
Carlos Filipe Lombizani De Bernardis

O Problema MQ aplicado a Identificação

Estudo de algoritmos de identificação base-
ados em sistemas de polinômios quadráti-
cos.

Orientador:

Professor Routo Terada

UNIVERSIDADE DE SÃO PAULO

São Paulo

2013

Resumo

Conquanto problemas de fatoração de números inteiros e de logaritmos discretos

possam ser tratados por computadores quânticos, sistemas hodiernos de criptografia

ainda os empregam.

O problema MQ, que consiste em resolver um sistema de polinômios multivariados

quadráticos sobre um corpo finito, é, até onde se sabe, intratável, até mesmo por com-

putadores quânticos, podendo em teoria ser usado para construir sistemas criptográficos

à sua prova.

Neste trabalho, estudamos o problema MQ propriamente e dois esquemas de iden-

tificação propostos em 2011 cuja segurança nele se baseia.

Incluimos exemplos numéricos e extensões desses algoritmos.

Sumário

1 Introdução p. 7

1.1 Protocolos de Identificação . p. 7

1.2 Os Protocolos MQID-3 e MQID-5 p. 8

2 O Problema MQ p. 9

2.1 Preliminares . p. 9

2.1.1 Corpos . p. 9

2.1.2 Espaços Vetoriais . p. 11

2.1.3 Bilinearidade . p. 12

2.2 Função MQ . p. 12

2.3 Problema . p. 14

3 Identificação Conhecimento-Zero p. 17

3.1 Esboço . p. 17

3.2 Definições . p. 18

3.2.1 Probabilidade Desprezível p. 18

3.2.2 Correção . p. 18

3.2.3 Solidez . p. 18

3.2.4 Função de Hash . p. 19

3.2.5 Função de mão única . p. 19

3.2.6 Indistinguibilidade . p. 19

3.3 Protocolos de Conhecimento-zero p. 20

3.3.1 Propriedade de Conhecimento-zero p. 20

3.3.2 Esquemas de Comprometimento p. 21

3.3.3 Estrutura Geral dos Protocolos p. 22

3.4 Esquemas de Identificação . p. 22

4 Protocolos de Identificação MQID p. 24

4.1 Princípios . p. 24

4.2 Inicialização e Geração de Chaves p. 26

4.3 Protocolo MQID-3 de 3 passos . p. 26

4.4 Protocolo MQID-5 de 5 passos . p. 29

5 Aplicações p. 33

5.1 Assinaturas Digitais . p. 33

5.2 Heurística de Fiat-Shamir . p. 34

5.3 Protocolo de Identificação MQID-3A p. 35

Apêndice A -- Implementação de exemplo p. 38

A.1 field.h . p. 38

A.2 field2.c . p. 39

A.3 field2_4.c . p. 42

A.4 mqid.h . p. 45

A.5 mqid.c . p. 47

A.6 mqid3.h . p. 53

A.7 mqid3.c . p. 54

A.8 mqid5.h . p. 60

A.9 mqid5.c . p. 61

A.10 Whirlpool/Whirlpool.h . p. 66

Referências Bibliográficas p. 67

7

1 Introdução

1.1 Protocolos de Identificação

Em segurança da informação, um objetivo frequente é capacitar uma entidade (o

verificador) a corroborar que a identidade de outra entidade (o provador) corresponde

ao declarado, de sorte a impedir personificação por terceiros. Denominam-se as diversas

técnicas para tal de protocolos de identificação ou autenticação.

Normalmente isso se alcança reclamando ao provador que demonstre conhecer um

segredo, tal como uma senha ou a solução de um problema. Diz-se que a autenticação é

fraca quando o protocolo exige que o provador revele o segredo ao verificador, pois, uma

vez que o segredo é revelado, o verificador pode daí em diante personificar o provador.

Os protocolos de identificação do tipo desafio-resposta aperfeiçoam a autenticação

fazendo com que o provador responda a um desafio do verificador, a fim de demonstrar o

conhecimento do segredo de maneira variável com o tempo, impedindo que o verificador

reutilize diretamente a informação cedida pelo provador. Esse tipo de técnica é chamada

autenticação forte, pois o segredo em si não é revelado ao longo do protocolo.

Um protocolo desafio-resposta que torna possível a um provador demonstrar co-

nhecimento de um segredo sem revelar qualquer informação que possa ser usada pelo

verificador para personificá-lo é dito de conhecimento-zero.

