplos processadores executando em paralelo [20], estratégias adaptativas
que se atualizam com base no comportamento de execucdes anteriores
[21], bem como o estudo de portfolios de algoritmos, nos quais diferentes
algoritmos randomizados sdo intercalados com o objetivo de reduzir o tempo

de execucéo esperado total [22].

Algoritmos do tipo Las Vegas sdo particularmente relevantes para pro-
blemas computacionalmente dificeis, especialmente em grafos e otimizacdo
combinatéria. Entre outras razdes, sua importancia decorre do fato de per-
mitirem a exploracdo do espaco de solucdes de forma aleatorizada, o que
frequentemente possibilita contornar o crescimento exponencial do con-
junto de solucdes candidatas sem comprometer a validade da resposta obtida.
Problemas que se enquadram nesse paradigma sdo conhecidos como proble-
mas de busca, isto é, aqueles que envolvem encontrar uma testemunha que
satisfaca determinadas condicOes — categoria que inclui muitos problemas
N'P-completos.

Considere, por exemplo, o procedimento de busca por backtracking alea-
torizada, no qual o algoritmo constréi incrementalmente uma solucéo parcial
e, quando se torna evidente que o caminho de solu¢éo atual nio é viavel
ou nédo conduz a uma solugdo 6tima, o procedimento retrocede e faz es-
colhas aleatdrias diferentes, explorando o espaco de solucdes de maneira
probabilistica até encontrar uma solucio satisfatoria. As questdes discutidas
anteriormente — estratégias de reinicializacio e reducéo da probabilidade
de cauda do tempo de execucdo — estdo diretamente ligadas a esse tipo de

abordagem e surgem com frequéncia nesse contexto [23].

2.1.3 Conversao entre algoritmos Monte Carlo e Las

Vegas

Uma propriedade interessante a respeito dos dois tipos de algoritmos
abordados anteriormente é que, sob determinadas condicdes, é possivel
converter um algoritmo eficiente de um tipo em outro. Formalizamos esses

resultados a seguir.

Teorema 8. Seja A um algoritmo Monte Carlo eficiente com probabilidade
de erro ¢ € (0,1) suficientemente pequena. Mais especificamente, ¢ < 1 —

1/ poly(n), em que n denota o tamanho da entrada. Se a validade da resposta

19

retornada por A pode ser verificada em tempo polinomial, entdo A pode ser

transformado em um algoritmo Las Vegas B eficiente.

Demonstragdo. Definimos B como o algoritmo que executa A repetidamente
até que a resposta retornada seja verificada como correta. Claramente B
produz apenas respostas corretas, e seu tempo de execucgao Tg(x) é uma
variavel aleatéria que depende da aleatoriedade de A. Portanto, B é um
algoritmo Las Vegas. Resta mostrar que seu tempo de execucéo esperado é

polinomial.

Seja p(n) um polindmio que limita o tempo de execu¢ido de uma chamada
de A seguida da verificacdo. Seja K a variavel aleatoria que conta quantas

repeti¢des de A sdo necessarias até obtermos uma resposta correta. Entéo,
Tp(x) = K - p(n).

Como cada execucdo tem probabilidade de sucesso 1 — ¢, a variavel K é

geométrica com probabilidade de sucesso p = 1 —¢. Logo,

Pela hipotese, existe um polindmio g(n) tal que

1
e<1l———.
q(n)
Logo,
1—e> 1 — E[K]= —— < qn).
q(n) 1-e
Portanto,
E[Tp(x)] = E[K] - p(n) < gq(n) - p(n),
que é polinomial em n. Assim, B é um algoritmo Las Vegas eficiente. =~ [J

Para ilustrar o resultado, considere o Algoritmo 1. A validade da resposta
pode ser verificada em O(1): basta comparar o tamanho do corte gerado
com |m/2]. Aplicando o Teorema 8, obtemos um algoritmo Las Vegas que
sempre retorna um corte de tamanho pelo menos |m/2] e cujo tempo de

execuc¢io esperado é O(m - (n + m)).

Teorema 9. Seja A um algoritmo Las Vegas eficiente. Entdo, A pode ser
transformado em um algoritmo Monte Carlo B eficiente, com probabilidade de

erro arbitrariamente pequena.

Demonstragao. Escolhemos uma fungéo t = t(n) polinomial em n, o tamanho
da entrada, e definimos B como o algoritmo que executa A por no maximo

t passos: caso A ndo termine nesse limite, B é interrompido e retorna um

20

resultado de Erro.

Como B sempre executa no maximo t passos, e escolhemos t polinomial
em n, segue que B é um algoritmo Monte Carlo eficiente. Resta entéo estimar

sua probabilidade de erro ¢ € (0, 1).

Note que
£ =Pr(Ty(x) >1t).

Aplicando a desigualdade de Markov, temos

E[T4(x
£ =Pr(Ty(x) >1) <Pr(Ta(x) >1t) < w.
Como A é um algoritmo Las Vegas eficiente, o tempo de execucéo espe-

rado E[T4(x)] é polinomial em n. Portanto, podemos escolher ¢ arbitraria-

mente grande — desde que ainda polinomial — de modo que ¢ > E[T4(x)].

Com essa escolha, vale que

JEL@I

t

quando n — oo, 0 que garante que B retorne a resposta correta com alta

probabilidade e execute em tempo polinomial. g

Para ilustrar o resultado, considere o Algoritmo 4. Suponha que sejam
testadas exatamente k¥ coloracdes. Nesse caso, temos t = Ok K+ m).
Aplicando o Teorema 9, obtemos um algoritmo Monte Carlo que encontra o
caminho desejado em tempo de execuciio deterministico O(25k+1m), cuja
probabilidade de erro, isto é, de ndo encontrar o caminho mesmo quando

ele existe, ¢ no maximo 1/k!.

2.2 Modelo computacional e classes de

complexidade

Agora formalizaremos o modelo computacional probabilistico, permi-
tindo generalizar naturalmente as classes de complexidade convencionais e

incorporar as ferramentas aleatorizadas apresentadas.

Seguindo a abordagem usual, adotamos o modelo de maquina de Tu-
ring, estendido ao contexto aleatorizado pela noc¢do de maquina de Turing

probabilistica.

Definiciao 3 (Maquina de Turing probabilistica). Uma maquina de Turing

probabilistica M é uma maquina de Turing com duas fungdes de transicdo, &, e
1, tal que, a cada passo da computagdo, uma delas é selecionada uniformemente

ao acaso, independentemente das escolhas anteriores.

O objetivo desta secéo é investigar o poder computacional desse tipo de

maquina de Turing,.

Observe que, em uma execucio de uma maquina de Turing probabilistica
com ¢ passos, existem 2! ramos possiveis de execuciio, cada um escolhido com
probabilidade 1/2!. Assim, para uma entrada x, a probabilidade Pr[M(x) =
1] corresponde simplesmente a fracdo dos ramos de execucdo nos quais a

maquina M termina retornando 1.

Primeiramente, a fim de demonstrar a generalidade do modelo, mostra-
remos — de forma analoga ao resultado que trata da simulacdo de maquinas
de Turing com alfabetos maiores que o binario — que a suposigéo feita na
introducdo da Secdo 2 é justificada. Em particular, provaremos que o acesso
apenas a bits aleatorios é suficiente para simular, em tempo eficiente, uma
distribui¢do uniforme sobre o conjunto {1,...,n}. Assim, o modelo RAM
estendido descrito anteriormente é equivalente, a menos de fatores polino-

miais, ao modelo de maquina de Turing probabilistica.

Teorema 10. Dada uma fonte de bits aleatorios cujo custo de obtengdo é unita-
rio e um inteiron € N, é possivel simular eficientemente a amostragem de um
inteiro aleatorio uniformemente distribuido em {1,...,n}. Mais precisamente,
para todon € N e todo ¢ > 0, existe um algoritmo aleatorizado que executa
em tempo O(1g(1/¢) - 1gn) e retorna um inteiro escolhido uniformemente ao

acaso no intervalo desejado com probabilidade ao menos 1 — ¢.

Demonstragdo. Considere o seguinte algoritmo A. Sorteamos [lgn] bits
aleatdrios, obtendo um inteiro r uniformemente distribuido no intervalo
{0, ..., ollgnl _ 1}. Se r < n, retornamos r + 1. De fato, como r é uniforme
em {0, ..., ollgnl _ 1}, a distribuicdo de r + 1 condicionada ao eventor < n é
uniforme em {1, ..., n}, como gostariamos. Caso contrario, se r > n, dizemos

que a execugio falhou.

Para n = 2, o algoritmo ¢é trivialmente correto. Suponha entdo n > 3.
Como
ollgnl=1 < < oflgn] _ 1,

o nimero de valores de r tais que r > n é no maximo n/2.

Logo, a probabilidade de falha de uma tinica execugao de A é estritamente

menor que 1/2.

Considere agora o procedimento Ag, que repete o algoritmo A indepen-

dentemente por k = [lg(1/¢)] vezes, interrompendo assim que uma execuc¢io

22

é bem-sucedida. A probabilidade de que todas as k execucdes falhem é entéo

k
Pr(Ay falhar) = H Pr(i-ésima execucio de A falhar) < 27 < ¢.
i=1

Evidentemente, o tempo total de execucio de A é O(lg(1/¢)-1gn), como

queriamos. g

Definimos entdo a classe de complexidade BPP, analoga a classe P,
com o objetivo de capturar a no¢io de computacéo probabilistica eficiente

com erro limitado.

Definicao 4 (BPP). A classe BPP (bounded-error probabilistic polynomial-
time) consiste no conjunto das linguagens L C {0, 1}* para as quais existe um
algoritmo aleatorizado A que executa em tempo polinomial tal que, para toda
entrada x € {0, 1}",

« x € L = Pr(A(x) aceita) > 2/3;
« x¢& L = Pr(A(x) aceita) < 1/3.

Como visto na Secéo 2.1, a técnica de amplificacdo permite reduzir expo-
nencialmente a probabilidade de erro de um algoritmo aleatorizado por meio
de um nimero apenas polinomial de repeticdes independentes, desde que a
probabilidade de erro inicial seja pequena o suficiente. Consequentemente,
o limitante de erro 1/3 adotado na defini¢cio de BPP torna-se arbitrario:
poderiamos, por exemplo, troca-lo por uma margem do tipo 1/2—1/ poly(n)

sem impactar significativamente a definicio da classe®?.

Note que a classe tem profunda relacido com algoritmos Monte Carlo

com erro bilateral suficientemente pequeno.

Como as maquinas de Turing deterministicas constituem um caso par-
ticular de maquinas de Turing probabilisticas, obtemos imediatamente o

resultado a seguir.
Proposicao 1. P C BPP.

Utilizando técnicas triviais de derandomizacéo, que serdo apresentadas
posteriormente (veja Teorema 12), obtemos também o resultado abaixo de

forma direta.
Proposicao 2. BPP C EXP.

Convém ainda introduzir outras classes de complexidade associadas a

algoritmos Monte Carlo com erro unilateral suficientemente pequeno.

Definicio 5 (RP). A classe RP (randomized polynomial-time) consiste

no conjunto das linguagens L C {0,1}" para as quais existe um algoritmo

23

2A classe PP (probabilistic
polynomial-time) corres-
ponde ao caso limitrofe em
que entradas pertencentes
a L sdo aceitas com proba-
bilidade estritamente maior
que 1/2, enquanto entradas
fora de L sdo aceitas com
probabilidade no méaximo
1/2. Essa classe nio consti-
tui um modelo razoavel de
computacéo probabilistica
eficiente, pois a amplifica-
¢do pode exigir um nimero
exponencial de repeticdes
independentes, uma vez
que ndo ha garantia de que
a probabilidade de acerto
seja suficientemente maior
que 1/2.

aleatorizado A que executa em tempo polinomial tal que, para toda entrada
x €{0,1}",

« x € L = Pr(A(x) aceita) > 1/2;
e x ¢ L = Pr(A(x) aceita) = 0.

Novamente, pelos mesmos argumentos discutidos anteriormente, a esco-
lha do limitante 1/2 para a probabilidade de erro é essencialmente arbitraria:
qualquer constante § € (0, 1), ou mesmo 1 — 1/ poly(n), levaria a mesma

classe de linguagens por meio da técnica de amplificacio.