8

1.2 Os Protocolos MQID-3 e MQID-5

Chama-se de problema MQ o problema de encontrar soluções para um sistema de

polinômios quadráticos multivariados sobre um corpo de Galois. Este problema é NP-

completo sobre qualquer corpo, podendo portanto ser usado para se construir protocolos

de identificação em que a solução para uma determinada instância do problema seja

o segredo do provador.1 Assim são construídos os protocolos de conhecimento-zero

MQID-3 e MQID-5.

Nesses protocolos, um provador começa dividindo seu segredo em partes e depois

demonstra a correção de algumas partes dependendo da escolha de um verificador sem

revelar o segredo em si. Toda função formada de polinômios quadráticos multivariados,

chamada de função MQ, possui uma forma polar bilinear que permite dividir o segredo

em três partes, possibilitando essa abordagem.

Diversos protocolos baseados no problema MQ já foram propostos, e são conhe-

cidos como MPKC (criptografia de chave-pública multivariável). Entretanto, sua se-

gurança é baseada não apenas no problema MQ, mas também em algum problema de

isomorfismo de polinômios, para os quais existe criptoanálise em andamento, tendo al-

guns desses esquemas já até se mostrado inseguros. Os protocolos MQID-3 e MQID-5,

baseando-se somente no problema MQ, prometem maior segurança. Por não haver al-

goritmo quântico eficiente conhecido para resolver o problema MQ, estes protocolos

são candidatos a proverem criptografia pós-quântica.

Uma função MQ pode ser usada como função de mão única de entrada e saída

pequenas, permitindo que os protocolos MQID-3 e MQID-5 sejam usados com chaves

menores do que outros protocolos.

1[Patarin e Goubin (1997)]

9

2 O Problema MQ

2.1 Preliminares

2.1.1 Corpos

Um conjunto K com ao menos dois elementos, fechado por duas operações de-

nominadas adição e multiplicação (denotadas respectivamente + e ·) satisfazendo os

axiomas abaixo para quaisquer elementos x,y, e z em K é chamado de corpo.

A Axiomas da adição:

1 Associatividade: várias ocorrências seguidas da operação adição podem ser

efetuadas em qualquer ordem contanto que não se altere a ordem dos termos,

i.e. (x+ y)+ z = x+(y+ z)

2 Comutatividade: a ordem dos termos não altera o resultado da operação, i.e.

x+ y = y+ x

3 Elemento neutro (zero): existe um elemento 0 ∈K tal que x+0 = x

4 Elemento simétrico: existe para cada x de K um elemento simétrico −x tal

que x+(−x) = x− x = 0

B Axiomas da multiplicação:

1 Associatividade: várias ocorrências seguidas da operação multiplicação po-

dem ser efetuadas em qualquer ordem contanto que não se altere a ordem

dos fatores, i.e. (x · y) · z = x · (y · z)

10

2 Comutatividade: a ordem dos fatores não altera o resultado da operação, i.e.

x · y = y · x

3 Elemento neutro (um): existe um elemento 1 ∈K tal que 1 6= 0 e x ·1 = x

4 Elemento inverso: existe para cada x 6= 0 de K um elemento inverso x−1 = 1
x

tal que x · x−1 = x
x = 1

C Axioma da distributividade: as operações de adição e multiplicação relacionam-se

de forma tal que x · (y+ z) = x · y+ x · z

Desses axiomas, decorrem as propriedades da unicidade dos elementos neutros, do

simétrico e do inverso e as leis de corte. Vejamos.

Suponhamos que haja 0 ∈ K tal que x+ 0 = x. Então x+ 0− x = x− x⇒ 0 = 0

(unicidade do zero). Suponhamos que x · y = x para todo x ∈ K. Então, tomando x =

1, temos que y = 1 (unicidade do um). Além disso, se y é tal que x+ y = 0, então

y = 0− x = −x (unicidade do simétrico). Se tivermos a igualdade x+ z = y+ z, então,

somando −z a ambos os membros obtemos x = y (lei do corte da adição). Se tivermos

x · z = y · z e z 6= 0, então, multiplicando z−1 a ambos os membros obtemos x = y (lei do

corte da multiplicação). Temos também que x ·0= 0 ∀ x∈K, pois x ·0+x= x ·0+x ·1=
x(0+1)= x ·1= x. Disto segue-se que, se x ·y= 0 e x 6= 0, então x ·y= x ·0⇒ x ·y ·x−1 =

x ·0 · x−1⇒ y = 0, e, portanto, se x · y = 1, então x 6= 0, y 6= 0 e, multiplicando por x−1,

y = x−1 (unicidade do inverso).

A característica de um corpo é o menor número de vezes que é necessário somar

o elemento um de modo a se obter o elemento zero. Se esta soma nunca alcançar o

elemento neutro da adição, então diz-se que a característica do corpo é zero.