A classe co-R'P é definida de maneira analoga a classe R'P, consistindo
das linguagens que admitem algoritmos aleatorizados de tempo polinomial

que podem errar apenas quando x & L.

Note que o seguinte resultado decorre naturalmente das defini¢des das

classes.
Proposicao 3. RP C BPP eco-RP C BPP.

Observando que em RP (resp. co-R'P) toda computagao que aceita (resp.
rejeita) fornece um certificado de que a entrada pertence a linguagem (resp.
ndo pertence), ou, de forma equivalente, que a sequéncia de bits aleatorios
utilizada — de tamanho polinomial - pode ser usada como testemunha,

obtemos imediatamente o seguinte resultado.
Proposi¢ao 4. RP C NP e co-RP C co-NP.

Por fim, introduzimos a classe de complexidade associada a algoritmos

do tipo Las Vegas.

Definicao 6 (ZPP). A classe ZPP (zero-error probabilistic polynomial-
time) consiste no conjunto das linguagens L C {0, 1}* para as quais existe um
algoritmo aleatorizado A que decide corretamente a linguagem L e cujo tempo

de execugao esperado é polinomial.
Note que trivialmente também vale o resultado abaixo.
Proposicao 5. P C ZPP.

Demonstramos entdo um resultado fundamental a respeito da classe
ZPP.

Teorema 11. ZPP = RP N co-RP.

Demonstragdo. Comecamos mostrando que ZPP C RP N co-RP. Seja
L € ZPP. Entio, existe um algoritmo A que decide L corretamente e

satisfaz
E[T4(x)] < p(n),

para algum polinémio p.

24

Pela desigualdade de Markov,

Pr(Ta(x) > 2p(n)) <

N | =

Definimos entdo um algoritmo B que executa A por no maximo 2p(n)
passos: se A termina dentro desse limite, B devolve sua resposta. Caso

contrario, B rejeita. Assim,

« x € L = Pr(B(x) aceita) = Pr(Ts(x) < 2p(n)) > 1/2;
« x ¢ L = Pr(B(x) aceita) = 0.

Logo, L € RP. Um argumento analogo, agora aceitando quando o limite

de tempo é excedido, mostra que L € co-RP. Portanto,

ZPP CRPNco-RP.

Por fim, mostraremos que RP N co-RP C ZPP.

Seja L € R'P N co-RP. Entio, existe um algoritmo A tal que, para toda

entrada x:

e x € L = Pr(A(x) aceita) > 1/2;
« x ¢ L = Pr(A(x) aceita) = 0.

Além disso, existe um algoritmo B tal que, para toda entrada x:

« x € L = Pr(B(x) aceita) = 1;
« x & L = Pr(B(x) aceita) < 1/2.

Construimos um algoritmo C que executa A e B de forma intercalada,
repetindo suas execu¢des de maneira independente. O algoritmo C aceita
a entrada x assim que A aceita e rejeita x assim que B rejeita. Note que C

sempre decide corretamente a linguagem L:

« x € L = Pr(C(x) rejeita x) = Pr(B(x) rejeita x) = 0;
e x & L = Pr(C(x) aceita x) = Pr(A(x) aceita x) = 0.

Resta analisar o tempo de execucéo esperado de C. Seja K4 (resp. Kp) a
variavel aleatoria que denota o nimero de execucdes de A (resp. B) até que
uma decisdo definitiva seja obtida. Como cada execucédo tem probabilidade

de sucesso ao menos 1/2, K4 e Kp sdo variaveis geométricas com

]E[KA] <2 € E[KB] <2

25

26

O tempo total de execugio satisfaz

Te(x) = Ky - Ta(x) + Kp - Tp(x).

Pela linearidade da esperanca,

E[Tc(x)] = E[K4] - Ta(x) + E[Kp] - Tp(x) < 2(T4(x) + Tp(x)).

Como T4(x) e Tg(x) sdo polinomiais, segue que E[T-(x)] é limitado por

um polinémio.

Concluimos que L € ZPP, e portanto

RP Nco-RP C ZPP.

Os dois resultados completam a prova. g
Corolario 3. ZPP C BPP.

Dessa forma, ilustramos as seguintes relacdes entre as classes de com-

plexidade discutidas:

BPP

Figura 3: Relacéo entre
algumas das classes de
complexidade
computacional
probabilistica. As inclusdes
podem néo ser estritas.

Apesar desses resultados, muitas relagdes entre classes probabilisticas
permanecem em aberto. Encerramos a se¢do enunciando uma das questoes

mais fundamentais da teoria da complexidade computacional probabilistica.
Conjectura 1. BPP = P.

O interesse por essa questdo é natural, pois demonstrar que BPP =P
levaria a uma conclusio extremamente forte: a aleatoriedade ndo confere
poder computacional adicional, isto é, ndo torna trataveis problemas que ja

n#o sejam trataveis por maquinas deterministicas.

Embora a Conjectura 1 possa parecer contraintuitiva a primeira vista,
na Secdo 2.3 apresentaremos argumentos que sustentam a possibilidade de
que ela seja verdadeira — de fato, muitos especialistas acreditam que esse
seja o caso [5]. Essa crenca baseia-se na expectativa de que todo algoritmo
probabilistico eficiente possa ser derandomizado, isto é, convertido em um

algoritmo deterministico equivalente, com apenas uma sobrecarga polino-

mial. Discutiremos esse tema em detalhe na Secdo 2.3, onde buscaremos

esclarecer por que essa conjectura é plausivel.

2.3 Pseudoaleatoriedade e derandomizacao

Como vimos na introdug¢io da Sec¢éo 2, algoritmos aleatorizados ne-
cessitam de bits aleatdrios, independentes e imparciais para funcionarem
corretamente. Naturalmente, nos perguntamos entdo como poderiamos
obter tais bits, e, mais importante ainda, se é possivel remover, total ou

parcialmente, a necessidade de bits aleatdrios nesses algoritmos.

Deve ficar claro que, ao longo desta secéo, ao nos referirmos a um algo-
ritmo aleatorizado, salvo mencéo em contrario, estaremos tratando de um
algoritmo aleatorizado eficiente, com probabilidade de erro razoavelmente
pequena, ou seja, o problema decidido pelo algoritmo pertencente a BPP,

pois constitui o foco principal de nosso estudo.

Apresentamos inicialmente uma forma trivial de derandomizar um algo-
ritmo aleatorizado, isto é, construir um algoritmo equivalente que néo utilize
aleatoriedade — e que, portanto, seja deterministico — a custa de alguma
sobrecarga no tempo de execucdo. Observe que, como o algoritmo obtido é
deterministico, ndo ha mais probabilidade associada a validade da resposta:
o algoritmo estara sempre correto?. A técnica a seguir é conhecida como

enumeragd024.

Teorema 12. Seja A um algoritmo aleatorizado que utiliza d bits aleatorios e

cuja probabilidade de erro é e < 1/2.

Entdo, existe um algoritmo deterministico B equivalente a A, que sempre

retorna a resposta correta, com tempo de execucdo
d
Tg(x) = 2% - Ta(x),

para qualquer entrada x.

Demonstragdo. Observe que o numero de sequéncias possiveis de bits alea-

torios de A é finito e igual a 24,

Construimos entéo o algoritmo deterministico B da seguinte forma: para
uma entrada x, B simula A(x) com todas as 2% sequéncias possiveis de bits
aleatorios. Como a probabilidade de erro de A é ¢ < 1/2, por definicao,
a maioria dessas sequéncias produz a saida correta. Portanto, B retorna a

saida que aparece com maior frequéncia. Dessa forma, B sempre fornece a

27

B Alternativamente, no caso
de algoritmos de otimiza-
¢do, produzira sempre uma
solucdo que satisfaz as ga-
rantias de qualidade do
algoritmo original, e assim
por diante.

Apresentamos a enume-
ragdo de algoritmos para
problemas de decisdo, mas
argumentos semelhantes se
aplicam a algoritmos para
outros tipos de problemas,
como problemas de otimiza-
cao.

resposta correta.

Cada simulacio de A leva tempo T4(x), e como existem od sequéncias, a

complexidade total de B é dada por
Tp(x) = 2 - To(x).

O

Note que, em geral, essa técnica é inviavel, pois implica uma sobrecarga
exponencial no tempo de execugdo. Entretanto, quando o algoritmo uti-
liza poucos bits aleatérios, essa abordagem simples passa a ser aplicavel,

resultando no corolério a seguir.

Corolario 4. Seja A um algoritmo aleatorizado que utilizad = O(lgn) bits

aleatorios em entradas de tamanho n, com probabilidade de erro e < 1/2.

Entdo, existe um algoritmo deterministico B equivalente a A, que sempre

retorna a resposta correta, com tempo de execu¢ao
Tp(x) = 2008M . Ty (x) = O(M)Tx(x),

para qualquer entrada x de tamanho n.

Dessa forma, a derandomizag¢io de qualquer algoritmo aleatorizado pode-
ria ser alcancada demonstrando que o niimero de bits aleatorios necessarios
sempre pode ser reduzido a O(lgn). Aqui, o conceito de pseudoaleatoriedade
se torna particularmente relevante. Porém, antes de introduzi-lo formal-
mente, é necessario compreender melhor o que se entende por aleatoriedade

computacional e como ela é obtida.

E essencial esclarecer que, na teoria da aleatoriedade computacional,
a aleatoriedade — ou, mais precisamente, a imprevisibilidade — nio é con-
siderada uma propriedade intrinseca de um fenémeno, mas sim uma ca-
racteristica que depende do observador?. Portanto, se nio somos capazes
de distinguir um processo genuinamente aleatério de um processo deter-
ministico complexo, ambos sdo considerados aleatorios do ponto de vista

computacional [5].

Dessa forma, para obter bits verdadeiramente aleatorios — isto é, bits
independentes, imparciais e distribuidos uniformemente — é necessario
recorrer a fendmenos imprevisiveis, o que normalmente significa explorar
atributos do ambiente que sdo praticamente impossiveis de modelar com
precisdo, como o clima, o decaimento radioativo, dados extraidos do proprio

hardware do computador, entre outros®.

Naturalmente, algumas fontes de aleatoriedade sdo mais robustas e con-

7

fiaveis do que outras®’, e o processo de obtencio de bits verdadeiramente

28

%De fato, até onde sabemos,
o universo pode ser comple-
tamente deterministico, de
modo que a chamada alea-
toriedade verdadeira sequer
possa existir.

%Na pratica, essas fontes
de aleatoriedade frequente-
mente apresentam vieses

e correlacdes indesejaveis,
sendo denominadas fontes
fracas de aleatoriedade. Para
lidar com esse problema,
utilizam-se extratores, algo-
ritmos deterministicos ca-
pazes de extrair bits quase
uniformes — mais precisa-
mente, estatisticamente
proximos da distribuigao
uniforme - a partir de fon-
tes enviesadas e correla-
cionadas, produzindo bits
adequados para aplicacoes
praticas [5].

“TEsse aspecto ¢ particu-
larmente relevante em
criptografia, pois a “quali-
dade” da aleatoriedade esta
diretamente relacionada

a seguranca do processo
criptografico [5].

aleatdrios torna-se, em geral, custoso. Surge, entdo, novamente, o ques-
tionamento de se é possivel economizar a quantidade necessaria de bits
verdadeiramente aleatdrios para que um algoritmo aleatorizado funcione
corretamente. Observe que, se essa economia for suficientemente grande,
torna-se possivel até mesmo derandomizar completamente o algoritmo,

conforme mencionado anteriormente como consequéncia do Corolario 4.

E aqui que a observacio anterior se torna fundamental: se a aleatorie-
dade de um objeto depende do observador, talvez seja possivel “enganar” um
algoritmo fornecendo-lhe bits que néo sido verdadeiramente aleatorios, mas
que se assemelham o suficiente a distribuicdo uniforme de forma que o algo-
ritmo néo consiga distingui-los em tempo computacionalmente viavel. Nesse
caso, o algoritmo continuaria a funcionar com uma probabilidade de sucesso
semelhante a original, mesmo sem utilizar aleatoriedade perfeita. Formal-
mente, essa intuicdo significa exigir que nenhuma computacio eficiente
consiga distinguir entre bits verdadeiramente aleatdrios e bits produzidos

por um determinado processo deterministico.
Isso motiva o conceito de distribuicoes indistinguiveis.

Definicao 7 (Distribuicoes e-indistinguiveis). Sejam {X, },en € {Ynlen duas

sequéncias de distribuicoes, com X,,, Y, distribuidas sobre {0, 1}".

Dizemos que { X, }nenN € {Ynlnew sdo computacionalmente e-indistinguiveis
se, para todo algoritmo aleatorizado polinomial A e para n suficientemente

grande, vale que
| PrlA(X,) = 1] = Pr[A(Y,) = 1] < &(n),

em que £(n) é uma funcao negligenciavel em n (i.e., decresce mais rapido que o
inverso de qualquer polinémio em n) e a probabilidade é tomada sobre X,,, Y, e

as decisoes aleatorias de A.

Em outras palavras, nenhuma computacio eficiente — nem mesmo alea-

torizada — consegue distinguir X,, de Y;, com vantagem néo negligenciavel.

Portanto, qualquer algoritmo aleatdrio eficiente mantém seu desempe-
nho probabilistico mesmo quando suas escolhas internas, originalmente ale-
atorias, sdo substituidas por uma sequéncia pseudoaleatdria e-indistinguivel

de Uy, a distribuigao uniforme sobre {0, 1.

Nosso objetivo, entéo, é construir de forma deterministica uma distri-
buicdo pseudoaleatoéria D sobre d bits que seja e-indistinguivel de Uy. Para
minimizar o uso de bits verdadeiramente aleatérios, idealmente gostariamos
que D pudesse ser gerada sem nenhum bit aleatério, permitindo uma simula-
cdo deterministica direta de qualquer algoritmo aleatorizado. Contudo, isso

é claramente impossivel, pois a aleatoriedade nio pode ser gerada de forma

29

puramente deterministica. Portanto, em vez disso, buscamos construir D a
partir de um nimero significativamente menor de bits aleatérios, digamos

k « d, por meio de um gerador pseudoaleatorio.

Definicao 8 (Gerador pseudoaleatorio). Uma fungdo deterministica
G: {0, 1} - {o,3'®

é chamada de e-gerador pseudoaleatorio se G(Uy) € e-indistinguivel de Uy

Em outras palavras, um gerador pseudoaleatdrio é capaz de “esticar”
uma sequéncia curta de k bits aleatérios em uma sequéncia maior de £(k)
bits que, do ponto de vista de qualquer algoritmo eficiente, é praticamente
indistinguivel de uma sequéncia verdadeiramente aleatdria de £(k) bits. Note

que é trivial construir um gerador pseudoaleatorio para £(k) < k.

Observe que, se nosso objetivo final é uma simulacéo totalmente deter-
ministica de um algoritmo aleatorizado, ndo podemos, de fato, utilizar k bits
aleatorios para gerar D. No entanto, explorando ideias semelhantes as do
Teorema 12, podemos contornar essa limitagdo por meio de uma abordagem

por enumeragao.

Dado um algoritmo aleatorizado A que utiliza d bits aleatdrios, um ge-
rador pseudoaleatério G : {0, JRLN {0, 1}€(k) com £(k) = d, e uma entrada x,
enumeramos todas as sequéncias possiveis s € {0, l}k . Para cada uma delas,
computamos r = G(s) e executamos o algoritmo A em x utilizando r como
sua fonte de aleatoriedade. Apos obter os 2k resultados correspondentes, to-
mamos o resultado majoritario e o declaramos como resposta para a entrada
x. Note que esse procedimento deterministico fornece sempre a resposta

correta para toda entrada x.

Se k for suficientemente pequeno — por exemplo, k = O(lgn), de modo
que 25 = O(n), em que n denota o tamanho da entrada - e se o gerador G
puder ser computado eficientemente, a sobrecarga total sera apenas polino-
mial. Assim, obtemos uma simulac¢do deterministica em tempo polinomial

do algoritmo aleatorizado, como desejado.

Perceba como a viabilidade do processo descrito implica diretamente a
Conjectura 1. Infelizmente, ainda ndo conseguimos demonstrar a existéncia
de geradores pseudoaleatodrios suficientemente bons, isto é, que satisfacam
todas as condicdes acima, mas, sem entrar em detalhes, ha fortes evidéncias
e uma ampla crenga na comunidade de que tais geradores existem [5]. E

nesse contexto que se fundamenta a Conjectura 1.

Existem outras técnicas para derandomizar algoritmos aleatorizados,
embora todas apresentem limitacoes intrinsecas. A seguir, apresentamos

algumas dessas abordagens.

Uma maneira ndo construtiva de derandomizar algoritmos pode ser

obtida por meio do método probabilistico:

Teorema 13. Seja A um algoritmo aleatorizado que utiliza d = d(n) bits
aleatérios e cuja probabilidade de erro é ¢ < 27", em que n denota o tamanho
da entrada. Entdo, para todo n, existe uma sequéncia de bitsr;, € {0, 1}d tal

que A,+(x) retorna a resposta correta para toda entrada x de tamanho n.
n

Demonstragdo. Para simplificar o argumento, sem perda de generalidade,
representamos uma entrada x de tamanho n em binério, ie., x € {0, 1}".
Denotamos por A,(x) o resultado da execucdo de A na entrada x quando

r € {0,1} é usada como sua sequéncia de aleatoriedade.

Considere entdo uma sequéncia de bits R € {0, 1} escolhida uniforme-

mente ao acaso. Segue que

Pr(3x € {0,1}* : Ag(x) incorreto) < Z Pr (Ag(x) incorreto)
x€{0,1}"

Pr(dx € {0,1}* : Ag(x) incorreto) < 2"-27" =

Como a probabilidade de falha é estritamente menor que 1, existe pelo
menos uma sequéncia r;’ € {0, 1}¢ que funciona corretamente para todas as

entradas x de tamanho n. O

Note que, uma vez conhecida a sequéncia r,;, computar A utilizando r;
como sequéncia aleatoria pode ser feito em tempo polinomial. No entanto,
como a demonstracio é nio construtiva, ndo é imediato saber como obter

ry de forma eficiente.

Vale ressaltar que, por amplificacio, a probabilidade de erro de qualquer
algoritmo aleatorizado pode ser reduzida, em tempo polinomial, para um
valor menor que 27". Dessa forma, o Teorema 13 é sempre aplicavel aos

algoritmos de interesse.

31

3 Analise probabilistica de algoritmos

Se a aleatoriedade provavelmente ndo é capaz de aumentar o poder
computacional de algoritmos, entio precisamos usa-la de outra forma para

tratar problemas dificeis.

Outra estratégia — um pouco mais radical — para introduzir aleatoriedade

¢ substituir a analise de pior caso por uma andlise probabilistica de algorit-
0s?®. Em vez de exigir eficiéncia em todas as entradas — algo irrealista para
problemas dificeis — buscamos algoritmos que sejam “tipicamente” eficien-
tes. Ha boas razdes para considerar essa mudanca de perspectiva. A analise
de algoritmos busca, afinal, avaliar o desempenho dessas ferramentas na
resolucdo de problemas, fornecendo um modelo no qual algoritmos distintos
podem ser comparados. Nesse sentido, a analise de pior caso fornece, de
fato, a melhor garantia possivel de eficiéncia. No entanto, quando resulta em
uma estimativa negativa, tal resultado pode ser excessivamente pessimista
para aplicagdes praticas. Note que, nesse paradigma, uma tnica instancia
problematica ja é suficiente para que um algoritmo seja classificado como

exponencial.

Mas e se conseguissemos projetar um algoritmo para um problema dificil
que, em média, executasse em tempo polinomial? Ou, ainda, se consideras-
semos as instancias de pior caso, mas as perturbassemos levemente de forma
aleatéria, eliminando estruturas patologicas raras?’? Talvez isso bastasse
para assegurar que tais algoritmos sdo suficientemente praticos, justificando

seu uso em aplicacdes reais em detrimento de outras alternativas.

Embora o termo analise probabilistica de algoritmos seja frequentemente
usado para se referir apenas a analise de caso médio, neste trabalho adotamos
um sentido mais amplo, incluindo qualquer tipo de analise de algoritmos

que envolva aleatoriedade nas instancias.

Nesta secdo, investigaremos como esse paradigma pode oferecer resulta-
dos menos pessimistas sobre a tratabilidade desses problemas computacio-
nalmente dificeis. Naturalmente, tal paradigma de anélise pressupde algum
tipo de aleatoriedade na geracdo das instincias sobre as quais o desem-
penho do algoritmo ser4 avaliado. Por simplicidade, analisaremos apenas
algoritmos deterministicos, de modo que a unica fonte de aleatoriedade pro-
venha da escolha das instancias. Contudo, as defini¢des e os resultados aqui

apresentados estendem-se naturalmente também a algoritmos aleatorizados.

No contexto de grafos, instancias médias correspondem a grafos gerados
aleatoriamente. Na Secéo 3.1 introduziremos o modelo de grafo aleatério

frequentemente estudado, bem como algumas terminologias e resultados

32

%0Observe que os resultados
sobre a dificuldade e a in-
tratabilidade de problemas
computacionais geralmente
pressupdem uma analise
de pior caso. Dizemos que
provavelmente néo exis-
tem algoritmos polinomiais
para resolver problemas
N'P-dificeis no sentido de
que nao ha algoritmo capaz
de resolvé-los em tempo
polinomial para todas as
instancias, isto é, adotando
explicitamente o critério de
pior caso.

¥Embora, & primeira vista,

esse possa parecer um mo-

delo arbitrario de instancias,
sua utilidade préatica se tor-
nara clara na Seg¢éo 3.3.

bésicos.

Posteriormente, nas Sec¢des 3.2 e 3.3, apresentaremos dois paradigmas
distintos de anélise probabilistica de algoritmos: a analise de caso médio e
a analise suavizada, respectivamente. No primeiro, a complexidade de um
algoritmo é definida como o tempo médio de execugio, assumindo que as
instancias sdo amostradas segundo uma dada distribuicdo de probabilidade.
No segundo, considera-se o pior caso entre os tempos médios resultantes de

pequenas perturbacdes aleatdrias das instancias.

3.1 Grafos aleatdrios

Grafos definidos segundo modelos probabilisticos sdo denominados gra-
fos aleatérios®®. Em modelos classicos de grafos aleatérios, dado um niimero
fixo de vértices n, construimos um grafo aleatdrio G selecionando aleatoria-
mente quais arestas estardo presentes no grafo. O modo como sorteamos
essas arestas define diferentes constru¢des de grafos aleatorios. Dentre os
diversos modelos propostos e estudados ao longo do tempo, um se destaca

por sua relevancia: o modelo de Erd6s—Rényi, denotado por G(n, p) [24].

Nesse modelo, define-se um espaco de probabilidade G(n, p) sobre todos
os grafos com n vértices. Em um grafo aleatério G ~ G(n, p), cada aresta
é incluida de forma independente com probabilidade 0 < p < 1. Por
conveniéncia, G(n, p) é definido sobre grafos rotulados, isto é, os n vértices
recebem rétulos em {1, 2, ..., n}, e grafos com rotulagdes distintas sdo tratados
como objetos distintos, ainda que sejam isomorfos, pois isso simplifica

significativamente os calculos realizados’!.

Em particular, a probabilidade de um dado grafo H ser sorteado nesse

modelo é dada por
Pr(G = H) = p?(1 - p)(’;)—e(H),

em que e(H) representa o nimero de arestas de H.

Observe que, para p = 1/2, todos os grafos com n vértices sio equiprova-
veis, de modo que G(n, 1/2) induz a distribui¢do uniforme sobre o conjunto

de grafos rotulados.

Em geral, p é uma fungio de n, isto é, p = p(n). Consideramos, entéo,
uma sequéncia de espacos de probabilidade, um para cada n € IN, formada
por todos os grafos com exatamente n vértices. Nosso interesse recai sobre

as propriedades assintoticas desses espagos quando n — oo.

33

%0A teoria dos grafos aleaté-
rios foi fundamentada por
Erdés e Rényi no final da
década de 1950, apds Erdés
perceber, a partir de resul-
tados obtidos alguns anos
antes, que métodos proba-
bilisticos eram frequente-
mente Gteis na resolucio
de problemas extremais em
teoria dos grafos [24].

*IDeve ficar claro que essa
distin¢do é, em grande me-
dida, irrelevante: em geral,
as propriedades estudadas
sdo invariantes por isomor-
fismo, além de que grafos
rotulados constituem um
modelo natural para en-
tradas de algoritmos. Do
ponto de vista assintético,
a rotulagio nio introduz
novos fendmenos e apenas
traz uma complexidade
técnica residual. Uma dis-
cussdo mais detalhada a
respeito desse tema pode
ser encontrada em [24].