Um corpo é dito de Galois se o conjunto de seus elementos é finito. A característica

de um corpo de Galois é sempre um número primo. Para verificá-lo, suponhemos que

a característica m de um dado corpo (K,+, ·) seja um número composto, isto é, m = st

para algum s e algum t com 1 < s < m e 1 < t < m. Como m é, por definição, o menor

número de vezes que se deve somar um para obter zero e s e t são menores do que

11

m, então, se somarmos um s vezes ou t vezes, obteremos elementos de K diferentes

de zero. Por distributividade, temos que (1+ . . .+1)︸ ︷︷ ︸
s vezes

·(1+ . . .+1)︸ ︷︷ ︸
t vezes

= (1+ . . .+1)︸ ︷︷ ︸
st=m vezes

= 0.

Encontramos pois dois elementos de K diferentes de zero cujo produto é igual a zero,

o que é uma contradição, decorrente da suposição de que m seja composto. Portanto m

deve ser obrigatoriamente primo.

O corpo dos números reais com as operações de soma e multiplicação típicas é um

exemplo de corpo de característica zero. O conjunto Zn é um corpo se e somente se n

for primo, e neste caso tem característica n.

2.1.2 Espaços Vetoriais

Um espaço vetorial sobre K consiste num conjunto não-vazio V onde se definem

uma operação chamada de adição, que associa a cada par de elementos u e v de V

um elemento u+ v de V , e uma operação chamada de multiplicação por escalar, que

associa a cada par de elementos k de K e u de V um elemento ku de V , de maneira que

satisfaçam os seguintes axiomas para todo u,v e w em V e todo k e m em K.

1. Comutatividade da adição: u+ v = v+u

2. Associatividade da adição: u+(v+w) = (u+ v)+w

3. Vetor nulo: existe um elemento 0 em V tal que 0+u = u+0 = u

4. Vetor simétrico: existe para cada u em V um elemento−u em V tal que u+(−u)=

u−u = 0

5. Distributividade da multiplicação por escalar em relação à adição: k(u+ v) =

ku+ kv

6. Distributividade da adição em relação à multiplicação por escalar: (k+m)u =

ku+mu

7. Associatividade da multiplicação por escalar: k(mu) = (km)(u)

12

8. Elemento neutro da multiplicação por escalar: multiplicar um vetor u pelo ele-

mento neutro multiplicativo do corpo não altera o vetor, isto é, 1u = u

Dado um corpo K, o conjunto de todas as ênuplas (k1,k2, . . . ,kn) de elementos de

K com adição e multiplicação por escalar componente a componente forma um espaço

vetorial sobre K, que denotamos Kn.

2.1.3 Bilinearidade

Sejam V e W espaços vetoriais sobre o corpo K. Diz-se que uma função f : V →W

é linear se, para quaisquer vetores u e v em V e qualquer escalar k em K, as condições

f (u+ v) = f (u)+ f (v) e f (ku) = k f (u) são satisfeitas.

Seja Y também um espaço vetorial sobre K. Uma função g : V ×W → Y tal que,

fixando w qualquer em W , a função v 7→ g(v,w) é linear de V em Y , e, fixando v qualquer

em V , a função w 7→ g(v,w) é linear de W em Y é dita bilinear.

2.2 Função MQ

Definimos a família de funções

MQ(n,m,Fq) :=

 F(x) = (f1(x), . . . , fm(x)) | fl(x) =
∑

i, j ali jxix j +
∑

i blixi ;

ali j,bli ∈ Fq ∀ l ∈ {1, . . . ,m}


(2.1)

onde n,m ∈N, Fq é um corpo de Galois de cardinalidade q e x = (x1, . . . ,xn) ∈ Fn
q. Uma

função qualquer F : Fn
q→ Fm

q ∈MQ(n,m,Fq) constitui um sistema de polinômios de

grau 2, e recebe o nome de função MQ. Por simplicidade, os polinômios não possuem

termos constantes, pois isto não afetará a complexidade do problema MQ.