Dizemos que um grafo aleatério possui uma propriedade P com alta
probabilidade se a probabilidade de que um grafo com n vértices tenha P
tende a 1 a medida que n — co. Equivalentemente, afirmamos que quase

todo grafo satisfaz a propriedade P.

Como um exercicio ilustrativo, analisaremos para quais valores de p
um grafo aleatério contém ou nédo um tridngulo. A demonstragao sera

apresentada em duas etapas.

Teorema 14. Seja G ~ G(n, p). Se p < 1/n, entdo
Pr(K; C G) — 0,

quandon — oo.

Demonstragdo. Seja X a variavel aleatoria que conta o nimero de triangulos
em G. Claramente,
Pr(K; € G) = Pr(X > 1).

Seja T o conjunto de todos os tridngulos contidos em K. Podemos

X=)Y 1r,

em que 1t é a variavel indicadora do tridngulo T, isto é, 1y =1seT C Ge

escrever

17 = 0 caso contrario.

Pela linearidade da esperanca e usando a desigualdade (Z) < nk, temos

que

E[X]=) E[ir] = (;’)zﬁ < (np)® =0,

TeT
quando n — oo, pois p K 1/n.

Aplicando a desigualdade de Markov, concluimos que
Pr(K3s c G) =Pr(X > 1) < E[X] — 0,

como afirmado. O

Teorema 15. Seja G ~ G(n, p). Se p > 1/n, entdo
PI'(K3 C G) —> 1,

quandon — oo.

Demonstragdo. Seja X a variavel aleatéria que conta o nimero de triangulos

em G. Note que

Pr(K; C G) = Pr(X > 1) = 1 — Pr(X = 0).

34

35

Assim, basta mostrar que Pr(X = 0) — 0 quando n — oo. Para isso,

usaremos a desigualdade de Chebyshev®?, o que exige estimar E[X] e Var(X). ~ *’Para uma variavel aleato-
ria X com variancia finita

Como antes, e diferente de 0, a desigual-

dade de Chebyshev deter-
X = Z 1r, mina que Pr(|X — E[X]| >
TeT A) < Var(X)/A%

em que 7 é o conjunto de todos os tridngulos em K, e 17 é a variavel

indicadora do evento {T C G}.

Pela linearidade da esperanca e usando a desigualdade (Z) > (n/k)k,

3
E[X]= Y Blig] = (;l);ﬁ >(2) .

TeT

temos

Em particular, como p > 1/n, segue que E[X] — oo.

Para limitar a variancia de X, calculamos E[X?]. Pela linearidade da

esperanca,

E[X?]= >) E[isir].
SeTTeT
Note que

]15]1]":1 — SUTCG.

Ent#o, particionando a soma dupla de acordo com a intersecéo entre os

tridngulos S e T, temos

E[X?]= > E[1sir]+ Y E[islf]+ > E[1glr].
STeT STeT STeT
|SNT|=3 |SNT|=1 |SNT|=0

Observe que ndo ha caso |SN T| = 2, pois dois tridngulos que comparti-

lham duas arestas sdo idénticos, e portanto |SN T| = 3.

Analisamos entéo os seguintes casos:

« Se|[SNT|=3,entdo S =T e, neste caso, Igly =]1% =1r e E[1517] =
E[1r];

« Se|SNT| =1, entdo a ocorréncia simultinea exige a presenga de cinco
arestas distintas, logo E[1517] = p°;

« Se |SNT| =0, entdo 17 e 1g sdo variaveis independentes e vale que
E[1s17] = E[15]E[17].

Assim,

E[X?= Y Elir]l+), p°+), EliglE[1r].
TeT STeT STeT
|SNT|=1 |SNT|=0

Como o nimero de pares de tridngulos que compartilham exatamente

uma aresta é O(n*), e o tltimo somatério é limitado superiormente por

> Eli5lE[1r] < Y. E[1g]E[17] = E[X]%,
|§§]§|Z’O STeT

concluimos que
E[X?] < E[X] +n*p® + E[X]?.

Logo,

Var(X) = E[X?] - E[X]? < E[X] + n*p°> < E[X]?.

Finalmente, aplicando a desigualdade de Chebyshev, temos

Var(X
Pr(X = 0) < Pr(E[X] - X > 1) <Pr(IX —E[X]| > 1) < a;(z)
Tomando A = E[X]/2, temos
4 X
Pr(X = 0) < Va0
E[X]?
quando n — oo, como gostariamos. g

A funcédo 1/n é chamada de limiar para a presenca de triAngulos em
G(n, p). Isso significa que, se p > 1/n, entdo com alta probabilidade um
grafo G ~ G(n, p) contém um tridngulo, enquanto que, se p < 1/n, entédo

com alta probabilidade o grafo ndo contém nenhum tridngulo.

Diversas outras propriedades de grafos apresentam limiares, como co-
nexidade e a presenca de qualquer subgrafo fixo. Em particular, Bollobas e
Thomason [25] demonstraram que toda propriedade crescente néo trivial
em grafos, isto é, toda propriedade que é preservada pela adicdo de arestas,

apresenta um limiar no modelo G(n, p).

E evidente a importancia do estudo de grafos aleatérios em 4reas como
combinatdria e teoria dos grafos, pois permite demonstrar a existéncia de
grafos com propriedades especificas sem a necessidade construi-los explici-
tamente. Na ciéncia da computacio, grafos aleatorios sdo muito relevantes
na andlise de algoritmos, no estudo da complexidade computacional e na

investigacdo de estruturas em redes e problemas de otimizacéo.

36

3.2 Analise de caso médio

Uma alternativa frequentemente empregada na anéalise probabilistica
de algoritmos ¢ a andalise de caso médio, na qual assumimos uma distribu-
icdo de probabilidade sobre o espaco de possiveis entradas e estimamos o

desempenho esperado do algoritmo em relacgéo a essa distribuicéo.

Definicao 9 (Complexidade de caso médio). Seja A um algoritmo para um
dado problemaIl, e seja Q, o conjunto de todas as instdncias de Il de tamanho
n. Dada uma distribuicdo de probabilidade D sobre Q,, a complexidade de
caso médio de A é definida por

Médiok(n) := E T4,

em que x € Q.

Note que a anilise é altamente dependente da distribuicdo de probabili-
dade escolhida para o conjunto de entradas possiveis. Quando néo dispomos
de informacdes adicionais sobre uma distribui¢do adequada — o que é muito
frequente —, é natural assumirmos uma distribuicdo uniforme, i.e., uma
distribui¢do na qual toda entrada é equiprovavel. No contexto de grafos,
por exemplo, isso equivale a considerar a entrada como um grafo aleatério
G ~ G(n,1/2), como discutido na Seg¢do 3.1. Embora essa abordagem possa
ser considerada irrealista, ela provavelmente ndo é mais artificial do que
os exemplos extremos usados para demonstrar a ineficiéncia de algoritmos
e, em certo sentido, talvez possa oferecer uma analise mais préxima da

realidade.

Por outro lado, poderiamos também demonstrar que um algoritmo quase
sempre apresenta um desempenho ruim em instancias aleatorias, resultando
numa critica mais severa de seu desempenho do que os exemplos patologicos

considerados na analise de pior caso.

Na Secéo 3.2.1, apresentaremos um algoritmo para resolver um problema
NP-completo em tempo esperado polinomial, assumindo uma distribui¢éo

uniforme sobre as instancias.

Em seguida, na Secéo 3.2.2, exploraremos a relagio entre algoritmos
aleatorizados e a analise de caso médio por meio da teoria dos jogos, o que

resulta no Lema Minimax de Yao.

Recomendamos ao leitor as excelentes revisdes introdutorias [26,27]
sobre analise de caso médio em algoritmos para grafos e sobre algoritmos

em grafos aleatorios.

37

3.2.1 Ciclo hamiltoniano em tempo esperado

polinomial

Inicialmente, definimos o problema de interesse, o problema do CicrLo

HAMILTONIANO>?:

CICLO HAMILTONIANO

Dado um grafo G, encontre um ciclo C que visita cada vértice de G

exatamente uma vez.

G ccaG

Apresentaremos dois algoritmos para resolver esse problema: um al-
goritmo exato, com tempo de execucdo exponencial no pior caso, e um
algoritmo polinomial e deterministico, que pode falhar em encontrar um ci-
clo hamiltoniano mesmo quando ele existe. Ao combinar ambos, recorrendo
ao algoritmo exponencial apenas quando o algoritmo polinomial falhar,
obteremos um algoritmo cujo tempo de execucdo esperado é polinomial sob

a distribui¢do uniforme de grafos.

Para resolver o problema de forma exata, utilizaremos um algoritmo
classico de programacédo dinamica, desenvolvido independentemente por
Bellman [28] e por Held e Karp [29].

Seja G o grafo de entrada. Sem perda de generalidade, fixamos um vértice
inicial r € V(G) — como buscamos um ciclo, a escolha de r é irrelevante.

Dado um subconjunto S C V(G) \ {r} e um vértice v € S, definimos a fungio

1, se existe um caminho simples P tal que
DP(S,v) = P comeca em r, termina em v, e V(P) = SU {r},

0, caso contrario.

Observe que o valor de DP(S, v) é trivial para conjuntos S pequenos e

que a funcéo pode ser determinada recursivamente. Mais precisamente,

DP({v},v) =1 < v e N(),

38

**0 problema do CicLo Ha-
MILTONIANO esta entre os
21 problemas classicos que
Karp caracterizou como
NP-completos, em uma
das primeiras demonstra-
¢des de que diversos proble-
mas computacionais recor-
rentes sdo intrinsecamente
dificeis [17].

Figura 4: Exemplo de ciclo
hamiltoniano C (em preto)
em um grafo G, isto é, um
ciclo que visita cada vértice
exatamente uma vez.

DP(S,v) =1 < Jue Sn N(v) tal que DP(S \ {v},u) = 1,

em que N(v) denota a vizinhanga de um vértice v em G.

Claramente, o grafo G contém um ciclo hamiltoniano se, e somente se,
existe um vértice v € N(r) tal que DP(V(G) \ {r},v) = 1. Nesse caso, o ciclo
pode ser recuperado armazenando, para cada estado (S, v) com DP(S,v) = 1,
um vértice predecessor (S, v) que justifique a recorréncia. Ao final, o ciclo
é reconstruido recursivamente. Com isso, obtemos o algoritmo descrito a

seguir.

S

1.

10.
11.
12.

13.

Algoritmo 5 (BellmanHeldKarp)

A fun¢do BELLMANHELDKARP recebe como entrada um grafo G e retorna

um ciclo hamiltoniano em G, se existir, e @, caso contrario.
Entrada: Grafo G = (V, E) com n vértices.
Saida: Um ciclo hamiltoniano C em G ou @, caso tal ciclo ndo exista.

BellmanHeldKarp(G)

Escolha um vértice r € V(G)

Para cada vértice ve V(G)\ {r} faga
Se v e N(r) entdo
DP({v},v) « 1
m({vhv) < r
Sendo
DP({v},v) < 0

Para k=2 até n—1 faga
Para cada subconjunto SC V(G)\ {r} com |S| =k faga
Para cada vértice ve S faga
DP(S,v) «< 0
Para cada vértice ue S\ {v} faga
Se ue N(v) e DP(S\ {v},u) =1 entdo

39

Figura 5: Representagdo de
um caminho considerado ao
calcular DP(S,v), com r
como vértice inicial e

u,v € S como vértices
finais.

14. DP(S,v) « 1
15. m(S,v) < u
16. Interrompa

17. Para cada vértice v e N(r) faga

18. Se DP(V(G)\ {r},v) =1 entdo
19. C «{r,v}

20. S V(G)\{r}

21. Enquanto S= @

22. u <« 7(S,v)

23. C<CuUwvu

24. S« S\ {v}

25. Veu

26. Retorne C

27. Retorme @

A complexidade do algoritmo é claramente dominada pelo laco principal
responsavel pelo calculo recursivo da funcdo DP. Observando que séo
considerados ©(2") subconjuntos possiveis S e que, para cada um deles, o
tempo de processamento é da ordem de O(n?), concluimos que o tempo

total de execucio do algoritmo é O(n?2"), portanto exponencial®*.