Uma função G : Fn
q×Fn

q→ Fm
q da forma G(x,y) := F(x+ y)−F(x)−F(y) é cha-

mada forma polar de F . Podemos obter uma fórmula para as componentes gl da função

13

G:

∀ l ∈ {1, . . . ,m}, gl(x,y) := fl(x+ y)− fl(x)− fl(y)

fl(x+ y) =
n∑

i=1

i∑
j=1

ali j(xi + yi)(x j + y j)+
n∑

i=1
bli(xi + yi) =

=
n∑

i=1

i∑
j=1

ali j(xix j + xiy j + x jyi + yiy j)+
n∑

i=1
blixi +

n∑
i=1

bliyi =

= (
n∑

i=1

i∑
j=1

ali jxix j +
n∑

i=1
blixi)+(

n∑
i=1

i∑
j=1

ali jyiy j +
n∑

i=1
bliyi)+

n∑
i=1

i∑
j=1

ali j(xiy j + x jyi) =

= fl(x)+ fl(y)+
n∑

i=1

i∑
j=1

ali j(xiy j + x jyi)

=⇒ gl(x,y) =�
��fl(x)+�

��fl(y)+
n∑

i=1

i∑
j=1

ali j(xiy j + x jyi)−�
��fl(x)−�

��fl(y)

=⇒ gl(x,y) =
n∑

i=1

i∑
j=1

ali j(xiy j + x jyi), ∀ l ∈ {1, . . . ,m}
(2.2)

A função G é bilinear. A demonstração decorre da fórmula acima:

gl(x,y+ z) =
n∑

i=1

i∑
j=1

ali j(xi(y j + z j)+ x j(yi + zi)) =

=
n∑

i=1

i∑
j=1

ali j(xiy j + xiz j + x jyi + x jzi) =

=
n∑

i=1

i∑
j=1

ali j(xiy j + x jyi)+
n∑

i=1

i∑
j=1

ali j(xiz j + x jzi) =

= gl(x,y)+gl(x,z)

14

gl(x,ky) =
n∑

i=1

i∑
j=1

ali j(xiky j + x jkyi) =

=
n∑

i=1

i∑
j=1

ali jk(xiy j + x jyi) =

= k
n∑

i=1

i∑
j=1

ali j(xiy j + x jyi) =

= kgl(x,y)

∀ l ∈ {1, ...,m}; k ∈ Fq; x,y,z ∈ Fn
q

=⇒ G(x,y+ z) = G(x,y)+G(x,z); G(x,ky) = kG(x,y)

Como G é simétrica, prova-se de forma análoga a linearidade na primeira variável.

2.3 Problema

Dados Fq um corpo de Galois de cardinalidade q, n,m∈N, F :Fn
q→Fm

q ∈MQ(n,m,Fq)

uma função MQ e y = (y1, . . . ,ym) ∈ Fm
q , o problema MQ consiste em encontrar x =

(x1, . . . ,xn) ∈ Fn
q tal que F(x) = y, isto é, fi(x1, . . . ,xn) = yi ∀ i ∈ {1, . . . ,m}.

Definindo m matrizes Al triangulares n×n e m vetores bl de dimensão n da forma

Al :=



al11 0 0 . . . 0

al21 al22 0 . . . 0

al31 al32 al33 . . . 0
...

...
...

aln1 aln2 aln3 . . . alnn


, bl :=



bl1

bl2

bl3
...

bln


, (2.3)

sendo ali j e bli os coeficientes de F , podemos escrever F matricialmente, permitindo-

15

nos expressar o problema como encontrar x ∈ Fn
q tal que

xT A1x+bT
1 x

...

xT Amx+bT
mx

=


y1
...

ym

 . (2.4)

Esta representação permite-nos ver claramente o número de parâmetros necessários

para caracterizar um problema MQ. Os coeficientes de F cabem nas m matrizes Al e

vetores bl , que têm n2+n
2 (por serem triangulares) e n elementos significativos respecti-

vamente, totalizando m(n2+n
2 +n) parâmetros para descrever o sistema.

Há várias técnicas para resolver este problema, entre as quais as melhores são base-

adas em bases de Gröbner e busca por força bruta. Entretanto, mesmo os mais refinados

algoritmos possuem complexidade exponencial. O melhor algoritmo conhecido para

m = n≤ 200 foi concebido por Bouillaguet et al. e possibilita resolver o problema MQ

para F em MQ(n,m,F2) com complexidade 2n+2 · log2 n. 1 Não se conhece algoritmo

quântico eficiente para resolver o problema MQ.

Exemplo 2.1. Seja Z2 o nosso corpo de Galois, cuja cardinalidade é q = 2, e seja

F : Z2
2→ Z2

2 a seguinte  f1(x1,x2) = x2
1 + x2

2

f2(x1,x2) = x1x2 + x1 + x2
,

com n = 2 e m = 2, isto é, o nosso sistema tem 2 incógnitas e 2 equações. Dado y da

seguinte forma

y =

 1

1

 ,
há x ∈ Fn

q tal que F(x) = y? Afirmamos que x = (1,0) satisfaz F(x) = y. Verifica-se

1[Bouillaguet et al. (2010)Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, e Yang]