Ja o algoritmo polinomial e deterministico que admite falhas, denomi-
nado HAM, foi proposto por Bollobas, Fenner e Frieze [30], e baseia-se na
técnica de rotagdo de caminhos introduzida por Pdsa [31]. Dado um caminho
P = (v{,Vy,...,) e uma aresta e = {v, v}, paraalgum 1 <i < k—2, é
possivel rotacionar P removendo a aresta {v;, v, 1} e adicionando e, obtendo
um novo caminho Q = (v, ..., V, V, ..., Vi; 1) de mesmo comprimento e com

o mesmo conjunto de vértices, mas com uma extremidade distinta.

U1 U; Uiyl Uk

O algoritmo assume que o grafo de entrada G é conexo e possui grau
minimo §(G) > 2, pois, caso contrario, G certamente nio contém um ciclo
hamiltoniano®®. A estratégia do algoritmo consiste em analisar caminhos
candidatos de comprimento k, tentando estendé-los para obter um caminho

de comprimento k + 1 ou, eventualmente, um ciclo hamiltoniano.

Suponha que, no estagio k, o algoritmo analise um caminho P. Se existir

um vértice fora de P, adjacente a uma de suas extremidades, o caminho é

40

*Apesar de exponencial,
esse desempenho é substan-
cialmente melhor do que

o do algoritmo trivial que
testa todas as permutagdes
dos vértices, o qual apre-
senta custo O(n!). Além
disso, note que o algoritmo
requer espago O(n2") para
armazenar a tabela de pro-
gramagcédo dinamica.

Figura 6: Rotacdo de Posa,
em que a aresta tracejada é
removida e a aresta e é
adicionada ao caminho
original.

*Note que ambas as propri-
edades podem ser verifica-
das em tempo O(n).

estendido diretamente (operagio de extensdo), e o algoritmo avanga para o
estagio k + 1. Caso as extremidades de P, sejam adjacentes, obtém-se um
ciclo C 1, que pode ser convertido em um caminho de comprimento k + 1
explorando a conectividade de G, isto é, utilizando uma aresta que conecta
Cry1 a um vértice fora de Gy, (operacéo de extensdo de ciclo), permitindo
novamente avangar para o estagio k + 1. Se nenhuma dessas condicoes
for satisfeita, a hipotese 5(G) > 2 garante a existéncia de uma aresta entre
uma extremidade de P e um vértice interno do caminho, possibilitando a
realizacdo de uma rotacdo de Py (operacdo de rotagdo) e a obtencéo de um
novo caminho candidato Q, também de comprimento k. O algoritmo entio
reaplica os procedimentos anteriores aos novos caminhos gerados, até que
seja possivel avancar para o estagio k + 1 ou até que o numero de rotacdes

realizadas sobre um mesmo caminho ultrapasse um determinado limite.

Algoritmo 6 (HAM)

A funcdo HAM recebe como entrada um grafo conexo G com grau
minimo §(G) > 2 e retorna um ciclo hamiltoniano em G ou a resposta
Erro. A fungio auxiliar ROTACIONAR realiza a rotacdo de um caminho P
utilizando uma aresta e. Denotamos por P o conjunto atual de caminhos
candidatos em G, e por §(P,) o nimero de rotagdes efetuadas para obter
o caminho Py a partir do caminho inicial de comprimento k. Por fim,

denotamos por N(v) a vizinhanga de um vértice v em G.
Entrada: Grafo conexo G = (V, E) com n vértices tal que 5(G) > 2.
Saida: Um ciclo hamiltoniano C em G ou Erro.

HAM(G)

1. Escolha uma aresta {u,v} € E(G)
2. Py« (uv)

3. 8(Pp)«0

4. P {P}

5. Enquanto P # @ faga

6. Escolha um caminho P = (vy,...,V41) € P

7. P —P\A{P}

8. Para cada vértice extremo v € {v;,vi,1} faga

9. Para cada vértice u € N(v) faga

10. Se u & P, entéo

11. Pryq < Puiu, v} > Eztensdo
12. O(Prs1) < 0

13. P —{Pri1} > Sobrescreve P
14. Continue o lago principal

15. Sendo se u € {v;,V,1} entdo

41

16. Crr1 < P U{vi e}

17. Se V(Ciy1) = V(G) entdo

18. Retorne Cp > Ciclo hamiltoniano
19. Para cada vértice v; € P \ {v;, %1} faga
20. Para cada vértice w € N(v;) faga

21. Se w ¢ P, entédo

22. Peyr < Gy U {uwl \ {vop v}
> Extensao

23. O(Pry1) <0

24. P — {Pry1} > Sobrescreve P
25. Continue o lago principal

26. Sendo se §(P,) <2 entdo

27. Or < RoTACIONAR (P, {u,v}) > Rotagdo
28. O(Qr) « 8(P) + 1

29. P« Pui{Q}

30. Retorme Erro

Observando que um caminho de comprimento k pode gerar no maximo
2(k — 2) rotacdes, segue que, no estagio k, o algoritmo analisa no maximo
O(k3) caminhos. A analise de cada caminho requer tempo O(k), exceto
no caso de uma extensio de ciclo, que demanda tempo O(k?), porém, tal
extensdo ocorre no maximo uma vez por estagio. Assim, o tempo total
de execucdo no estagio k é O(k*). Consequentemente, o tempo total de

execugdo do algoritmo é dado por
n—1
> Ok = O(n).
k=1

Mostraremos que o Algoritmo 6 falha num grafo G ~ G(n,1/2) com
probabilidade exponencialmente baixa. Incentivamos o leitor a consultar a

Secdo 3.1 para se familiarizar com as técnicas de analise em grafos aleatérios.

Primeiro, demonstraremos dois resultados auxiliares*®. Para simplificar
os calculos, ignoramos questdes de arredondamento, que ndo afetam as

estimativas assintoticas.

Para um grafo G, denotamos por d(v) o grau do vértice v € V(G) no

grafo G.

Lema 3. Seja G ~ G(n, 1/2). Dizemos que um vértice v € V(G) é pequeno se
d(v) < n/10. Entao,

Pr(G contém ao menos dois vértices pequenos) = O(n*2™").

42

305 resultados poderiam
ser formulados em termos
de ¢en, para alguma cons-
tante ¢ € (0,1/2). Por
simplicidade, tomamos
e=1/10.

Demonstragdo. Seja X a variavel aleatoria que conta o numero de vértices

pequenos em G.

Suponha que X > 2. Entéo, existe um conjunto S C V(G) com |S| = 2 tal

que, para todo vértice v € S,

dyens(v) < n/10,

em que dy(G)\s denota o grau de v restrito a V(G) \ S.

Consequentemente, pela cota da unido sobre todos os pares de vértices
S C V(G), temos

Pr(X >2) < (Z) Pr(vveS : dygns(v) <n/10).

Fixado um par de vértices S, note que o nimero de vizinhos de cada
vértice de S em V(G) \ S é uma variavel aleatéria com distribui¢do bino-
mial com pardmetros n — 2 e 1/2. Além disso, dy)\ s(v) e dyG)\s(v) sdo
independentes para quaisquer u,v € S. Portanto, utilizando a funcéo de

distribui¢do acumulada da variavel aleatéria binomial, obtemos
2
PI'(VV eS: dV(G)\S(V) < n/lO) = [Pr(dv(G)\S(V) < n/lO)] s

()n/lO n—29
Pr(VveS: d v) < n/10) = [27(n2)
(vions(v) £ n/10) [k;)(P)l

Observe que o somatorio é dominado pelo tltimo termo, de modo que
n/10
n—2 n—2
< (n/10 + 1)()
kz:;) (k) n/10
Usando (Z) < (en/ k)k, obtemos

Pr(X > 2) < Cn*2721(10e)"/> = Cnt2(~2+18(10e)/5)n

para alguma constante absoluta C.

Como lg(10e)/5 < 1, entdo
Pr(X >2) = O(n*2™),

concluindo a prova. g

Lema 4. Seja G ~ G(n,1/2). Entdo,

Pr(3X,Y CV(G): XNY =@, |X| = Y| = n/20 e E(X,Y) = @) = O™,

43

em que E(X,Y) denota o conjunto de arestas entre X eY.

Demonstragdo. O nimero de escolhas para conjuntos disjuntos X,Y C V(G)
com |X| = |Y| = n/20 é dado por

n \(n—n/20 r 2
(n/ZO)(n/20)‘(n/zo)'

Paraum dado par X, Y, ha (n/ 20)? possiveis arestas entre X e Y. Portanto,

Pr(E(X,Y) = @) = 2~ (/20"

Logo, pela cota da unido,

2
Pr3X,YCV(G): XNnY =0,|X|=|Y|=n/20e E(X,Y) =) < (") 2=(n/20)°

n/20
Usando (i) < (en/ k)k, segue que

2
(n) 2—(n/20)2 < (zoe)n/lo 2—(n/20)2 — 2—®(n2) — O(Z_n),
n/20

como desejado. g
Podemos entdo enunciar o resultado principal:

Teorema 16. Seja G ~ G(n, 1/2). Entdo,

Pr(HAM falha em G) = O(n*2™™).

Demonstragio. Novamente, chamamos de pequeno qualquer vértice v € V(G)

com d(v) < n/10. Definimos entdo a variavel aleatoria
K=[veV(G) : dv)<n/10},

que conta o numero de vértices pequenos em G.

Logo, podemos decompor a probabilidade de falha do algoritmo segundo

os valores de K, de forma que

Pr(HAM falha em G) = Pr(HAM falhaem GNK < 1)
+ Pr(HAM falhaem GN K > 2),
Pr(HAM falha em G) < Pr(HAM falhaem G | K < 1) + Pr(K > 2),

em que a desigualdade segue diretamente de desigualdades fundamentais
de probabilidade.

44

Pelo Lema 3, segue que

Pr(K > 2) = O(n*2™).

Assim, basta mostrar que a probabilidade de falha do algoritmo quando
K < 1 também é exponencialmente baixa. Mostraremos que a falha de HAM
nesse caso implica a existéncia de dois subconjuntos lineares sem arestas
entre si, evento que, pelo Lema 4, tem probabilidade exponencialmente

pequena.

Suponha, portanto, que K < 1 e que o algoritmo falhe em G no estagio
k. Seja Py = (v, ..., %) o caminho inicial considerado no estagio k. Perceba
que a falha do algoritmo implica que {v;, w.} & E(G) e que todo vizinho de

v; e de v, pertence a Py.

Além disso, podemos supor, sem perda de generalidade, que d(v;) > n/10
e d(v) > n/10. De fato, como K < 1, no maximo um dos extremos pode ter
grau pequeno. Note que o algoritmo certamente executa uma rotagéo nesse
extremo, obtendo um novo caminho Q; no qual a suposicio se aplica. Os

argumentos abaixo permanecem validos para esse novo caminho.

Seja i o menor indice tal que ocorre uma das seguintes situacdes:

» Pelo menos metade dos vizinhos de v; estdo a esquerda de v, isto é,
estdo em {vy, ..., vi_1};
» Pelo menos metade dos vizinhos de v estdo a esquerda de v, isto é,

estdo em {v, ..., vi_;}.

Como todos os vizinhos de v; e v pertencem a Py, tal indice certamente

existe. Analisamos entio os seguintes casos:

« Se metade dos vizinhos de v; estdo a esquerda de v;, entdo existe um
conjunto
X C{v,...,vi_1}, com |X| > n/20,

tal que, para todo x € X, é possivel obter, por uma rotacdo de P, um
caminho Q. = (x, ..., Vi, ..., V).

De fato, para cada vizinho v de v;, com 3 < j <i—1,arotacdo de Py
através da aresta {v, v;} produz um caminho com extremo esquerdo
Vi1

Observe também que, no caminho Q, a ordem dos vértices {v, ..., v}

é preservada em relacdo a P,. Como mais da metade dos vizinhos de

v estdo a direita de v;, existe um conjunto

Y C Vi1, V1), com [Y]| > n/20,

45

tal que, paratodo y € Y e todo x € X, é possivel obter, por uma rotacéo

de Qk, um caminho R, = (x,..., V...,).

De fato, para cada vizinho v, de v, com i < £ < k — 2, a rotagao de O

através da aresta {v;, v} produz um caminho com extremo direito vy, ;.