16

facilmente:

f1(1,0) = 12 +02 = 1

f2(1,0) = 1 ·0+1+0 = 1

Exemplo 2.2. Seja Z2 o nosso corpo de Galois, cuja cardinalidade é q = 2, e seja

F : Z5
2→ Z4

2 a seguinte

f1(x1, . . . ,x5) = x2
1 + x2

2 + x2x3 + x1x5 + x2x5 + x3x5 + x1

f2(x1, . . . ,x5) = x2
1 + x1x3 + x3x5 + x2 + x3

f3(x1, . . . ,x5) = x2
2 + x2x3 + x1x4 + x2x4 + x3x4 + x2 + x3 + x4

f4(x1, . . . ,x5) = x2
1 + x1x2 + x1x3 + x2

3 + x1x4 + x1x5 + x2x5 + x3x5 + x4x5 + x1 + x2 + x4

,

com n = 5 e m = 4, isto é, o nosso sistema tem 5 incógnitas e 4 equações. Dado y da

seguinte forma

y =


0

0

1

0

 ,

há x∈ Fn
q tal que F(x) = y? Afirmamos que x = (1,0,1,0,1) satisfaz F(x) = y. Verifica-

se facilmente:

f1(1,0,1,0,1) = 12 +02 +0 ·1+1 ·1+0 ·1+1 ·1+1 = 0

f2(1,0,1,0,1) = 12 +1 ·1+1 ·1+0+1 = 0

f3(1,0,1,0,1) = 02 +0 ·1+1 ·0+0 ·0+1 ·0+0+1+0 = 1

f4(1,0,1,0,1) = 12 +1 ·0+1 ·1+12 +1 ·0+1 ·1+0 ·1+1 ·1+0 ·1+1+0+0 = 0

17

3 Identificação Conhecimento-Zero

Protocolos de identificação de conhecimento-zero permitem demonstrar conheci-

mento de um segredo sem revelar informação alguma que possa ser usada pelo verifica-

dor para expressar essa mesma demonstração a outrem.

Eles são projetados para funcionar sem o uso de assinaturas digitais, criptografia de

chave-pública e cifras de bloco. Eles são em muito semelhantes aos protocolos desafio-

resposta ordinários, mas são baseados nos conceitos de sistemas de prova interativa e

provas de conhecimento-zero, empregando números aleatórios como desafios e também

como compromissos para prevenção de fraudes.

3.1 Esboço

Um sistema de prova interativa é um sistema no qual provador e verificador trocam

várias mensagens (desafios e respostas), geralmente em função de números aleatórios.

O objetivo do provador é demonstrar ao verificador a veracidade de uma afirmação, por

exemplo o dito conhecimento de um segredo. O verificador pode aceitar ou rejeitar a

demonstração. Entretanto, ao contrário das demonstrações matemáticas tradicionais, as

demonstrações fornecidas pelo provador não são absolutas, mas probabilísticas. Isso

significa que uma demonstração neste contexto necessita estar correta apenas com certa

probabilidade, talvez arbitrariamente próxima de 1.

Provas interativas para fins de identificação são formuladas como provas de conhe-

cimento. Alice tem posse de um segredo s, e pretende convencer Beto de que possui

18

conhecimento de s respondendo corretamente questões que envolvem informações pú-

blicas e funções padronizadas e requerem conhecimento de s para serem respondidas

corretamente.

3.2 Definições

3.2.1 Probabilidade Desprezível

Quando a probabilidade ε de um evento é expressada em função de um parâmetro

inteiro positivo l de segurança (ε : Z+→ [0,1]), dizemos que a probabilidade é despre-

zível se, para todo d ∈ N, existe l0 ∈ Z+ tal que, se l > l0, então ε(l)≤ 1
ld .

3.2.2 Correção

Um protocolo de identificação é dito correto se funciona apropriadamente com par-

ticipantes honestos, isto é, a probabilidade de que um provador honesto seja rejeitado

por um verificador honesto é desprezível. Em particular, se essa probabilidade é nula

então dizemos que a correção é perfeita.

3.2.3 Solidez

Dizemos que um algoritmo é eficiente se ele pode ser computado em tempo poli-

nomial em função do tamanho n de sua entrada, isto é, o algoritmo é O(f (n)) e existe

k ∈ R+ tal que f (n)≤ nk para n suficientemente grande.

Dizemos que um protocolo de identificação é sólido se funciona apropriadamente

com um provador desonesto, isto é, existe um algoritmo eficiente tal que, se um deter-

minado provador desonesto pode executar com sucesso o protocolo com um verificador

honesto com probabilidade não-desprezível, então esse algoritmo pode ser usado para,

à partir desse provador, extrair conhecimento suficiente para permitir execuções bem-

sucedidas consecutivas com probabilidade não-desprezível do protocolo.

19

Em outras palavras, para ser capaz de personificar um provador honesto com pro-

babilidade não-desprezível, faz-se necessário conhecer o seu segredo (ou algo equiva-

lente). Dessa forma, a solidez garante que o protocolo de fato nos dá uma prova de

conhecimento do segredo, pois ele é requerido para que o protocolo possa ser execu-

tado com sucesso. Por via de regra, estabelece-se a solidez de um protocolo supondo

a existência de um provador desonesto capaz de executar o protocolo com sucesso e

demonstrando que isso nos permite computar o segredo do provador verdadeiro.

3.2.4 Função de Hash

Uma função h : {0,1}∗→ {0,1}n é dita de hash se houver um algoritmo eficiente

para computá-la e se levar cadeias de bits de tamanho arbitrário a cadeias de tamanho n

fixo (denominadas hashes).

Pelo princípio da casa do pombo, haverá cadeias diferentes que serão levadas no

mesmo hash. A esse evento damos o nome de colisão. Uma função de hash é dita

à prova de colisões ou resitente a colisão quando não houver algoritmo eficiente que

encontre colisões, isto é, que encontre entradas diferentes cujos hashes são idênticos.

3.2.5 Função de mão única

Uma função f : A→ B é dita de mão única se houver um algoritmo eficiente para

computá-la, porém nenhum algoritmo eficiente para invertê-la, isto é, dado y ∈ Im(f),

encontrar x ∈ A tal que f (x) = y.

Como visto no capítulo anterior, a função MQ é uma função de mão única.

3.2.6 Indistinguibilidade

Sejam P1 e P2 duas distribuições de probabilidade em {0,1}n, isto é, no espaço de

cadeias de bits de tamanho n. Dizemos que P1 e P2 são computacionalmente indistin-

20

guíveis se, para todo algoritmo eficiente A : {0,1}n→{0,1},

| Pr
x←P1

[A(x) = 1]− Pr
x←P2

[A(x) = 1]|

é desprezível.

Dizemos que P1 e P2 são estatisticamente indistinguíveis se

∆(P1,P2) =
1
2

∑
α∈{0,1}n

|Pr[P1 = α]−Pr[P2 = α]|

é desprezível.

Dizemos que P1 e P2 são indistinguíveis quando forem ou idênticas, ou computaci-

onalmente indistinguíveis, ou estatisticamente indistinguíveis.

3.3 Protocolos de Conhecimento-zero

3.3.1 Propriedade de Conhecimento-zero

Uma prova interativa é dita ser prova de conhecimento se tiver as propriedades de

correção e solidez.

Um protocolo que é prova de conhecimento tem a propriedade de conhecimento-

zero se há um algoritmo eficiente (denominado simulador) capaz de produzir, à partir

da entrada da afirmação a ser verificada e sem interação com o provador verdadeiro,

transcrições indistinguíveis das resultantes da interação com o provador verdadeiro.

Esta propriedade implica que a execução do protocolo por um provador não revela

nenhuma informação que não seja computável à partir de informações públicas, ainda

que o provador esteja interagindo com um verificador desonesto. Entretanto, ela não

garante a segurança do protocolo a não ser que seja difícil computacionalmente de se

descobrir o segredo.

O conhecimento-zero é dito perfeito quando a distribuição de probabilidade do si-

21

mulador e da interação entre provador e verificador honestos são idênticas. Se forem

computacionalmente indistinguíveis, então o conhecimento-zero é dito computacional.

Finalmente, se forem estatisticamente indistinguíveis, então o conhecimento-zero é dito

estatístico.

3.3.2 Esquemas de Comprometimento

Um esquema de comprometimento serve para ocultar temporariamente uma deter-

minada informação, com a possibilidade de revelá-la posteriormente sem alterações,

isto é, sem que se possa modificar a informação após ter-se comprometido com ela.

Esquemas de comprometimento são particularmente úteis em provas de conhecimento-

zero. Eles permitem ao provador dividir seu segredo e apresentar ao verificador a opção

de qual parte verificar, podendo o provador comunicar todo o segredo de antemão es-

condido na forma de um compromisso e depois revelar somente o que corresponde à

escolha do verificador.

A definição formal de um esquema de comprometimento de cadeias C é a de um

protocolo em duas fases que faz uso de um algoritmo de compromisso de cadeias Com,

que recebe dois parâmetros s e ρ , onde s é a informação a ser ocultada e ρ é uma cadeia

aleatória denominada sal. Na primeira fase, o provador utiliza Com para computar um

valor de compromisso c, que é enviado ao verificador. Na segunda fase, o provador

envia (s,ρ) ao verificador, que por sua vez verifica se c =Com(s,ρ).