U1 Uj—1 Uj Ui Ve Upt1 Uk

Finalmente, note que {x, y} € E(G), para todo x € X e y € Y. Caso
contrério, o algoritmo faria uma extenséo de ciclo em Ry U{x, y}, o que

contradiz a hipdtese de falha.

Concluimos que existem dois subconjuntos disjuntos X,Y C V(G),

ambos de tamanho ao menos n/20, sem arestas entre si;

» No caso contrario, em que pelo menos metade dos vizinhos de v
estdo a esquerda de v, o argumento é analogo, bastando adaptar a
segunda rotacdo para levar em conta a inversio da ordem de alguns
vértices de P;. Em particular, concluimos novamente a existéncia de
dois subconjuntos disjuntos X, Y C V(G), ambos de tamanho ao menos

n/20, sem arestas entre si.

Logo, pelo Lema 4,

Pr(HAMfalhaem G | K < 1) = O(2™).

Portanto,
Pr(HAM falha em G) = O(27™) + O(n*2™") = O(n*27"),

como afirmado. g

Podemos entido combinar os dois algoritmos apresentados, resultando

no algoritmo descrito abaixo.

Algoritmo 7 (HAMCombinado)

A fungdo HAMCoMBINADO recebe como entrada um grafo G e retorna

um ciclo hamiltoniano em G, se existir, e @, caso contrario.
Entrada: Grafo G = (V, E) com n vértices.

Saida: Um ciclo hamiltoniano C em G ou @, caso tal ciclo ndo exista.

46

Figura 7: Exemplo de
rotagdes sucessivas no
estagio k via vizinhos de v,
e de v, em que as arestas
tracejadas sdo removidas e
as curvas adicionadas,
produzindo novos extremos.

HAMCombinado (G)

1. Se G nio é& conexo ou 8(G) <2 entdo
2. Retorne @

3. Senéo

4. R <« HAM(G)

5. Se R+ Erro entéo

6. Retorne R

7. Sendo

8. Retorne BELLMANHELDKARP(G)

Corolario 5. Seja G um grafo com n vértices escolhido uniformemente ao
acaso. Entdo, o Algoritmo 7 resolve o problema do CicLo HAMILTONIANO em G

em tempo de execugdo esperado

o) + O(m*2™™) - O(m?2™) = O®).

E importante ressaltar que, no trabalho original, Bollobas, Fenner e Frieze
[30] demonstraram, com argumentos mais sofisticados, um resultado ainda
mais significativo sobre o algoritmo: a probabilidade assintética de sucesso
de HAM coincide com a probabilidade de que o grafo aleatério contenha um

ciclo hamiltoniano.

3.2.2 Lema Minimax de Yao

A teoria dos jogos é um ramo da matematica dedicado a modelagem
e analise de interacOes estratégicas entre agentes racionais, chamadas de
jogos. Seus conceitos sdo amplamente aplicados em ciéncias econdmicas,
sociais e comportamentais®’. Apresentamos a seguir alguns conceitos basi-
cos necessarios para compreender o resultado de Yao. Para uma introducéo

completa a teoria dos jogos, veja [32].

Considere o seguinte jogo. Alice esconde um objeto em uma de suas
maos, sem que Bruno observe sua escolha. Em seguida, Bruno tenta adivi-
nhar em qual das méos o objeto foi escondido. Se Bruno acertar, Alice lhe

paga R$ 1. Caso contrario, Alice recebe R$ 1 de Bruno.

Trata-se de um jogo de dois jogadores com soma nula, pois o ganho de

um jogador coincide com a perda do outro. As possiveis recompensas de

47

Embora algumas ideias
relacionadas ja existissem
anteriormente, a teoria dos
jogos consolidou-se como
area de estudo apenas na
década de 1920, sobretudo a
partir do trabalho de John
von Neumann. Esse desen-
volvimento culminou na
obra Theory of Games and
Economic Behavior (1944),
escrita em coautoria com
Oskar Morgenstern, que
marcou o estabelecimento
formal do campo. A par-
tir de entdo, a teoria dos
jogos expandiu-se signi-
ficativamente e passou a
ser aplicada em diversas
areas, incluindo economia e
ciéncia politica a partir da
década de 1950, e biologia
evolutiva a partir da década
de 1970 [32].

Alice podem ser representadas pela seguinte matriz:

Esq. Dir.
M= -1 1| Esq. '
1 —1]| Dir

As linhas correspondem as a¢des de Alice (esconder o objeto na mao
esquerda ou direita), enquanto as colunas correspondem as agdes de Bruno
(apostar na mio esquerda ou direita). A entrada M; ; representa o ganho de
Alice (resp. perda de Bruno) quando Alice escolhe a acdo i e Bruno escolhe
a acdo j. De modo geral, qualquer jogo de dois jogadores com soma nula

pode ser descrito por uma matriz de recompensas M € R™™.

Assumimos que ambos os jogadores desejam maximizar seus proprios

ganhos. Como os interesses sdo opostos, 0 jogo é inerentemente adversarial.

Chamamos de estratégia uma regra que determina a acdo escolhida pelo
jogador. Quando essa escolha é deterministica, a estratégia é dita pura. No
jogo acima, uma estratégia pura consiste simplesmente em escolher uma das
méos. Assumiremos que este é um jogo de informacéo nula, isto é, nenhum

jogador possui informacéo prévia sobre a estratégia do adversario.

Se Alice escolher uma estratégia pura i, entdo, no pior caso, sua recom-
pensa sera
min Mi,j’
J
independentemente da acdo de Bruno. Assim, uma estratégia pura 6tima
para Alice consiste em escolher a linha i que maximiza essa quantidade,

garantindo-lhe um ganho de

max min M; ;.
i J ’
De forma analoga, se Bruno escolher uma estratégia pura j, sua maior perda
possivel é
max M, ;,
1

de modo que a menor perda que ele pode garantir é

minmaxM; ;.
Jjooi ’

Quando esses dois valores coincidem, dizemos que o jogo admite um
equilibrio puro: um par de agdes (i, j) tal que nenhum dos jogadores tem
incentivo a desviar unilateralmente, pois cada um ja esta obtendo o melhor

resultado que pode garantir sem conhecer a escolha do oponente.

Nao ¢ dificil verificar que o jogo descrito acima nao possui equilibrio

puro. Isso motiva a introduco do conceito de estratégia mista. Uma estraté-

48

gia mista é um vetor x = (xy, ..., X;), em que x; representa a probabilidade
do jogador escolher a agdo i, com Y, x; = 1. Assim, o jogador passa a
escolher suas a¢des de forma aleatéria, segundo uma distribuigéo de proba-
bilidade. Observe que estratégias puras sdo casos particulares de estratégias
mistas, nas quais uma acéo é escolhida com probabilidade 1 e as demais com

probabilidade 0.

Dadas estratégias mistas x para Alice e y para Bruno, a recompensa

esperada de Alice é dada por

XTMY = Z Z x,»M,»,jyj

n o m
i=1 j=1
Por argumentos analogos aos anteriores, a maior recompensa esperada

que Alice pode garantir, independentemente da estratégia de Bruno, é

max minx' My,
s y
enquanto a menor perda esperada que Bruno pode garantir, independente-

mente da estratégia de Alice, é

min max x' My,
Yy X

em que o maximo e o minimo variam sobre todas as distribui¢coes de proba-

bilidade validas.

O Teorema Minimax de von Neumann [33], enunciado a seguir, afirma
que esses dois valores coincidem para todo jogo de dois jogadores com soma

nula, garantindo assim a existéncia de um equilibrio misto.

Teorema 17. Para todo jogo de dois jogadores com soma nula especificado

por uma matriz de recompensas M, vale que

max min x' My = min max x' My
X y y X

Em outras palavras, o maior valor esperado que Alice pode garantir
escolhendo uma estratégia mista é igual a menor perda esperada que Bruno
pode assegurar ao escolher uma estratégia mista. Esse valor comum é

chamado de valor do jogo.
A demonstracéo desse teorema foge ao escopo deste trabalho.

Note que, para uma estratégia mista fixa x, a expressio x' My é uma
funcao linear em y e, portanto, ¢ minimizada ao concentrar toda a massa
de probabilidade em uma coordenada y; que minimize o coeficiente corres-
pondente. Entdo, se Bruno conhece a distribuicdo x utilizada por Alice, sua

melhor estratégia é sempre uma estratégia pura. O mesmo argumento vale

49

de forma simétrica para Alice.

Essa observacéo leva a uma versao simplificada do Teorema Minimax,

atribuida a Loomis [34].

Corolario 6. Seja ey o vetor unitario com 1 na k-ésima coordenada e 0 nas

demais.

Para todo jogo de dois jogadores com soma nula especificado por uma

matriz de recompensas M, vale que

max min x' Me j = minmax el-TMy
X j y i

A seguir, descrevemos como esses resultados de teoria dos jogos podem
ser utilizados para estabelecer limitantes inferiores para o desempenho de

algoritmos aleatorizados.

3.2.2.1 Analisando algoritmos através de jogos

Considere um problema IT e seja Q, o conjunto de todas as instincias de
IT de tamanho n. Seja A o conjunto de todos os algoritmos deterministicos
que resolvem II. Para que a técnica seja aplicavel, supomos que A e Q,

sejam finitos.

Definimos entfo um jogo de soma nula associado a I1, descrito por uma
matriz M: cada linha corresponde a uma instancia x € Q,, e cada coluna
corresponde a um algoritmo A € A. A entrada M, 4 = T4(x) representa o
tempo de execucio® do algoritmo A na instancia x. Nesse jogo, escolhemos
um algoritmo (coluna) com o objetivo de minimizar o custo, enquanto um

adversario escolhe uma instancia (linha) com o objetivo de maximiza-lo.

Fixado um algoritmo deterministico A € A, o resultado do jogo cor-
responde exatamente a analise de pior caso: o adversario seleciona uma
instancia x € Q, de forma a maximizar T4(x). Assim, uma estratégia pura
6tima para o jogador das colunas corresponde a um algoritmo deterministico
otimo, e

min max T 4(x
Ae A xeQ, A0

€ o tempo de execucio no pior caso do melhor algoritmo deterministico para

I1, que chamamos de complexidade deterministica do problema.

A abordagem torna-se mais interessante quando consideramos algorit-
mos aleatorizados. Um algoritmo Las Vegas R pode ser visto como uma
distribuigao de probabilidade sobre o conjunto .4 de algoritmos determinis-

ticos. Note que isso corresponde exatamente a uma estratégia mista no jogo

%Note que poderiamos
igualmente considerar
outras medidas de custo,
como uso de espago ou
qualidade da solucéo.

M. Naturalmente, o tempo de execucdo de R em uma instancia x é dado por

Tr(x) = E [Ta(x)],
R AR A
isto é, o tempo de execugdo esperado. Uma estratégia mista 6tima corres-

ponde, portanto, a um algoritmo Las Vegas 6timo. Definimos a complexidade

aleatorizada do problema como

min max T (x),
R x€Q, R()
ou seja, o melhor desempenho esperado no pior caso entre todos os algorit-

mos Las Vegas.

Analogamente, seja D uma distribuicio de probabilidade sobre Q,,. Tal
distribuicdo pode ser interpretada como uma estratégia mista do adversario.

Para um algoritmo deterministico A, o tempo de execucéo esperado sob D é

E [To(x)] = MédioZ (n).

X

Definimos entdo a complexidade distribucional do problema como
max min Médiog(n),
D AeA

isto é, o desempenho esperado do melhor algoritmo deterministico contra
a pior distribuicdo de entradas. Observe que essa quantidade é, em geral,
menor ou igual a complexidade deterministica, pois o algoritmo conhece a

distribuicdo D.

Pelo Teorema 17 a complexidade aleatorizada e a complexidade dis-
tribucional coincidem. Esse é precisamente o Lema Minimax de Yao, que
enunciamos a seguir em uma forma relaxada, obtida a partir do Corolario 6,

suficiente para obter limites inferiores.

Corolario 7. Seja Il um problema, Q, o conjunto (finito) de todas as instancias
dell de tamanhon, e A o conjunto (finito) de todos os algoritmos deterministicos
que resolvem I1. Entao, para quaisquer distribuicoes D sobre Q,, e R sobre A,
vale que

. ... D
min Médio;(n) < max I (x
AcA a()_er,, R (x)

Em particular, o desempenho médio do melhor algoritmo deterministico
sob uma distribuicéo arbitraria D fornece um limitante inferior para o tempo
de execucéo esperado de qualquer algoritmo Las Vegas para o problema IL.
Isso é extremamente 1til, pois permite escolher uma distribui¢do conveniente
D e provar que todo algoritmo deterministico®® tem custo esperado ao

menos C. Pelo Lema de Yao, segue entdo que a complexidade aleatorizada

51

YE importante ressaltar que
o algoritmo deterministico
¢ assumido conhecer a
distribuicio D.

do problema também é ao menos C.