Um esquema de comprometimento seguro é ocultante e computacionalmente vin-

culante. Essas propriedades significam que dois valores de compromisso quaisquer são

indistinguíveis (i.e. é difícil extrair quaisquer informações a respeito de s à partir de c) e

que não há algoritmo eficiente capaz de encontrar s′ 6= s e ρ ′ não necessariamente igual

a ρ tais que Com(s′,ρ ′) =Com(s,ρ), respectivamente.

É possível construir esquemas de comprometimento de cadeias seguros à partir de

funções de hash à prova de colisões. 1

1[Halevi e Micali (1996)]

22

3.3.3 Estrutura Geral dos Protocolos

Protocolos de identificação de conhecimento-zero canônicos são compostos de 3

passos.

Alice−→ Beto: Comprometimento

Alice←− Beto: Desafio

Alice−→ Beto: Resposta

Inicialmente, o provador, que alega ser Alice, seleciona como compromisso secreto

um elemento aleatório de um conjunto predefinido e à partir dele computa um compro-

misso público. Isso define um conjunto de perguntas que o provador alega ser capaz

de responder corretamente, daí em diante restringindo a priori suas possíveis respostas.

O desafio sucessivo de Beto seleciona uma dessas perguntas. Alice então fornece sua

resposta, que Beto verifica se está correta. Se necessário, o protocolo pode ser reiterado

a fim de minimizar a probabilidade de embuste.

Normalmente utiliza-se uma função de mão única para determinar os segredos dos

provadores, sendo os elementos do domínio da função candidatos a segredo, e a sua

imagem os valores que permitirão verificá-los, pois isso torna fácil verificar a veracidade

dos segredos e ao mesmo tempo difícil de descobri-los. O segredo de um provador é

chamado de chave secreta, e o valor que permite a um verificador verificá-lo é a sua

respectiva chave pública.

3.4 Esquemas de Identificação

Um esquema de identificação é composto por um protocolo de identificação mais a

infraestrutura de chaves e os algoritmos necessários para preparar o seu uso, que são os

algoritmos de inicialização e de geração de chaves.

23

Formalmente, um esquema de identificação é uma tupla de algoritmos (Inicia,Gera,P,V).

Inicia recebe um parâmetro de segurança λ e devolve um conjunto de parâmetros do

sistema. Gera é um algoritmo de geração de chaves que recebe os parâmetros devolvi-

dos por Inicia e devolve um par de chaves pública e secreta. Finalmente, o par (P,V),

de provador e verificador respectivamente, constitui o protocolo de identificação cor-

respondente. Eles recebem os parâmetros de sistema e uma chave pública e P recebe

também uma chave secreta. Após a interação protocolar entre ambos, V devolve um

valor booleano representando o resultado da verificação.

24

4 Protocolos de Identificação MQID

Em 2011, os pesquisadores japoneses Koichi Sakumoto, Taizo Shirai, e Harunaga

Hiwatari apresentaram uma proposta de protocolos de identificação de conhecimento-

zero baseados somente no problema MQ. Até então, todos os sistemas criptográficos

propostos em cima do problema MQ baseavam-se também em algum problema de iso-

morfismo de polinômios, isto é, utilizavam-se de uma função MQ não-aleatória e duas

transformações afins para levá-la a uma instância aparentemente aleatória de uma fun-

ção MQ.

Isso faz da proposta dos pesquisadores japoneses uma ótima candidata para cripto-

grafia pós-quântica, isto é, para substituir os atuais sistemas criptográficos vulneráveis

aos vindouros computadores quânticos, pois, como vimos anteriormente, não se co-

nhece algoritmo quântico eficiente para resolver o problema MQ, fazendo-o intratável

até mesmo por computadores quânticos.

A proposta é composta de dois protocolos de identificação, um canônico de 3 passos

a que nos referimos por MQID-3 e um de 5 passos que chamamos MQID-5.

4.1 Princípios

Dada F : Fn
q → Fm

q ∈MQ(n,m,Fq) uma função MQ, v ∈ Fm
q e s ∈ Fn

q tais que

F(s) = v, temos, da equação 2.4 :

25

F(s) =


sT A1s+bT

1 s
...

sT Ams+bT
ms

=


v1
...

vm

= v

Al e bl são parâmetros do sistema e portanto comuns a todos seus usuários, s é a

chave secreta, isto é, o segredo sabido apenas pelo provador, e v é a chave pública, isto

é, informação partilhada que permite a uma parte verificar a identidade do provador que

alegar conhecer s.