3.3 Analise suavizada

Como vimos na Secdo 3.2, a analise de caso médio € a alternativa fre-
quentemente adotada na analise probabilistica de algoritmos. Embora tal
abordagem evite o pessimismo do pior caso, ela depende fortemente da
distribuicdo de probabilidade atribuida ao espaco de instancias, o que pode
torna-la tdo artificial quanto a analise de pior caso. Na pratica, é dificil
determinar qual distribuicdo descreve adequadamente as instancias reais de
um problema. Além disso, instincias aleatdrias frequentemente apresen-
tam, com alta probabilidade, certas propriedades estruturais que dominam o
comportamento médio, o que pode enviesar a interpretacio do desempe-
nho. Assim, instancias aleatdrias ndo devem ser confundidas com instancias
tipicas: instincias aleatérias sdo, na verdade, um tipo bem particular de

instancias [35].

Com o objetivo de contornar as limitacoes de ambos os paradigmas
anteriores, Spielman e Teng propuseram a andalise suavizada de algoritmos
[36]. Essa abordagem parte da observag¢io de que, no mundo real, as instan-
cias de problemas estido frequentemente sujeitas a pequenas perturbacoes
aleatorias, decorrentes de diversas fontes, como erros de medicéo, restricdes
de projeto e, de maneira geral, por fatores de aleatoriedade inerentes a ocor-
réncia de instincias particulares. Dessa forma, as instancias reais ndo sao

completamente adversariais, mas também n#o sdo totalmente aleatdrias.

A partir dessa ideia, define-se a medida suavizada de um algoritmo em
uma dada instincia como o valor esperado de seu desempenho sob pequenas
perturbacdes aleatdrias dessa instancia. Ja sua complexidade suavizada é
definida como o méaximo dessa medida suavizada sobre todas as instincias

possiveis de entrada.

Definicao 10 (o —perturbagdo). Dado um grafo G com n vértices e o € (0,1),
definimos a o—perturbagdo de G como o grafo aleatorio obtido pela remogao
de cada aresta de G com probabilidade o e pela adicdo de cada nao aresta de G
com probabilidade o. Denotamos por G(G, o) a distribuicdo sobre grafos com

n vértices assim obtida.

Equivalentemente, se G, ~ G(G, o), entdo

Prfe € B(G,)] = (1 — o)1, + o(1 — 1),

em que 1, = 1 se e € E(G) e 1, = 0 caso contrario.

Note também que
G, = GAH,

em que H ~ G(n,0) é um grafo aleatério de Erdés-Rényi e GAH denota o
grafo sobre o0 mesmo conjunto de vértices de G, cujas arestas sdo dadas pela

diferenca simétrica entre as arestas de G e de H.
Definimos entéo a complexidade suavizada de um algoritmo em grafos.

Definicao 11 (Complexidade suavizada). Seja A um algoritmo e seja G, o
conjunto de todos os grafos com n vértices. Para cada grafo G € G,, seja
G, ~ G(G, o) uma o—perturbagio de G. Entao, a complexidade suavizada de
A é definida por

Suavizadad(n) := max E[T4(G,)].
50 = maxE[T4(G,)]

Observe que, ao variar o grafo G € G, obtemos distribuicoes de proba-
bilidade distintas sobre o espaco G,. A complexidade suavizada considera,
portanto, o pior caso, dentre todas essas distribuicdes, do tempo de execucdo

esperado de A.

Na analise suavizada o pardmetro o determina o grau de poder do ad-
versario, estabelecendo uma transicdo continua entre os paradigmas de pior
caso e de caso médio: quando a perturbacio tende a zero, voltamos a analise
de pior caso; por outro lado, quando a perturbacéo é suficientemente grande
a ponto de dominar as instancias, a analise aproxima-se do caso médio. Por

exemplo, se 0 = 1/2 entdo G, ~ G(n, 1/2) para todo grafo G.

Note que o tempo de execucio é analisado em funcéo tanto do tamanho
da entrada (n) quanto da magnitude da perturbacéo (). Podemos entdo

caracterizar algoritmos que apresentam complexidade suavizada polinomial.

Definicao 12 (Complexidade suavizada polinomial). Dizemos que um al-
goritmo A possui complexidade suavizada polinomial se existem constantes
positivas ny, 0y, ¢, k, e a tais que, para todon > ny e 6 > oy,

k
. n
Suavizadaj(n) <c- pr

Observe que um algoritmo ter complexidade suavizada polinomial in-
dica que as instancias de desempenho superpolinomial (caso existam) sido
“instaveis”, e, portanto, é razoavel esperar que ndo ocorram em situagdes

préticas.

E importante ressaltar que definimos a analise suavizada restrita ao con-

texto de algoritmos em grafos, considerando ainda um modelo especifico de

53

perturbacéo. Entretanto, naturalmente, a nogdo de complexidade suavizada
se estende a diversos outros dominios e, mesmo no contexto de grafos, exis-
tem varios modelos distintos de perturbacéo (veja, por exemplo, [37,38], e
os modelos citados em [35]). Optamos por este modelo em particular por

sua proximidade com os ideais originais propostos na anélise suavizada.

Contudo, note que esse modelo simples pode ser inadequado para certos
problemas, pois as entradas sdo perturbadas aleatoriamente de maneira
indiscriminada. Por exemplo, ao analisarmos um algoritmo que decide
se um grafo é hamiltoniano, é desejavel que a perturbacdo néo altere a
hamiltonicidade do grafo original; caso contrario, a analise perde o sentido??.
Nesses contextos, torna-se necessario impor restri¢des as perturbacdes, de
modo que certas estruturas da entrada sejam preservadas. Nesse sentido,
Spielman e Teng propuseram o estudo de o—perturbagoes que preservam

propriedades, discutidas brevemente em [39].

Embora ja existam alguns resultados a respeito da complexidade suavi-
zada de algoritmos em grafos (e.g., [40,41,42]), o paradigma também pode
ser naturalmente estendido para avaliar outros aspectos do comportamento
de algoritmos. Entre suas possiveis aplicacOes estdo a estimativa da pro-
babilidade de erro de algoritmos aleatérios [39], a avaliacdo da qualidade
das solucdes obtidas por algoritmos de aproximacéo [43] e a determina-
¢do da menor perturbacio necessaria para que um grafo qualquer adquira

determinada propriedade [46].

Apesar dos avancos existentes na literatura, ainda ha amplas oportuni-
dades de investigacéo, especialmente no contexto de analise de algoritmos

em grafos.

Apresentaremos a seguir um resultado recente sobre a analise suavi-
zada de um algoritmo para o problema do IsoMORFIsMO DE GRAFOs*!. As
demonstrac¢des dos resultados apresentados a seguir fogem ao escopo deste

texto.

ISOMORFISMO DE GRAFOS

Dado um grafo G e um grafo H, determine se H é isomorfo a G.

Na analise probabilistica do IsoMORFISMO DE GRAFOS, nio ¢é ideal lidar
com dois grafos aleatdrios G e H, pois, com alta probabilidade, eles ndo
serdo isomorfos. Para contornar esse problema, uma estratégia comumente
adotada consiste em analisar algoritmos de rotulagdo candnica [26]. Uma
rotulacdo candnica associa rotulos aos vértices de um grafo G de forma
que, se outro grafo H for rotulado segundo o mesmo procedimento, entéo
os grafos coincidem se, e somente se, sdo isomorfos. Isso permite testar o

isomorfismo de G com qualquer outro grafo.

54

“Isso ocorre porque, ao
modificar com alta probabi-
lidade propriedades estrutu-
rais relevantes da instancia
original, a perturbacio pode
introduzir caracteristicas
que tornam o problema
artificialmente mais facil,
descaracterizando a difi-
culdade intrinseca que se
deseja analisar, num efeito
analogo ao viés presente na
analise de caso médio.

“10 problema do IsoMOR-
FISMO DE GRAFOs é um dos
poucos problemas conheci-
dos que pertencem a NP,
mas cuja N'P-dificuldade
permanece em aberto. Nao
se conhecem algoritmos
polinomiais para o pro-
blema. Lasz16 Babai [47]
reivindicou a existéncia de
um algoritmo quase—po-
linomial para o problema,
isto é, com tempo de exe-

~ o
cucio O(e®EW) mas sua

versdo final ainda néo foi
completamente publicada.

Um algoritmo polinomial que tenta construir uma rotulacéo canénica
de um grafo G é o refinamento de cores. Inicialmente, todos os vértices de
G recebem a mesma cor. No primeiro passo, os vértices sdo coloridos de
acordo com seus graus, na tentativa de diferencia-los; no passo seguinte, essa
informacéo é refinada levando em conta os graus dos vizinhos; e o processo
prossegue de maneira semelhante, até que a coloracio se estabilize, ou seja,
até que ndo seja mais possivel distinguir vértices com base em critérios

adicionais.

Se ao final do processo cada vértice de G receber uma cor distinta, a
coloracdo obtida determina uma rotulag¢do canénica de G, e o grafo pode
entdo ser testado quanto ao isomorfismo com qualquer outro em tempo

polinomial.

Entretanto, o refinamento de cores nem sempre é bem-sucedido. Consi-
dere, por exemplo, um grafo regular: como todos os vértices tém o mesmo

grau, o algoritmo nio consegue distinguir nenhum vértice dos demais.

Ainda assim, essa situagio é “atipica”: de acordo com um resultado de
Babai, Erd6s e Selkow [48], o algoritmo é capaz de produzir uma rotulagio

candnica para quase todo grafo, como descrito abaixo.

Teorema 18. Seja G um grafo escolhido uniformemente ao acaso. Entdo,
com alta probabilidade, o algoritmo de refinamento de cores distingue todos os
vértices de G. Como consequéncia, com alta probabilidade, G pode ser testado

quanto ao isomorfismo com qualquer outro grafo em tempo polinomial.

Recentemente, Anastos, Kwan e Moore [40] refinaram esse resultado ao

realizar a analise suavizada do algoritmo, obtendo o resultado a seguir.

Teorema 19. Fixe uma constante & > 0 e considere o € (0,1) tal que
o > (1 + 8)logn/n. Entao, para todo grafo G, com alta probabilidade o
algoritmo de refinamento de cores rotula canonicamente o grafo G, ~ G(G,0).
Em particular, com alta probabilidade, uma o—perturbagdo de G pode ser
testada quanto ao isomorfismo com qualquer outro grafo em tempo polinomial.

Ou seja, para todo grafo G, a adig¢do e remocdo de aproximadamente

4

nlogn arestas aleatérias*® é suficiente para que o refinamento de cores seja

bem-sucedido com alta probabilidade.

Note que néo analisamos o tempo de execucdo do algoritmo — que é
sempre polinomial —, mas sim sua probabilidade de sucesso. Assim, se essa
probabilidade fosse suficientemente alta, poderiamos recorrer a um algo-
ritmo exato apenas nos raros casos de falha do refinamento de cores. Por
argumentos semelhantes aos da Seg¢do 3.2.1, isso resultaria em um algoritmo
que sempre produz uma rotulacdo canénica e cujo tempo de execucéo sua-
vizado seria polinomial. No entanto, a probabilidade de erro do refinamento

de cores no contexto suavizado, conforme demonstrado em [40], ndo parece

55

“Isso decorre do fato de
que, para H ~ G(n, p), o
namero de arestas de H
esta concentrado em torno

de p(}) = n’p.

ser pequena o bastante para viabilizar esse resultado, sendo necessario um

aperfeicoamento adicional do limitante de erro.

Curiosamente, apesar da origem algoritmica do paradigma da analise
suavizada, ha hoje mais trabalhos sobre grafos aleatoriamente perturbados
na teoria extremal de grafos (veja os exemplos em [40]) do que no contexto

algoritmico propriamente dito.

Concluimos a se¢do com a seguinte questdo: seria possivel estender os
resultados extremamente positivos da Se¢éo 3.2.1 ao contexto da analise sua-
vizada? Observe que o resultado ja vale para o = 1/2, pois essa perturbagio

equivale a considerar um grafo aleatorio segundo o modelo G(n, 1/2).

Questiao 1. O Algoritmo 7 tem tempo suavizado polinomial para algum
0<1/2?

56

4 Conclusao

A reviséo realizada neste trabalho evidencia que a aleatoriedade vai além
de uma simples ferramenta algoritmica, constituindo um elemento essencial
para compreender mais profundamente o que computadores séo capazes de
resolver. Seja pelas contribui¢des conceituais em complexidade computaci-
onal resultantes do estudo de algoritmos aleatorizados, seja pelos modelos
mais realistas para analise do desempenho algoritmico. Dessa forma, a alea-
toriedade oferece novas perspectivas sobre problemas computacionalmente
dificeis, e o estudo continuo desse tema é crucial para aprofundar nossa

compreensdo de questdes fundamentais em ciéncia da computacéo.

57

(12]

[13]

Referéncias

CORMEN, T. H. et al. Introduction to Algorithms, Third Edition.
3rd. ed. [s.1.] The MIT Press, 2009.

FORTNOW, L. 2023 A.M. Turing Award Laureate. Disponivel em:
<https://amturing.acm.org/award_winners/wigderson_3844537.c
fm>.

MOTWANIL R.; RAGHAVAN, P. Randomized algorithms. ACM Com-
put. Surv., v. 28, n. 1, p. 33-37, mar. 1996.

ARORA, S.; BARAK, B. Computational Complexity: A Modern
Approach. [s.l.] Cambridge University Press, 2009.

WIGDERSON, A. Mathematics and computation: A theory re-
volutionizing technology and science. [s.l.] Princeton University
Press, 2019.

METROPOLIS, N. The Beginning of the Monte Carlo Method. Los
Alamos Science Special Issue, p. 125-130, 1987.

MOTWANL R.; RAGHAVAN, P. Randomized Algorithms. [s.l.]
Cambridge University Press, 1995.

DEVROYE, L. Non-Uniform Random Variate Generation. 1. ed.
New York, NY: Springer, 1986.

GAREY, M. R;; JOHNSON, D. S.; STOCKMEYER, L. Some simplified
NP-complete graph problems. Theoretical Computer Science, v.
1,n. 3, p. 237-267, 1976.

BOTLER, F. H. et al. Combinatdria. [s.l.] Impa, 2022.

KARGER, D. R. Global min-cuts in RNC, and other ramifications
of a simple min-cut algorithm. Proceedings of the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms. Anais.... SODA
’93.USA: Society for Industrial; Applied Mathematics, 1993.

KARGE, D. R. Random Sampling in Cut, Flow, and Network Design
Problems. Mathematics of Operations Research, v. 24, n. 2, p.
383-413, 1999.

RAGHAVAN, P.; TOMPSON, C. D. Randomized rounding: A techni-
que for provably good algorithms and algorithmic proofs. Combi-
natorica, v. 7, n. 4, p. 365-374, 1987.

https://amturing.acm.org/award_winners/wigderson_3844537.cfm
https://amturing.acm.org/award_winners/wigderson_3844537.cfm
https://doi.org/10.1145/234313.234327
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1016/0304-3975(76)90059-1
https://doi.org/10.1007/BF02579324
https://doi.org/10.1007/BF02579324

[15]

(16]

(20]

[21]

(22]

(23]

(24]

GOEMANS, M. X.; WILLIAMSON, D. P. Improved approximation
algorithms for maximum cut and satisfiability problems using semi-
definite programming. J. ACM, v. 42, n. 6, p. 1115-1145, nov. 1995.

BABAL L. Monte-Carlo Algorithms in Graph Isomorphism Tes-
ting. [s.l.] Université de Montréal, Département de Mathématiques
et de Statistique, 1979.

ALON, N.; YUSTER, R.; ZWICK, U. Color-coding: a new method
for finding simple paths, cycles and other small subgraphs
within large graphs. Proceedings of the Twenty-Sixth Annual
ACM Symposium on Theory of Computing. Anais...: STOC ’94.New
York, NY, USA: Association for Computing Machinery, 1994.

KARP, R. M. Reducibility among Combinatorial Problems. Em: MIL-
LER, R. E.;; THATCHER, J. W.; BOHLINGER, J. D. (Eds.). Complexity
of Computer Computations: Proceedings of a symposium on
the Complexity of Computer Computations, held March 20-22,
1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, and sponsored by the Office of Naval Rese-
arch, Mathematics Program, IBM World Trade Corporation,
and the IBM Research Mathematical Sciences Department. Bos-
ton, MA: Springer US, 1972. p. 85-103.

ALT, H. et al. A method for obtaining randomized algorithms with
small tail probabilities. Algorithmica, v. 16, n. 4, p. 543-547, 1996.

LUBY, M.; SINCLAIR, A.; ZUCKERMAN, D. Optimal speedup of Las
Vegas algorithms. Information Processing Letters, v. 47, n. 4, p.
173-180, 1993.

LUBY, M.; ERTEL, W. Optimal parallelization of Las Vegas al-
gorithms. (P. Enjalbert, E. W. Mayr, K. W. Wagner, Eds.)STACS 94.
Anais...Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

RUAN, Y.; HORVITZ, E.; KAUTZ, H. Restart Policies with De-
pendence among Runs: A Dynamic Programming Approach.
(P. Van Hentenryck, Ed.)Principles and Practice of Constraint Pro-
gramming - CP 2002. Anais.. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002.

GOMES, C. P.; SELMAN, B. Algorithm portfolios. Artificial Intelli-
gence, v. 126, n. 1, p. 43-62, 2001.

GOMES, C. P. Randomized Backtrack Search. Em: MILANO, M.
(Ed.). Constraint and Integer Programming: Toward a Unified
Methodology. Boston, MA: Springer US, 2004. p. 233-291.

BOLLOBAS, B. Random Graphs. Em: Cambridge Studies em Advan-
ced Mathematics. 2. ed. [s.l.] Cambridge University Press, 2001.

https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/195058.195179
https://doi.org/10.1145/195058.195179
https://doi.org/10.1145/195058.195179
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BF01940879
https://doi.org/10.1007/BF01940879
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/S0004-3702(00)00081-3
https://doi.org/10.1007/978-1-4419-8917-8_8

[27]

(28]

(32]

(33]

[36]

(37]

BOLLOBAS, B.; THOMASON, A. G. Threshold functions. Combina-
torica, v. 7, n. 1, p. 35-38, 1987.

FRIEZE, A. M. Probabilistic Analysis of Graph Algorithms. Em: TI-
NHOFER, G. et al. (Eds.). Computational Graph Theory. Vienna:
Springer Vienna, 1990. p. 209-233.

FRIEZE, A.; MCDIARMID, C. Algorithmic theory of random graphs.
Random Structures & Algorithms, v. 10, n. 1-2, p. 5-42, 1997.

BELLMAN, R. Dynamic Programming Treatment of the Travelling
Salesman Problem. J. ACM, v. 9, n. 1, p. 61-63, jan. 1962.

HELD, M.; KARP, R. M. A dynamic programming approach to
sequencing problems. Proceedings of the 1961 16th ACM National
Meeting. Anais.... ACM ’61.New York, NY, USA: Association for
Computing Machinery, 1961.

BOLLOBAS, B.; FENNER, T. I; FRIEZE, A. M. An algorithm for finding
hamilton paths and cycles in random graphs. Combinatorica, v. 7,
n. 4, p. 327-341, 1987.

POSA, L. Hamiltonian circuits in random graphs. Discrete Mathe-
matics, v. 14, n. 4, p. 359-364, 1976.

OSBORNE, M. J. An Introduction to Game Theory. [s.l.] Oxford
University Press, 2004.

NEUMANN, J. VON; MORGENSTERN, O. Theory of Games and
Economic Behavior. Princeton: Princeton University Press, 1944.

LOOMIS, L. H. On A Theorem of von Neumann. Proceedings of
the National Academy of Sciences, v. 32, n. 8, p. 213-215, 1946.

SPIELMAN, D. A.; TENG, S.-H. Smoothed analysis: an attempt to
explain the behavior of algorithms in practice. Commun. ACM, v.
52,n. 10, p. 76—84, out. 2009.

SPIELMAN, D.; TENG, S.-H. Smoothed analysis of algorithms:
why the simplex algorithm usually takes polynomial time.
Proceedings of the Thirty-Third Annual ACM Symposium on Theory
of Computing. Anais.... STOC '01.New York, NY, USA: Association
for Computing Machinery, 2001.

ETSCHEID, M.; ROGLIN, H. Smoothed Analysis of Local Search for
the Maximum-Cut Problem. ACM Trans. Algorithms, v. 13, n. 2,
mar. 2017.

ENGLERT, M.; ROGLIN, H.; VOCKING, B. Smoothed Analysis of the
2-Opt Algorithm for the General TSP. v. 13, n. 1, set. 2016.

https://doi.org/10.1007/BF02579198
https://doi.org/10.1007/978-3-7091-9076-0_11
https://doi.org/10.1002/(SICI)1098-2418(199701/03)10:1/2%3C5::AID-RSA2%3E3.0.CO;2-Z
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/321105.321111
https://doi.org/10.1145/800029.808532
https://doi.org/10.1145/800029.808532
https://doi.org/10.1007/BF02579321
https://doi.org/10.1007/BF02579321
https://doi.org/10.1016/0012-365X(76)90068-6
https://doi.org/10.1073/pnas.32.8.213
https://doi.org/10.1145/1562764.1562785
https://doi.org/10.1145/1562764.1562785
https://doi.org/10.1145/380752.380813
https://doi.org/10.1145/380752.380813

[40]

[43]

(44]

[46]

SPIELMAN, D. A.; TENG, S.-H. Smoothed Analysis. (F. Dehne,].-R.
Sack, M. Smid, Eds.)Algorithms and Data Structures. Anais...Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003.

ANASTOS, M.; KWAN, M.; MOORE, B. Smoothed Analysis for
Graph Isomorphism. Proceedings of the 57th Annual ACM Sym-
posium on Theory of Computing. Anais.... STOC *25.New York, NY,
USA: Association for Computing Machinery, 2025.

DINITZ, M. et al. Smoothed analysis of dynamic networks. Distri-
buted Computing, v. 31, n. 4, p. 273-287, 2018.

FLAXMAN, A. D.; FRIEZE, A. M. The diameter of randomly per-
turbed digraphs and some applications. Random Structures &
Algorithms, v. 30, n. 4, p. 484-504, 2007.

MANTHEY, B.; PLOCIENNIK, K. Approximating independent set in
perturbed graphs. Discrete Applied Mathematics, v. 161, n. 12, p.
1761-1768, 2013.

KRIVELEVICH, M.; SUDAKOYV, B.; TETALI, P. On smoothed analysis
in dense graphs and formulas. Random Structures & Algorithms,
v. 29, n. 2, p. 180-193, 2006.

BOTTCHER, J. et al. Triangles in randomly perturbed graphs. Com-
binatorics, Probability and Computing, v. 32, n. 1, p. 91-121,
2023.

KRIVELEVICH, M.; REICHMAN, D.; SAMOTIJ, W. Smoothed Analy-
sis on Connected Graphs. SIAM Journal on Discrete Mathematics,
v. 29, n. 3, p. 1654-1669, 2015.

BABAJ L. Graph Isomorphism in Quasipolynomial Time., 2016.
Disponivel em: <https://arxiv.org/abs/1512.03547>

BABAL L.; ERDOS, P.; SELKOW, S. M. Random Graph Isomorphism.
SIAM Journal on Computing, v. 9, n. 3, p. 628—635, 1980.

https://doi.org/10.1145/3717823.3718173
https://doi.org/10.1145/3717823.3718173
https://arxiv.org/abs/1512.03547
https://doi.org/10.1137/0209047

	Introdução
	Algoritmos aleatorizados
	Classificação de algoritmos
	Monte Carlo
	Las Vegas
	Conversão entre algoritmos Monte Carlo e Las Vegas

	Modelo computacional e classes de complexidade
	Pseudoaleatoriedade e derandomização

	Análise probabilística de algoritmos
	Grafos aleatórios
	Análise de caso médio
	Ciclo hamiltoniano em tempo esperado polinomial
	Lema Minimax de Yao
	Analisando algoritmos através de jogos

	Análise suavizada

	Conclusão