A técnica usada para dividir o segredo s e demonstrar seu conhecimento consiste

em utilizar a forma polar G de F . Sejam r0 e r1 em Fn
q quaisquer tais que s = r0 + r1.

A chave pública v = F(r0 + r1) pode ser representada da forma v = F(r0)+F(r1)+

G(r0,r1) usando a forma polar. Esta representação não obstante contém ainda um termo

dependente de ambos r0 e r1.

Considere então a divisão adicional de r0 em r0 = t0 + t1 para algum t0 e algum

t1 em Fn
q, e de F(r0) em F(r0) = e0 + e1 para algum e0 e algum e1 em Fm

q . Usando a

bilinearidade de G, a chave pública pode ser dividida em duas partes:

v = e0 + e1 +F(r1)+G(t0 + t1,r1)

= e0 + e1 +F(r1)+G(t0,r1)+G(t1,r1)

=⇒ v = (G(t0,r1)+ e0)+(F(r1)+G(t1,r1)+ e1) (4.1)

Cada parte depende apenas ou da tupla (r1, t0,e0) ou da tupla (r1, t1,e1), e nenhuma

informação sobre a chave secreta s pode ser obtida de apenas uma das duas tuplas.

Faz-se uso de um esquema de comprometimento de cadeias C estatisticamente ocul-

tante e computacionalmente vinculante arbitrário.

26

4.2 Inicialização e Geração de Chaves

Os algoritmos de inicialização e geração de chaves que compõem os esquemas com-

pletos são idênticos para as duas versões do protocolo MQID.

Sejam n = n(λ), m = m(λ) e q = q(λ) funções polinomialmente limitadas de um

parâmetro de segurança λ . O algoritmo de inicialização Inicia escolhe como parâmetro

de sistema F aleatoriamente em MQ(n,m,Fq). O algoritmo gerador de chaves Gera

recebe F , escolhe um vetor aleatório s ∈ Fn
q, computa v = F(s) e devolve (v,s).

4.3 Protocolo MQID-3 de 3 passos

Dado que, se (r0,r1, t0, t1,e0,e1) são tais que

G(t0,r1)+ e0 = v−F(r1)−G(t1,r1)− e1 (4.2)

e

(t0,e0) = (r0− t1,F(r0)− e1) (4.3)

então v=F(r0+r1), basta logo o provador demonstrar que possui uma tupla (r0,r1, t0, t1,e0,e1)

que satisfaz as igualdades 4.2 e 4.3 para provar conhecimento do segredo.

No entanto, revelar esta tupla seria equivalente a revelar o segredo completo. Por-

tanto, no protocolo MQID-3 o provador revela, de acordo com um desafio Ch∈ {0,1,2}
do verificador, ou a tupla (r0, t1,e1), ou a tupla (r1, t1,e1), ou a tupla (r1, t0,e0). O ve-

rificador pode então conferir cada membro das equações 4.2 e 4.3 usando uma das três

tuplas. Como r0, t0 e e0 são escolhidos aleatoriamente, o verificador não obtém nenhuma

informação a respeito da chave secreta s à partir dela.

O protocolo MQID-3 é descrito na figura 4.1, onde Com é o algoritmo de compro-

misso de cadeias de C e "∈R" denota uma escolha de um elemento aleatório pertencente

a um conjunto finito. Por simplicidade, a cadeia aleatória ρ é omitida.

O verificador aceita o provador se ambas as verificações de “ ?
=" resultarem em

27

Provador, entrada: ((F,v),s) Verificador, entrada: (F,v)

Escolha r0, t0 ∈R Fn
q, e0 ∈R Fm

q

r1← s− r0, t1← r0− t0
e1← F(r0)− e0

c0←Com(r1,G(t0,r1)+ e0)

c1←Com(t0,e0)

c2←Com(t1,e1)

(c0,c1,c2)−−−−−−−−−−→
Escolha Ch ∈R {0,1,2}

Ch←−−−−−−−−−−
Se Ch = 0, Rsp← (r0, t1,e1)

Se Ch = 1, Rsp← (r1, t1,e1)

Se Ch = 2, Rsp← (r1, t0,e0)

Rsp−−−−−−−−−−→
Se Ch = 0, leia Rsp = (r0, t1,e1), verifique

c1
?
=Com(r0− t1,F(r0)− e1)

c2
?
=Com(t1,e1)

Se Ch = 1, leia Rsp = (r1, t1,e1), verifique

c0
?
=Com(r1,v−F(r1)−G(t1,r1)− e1)

c2
?
=Com(t1,e1)

Se Ch = 2, leia Rsp = (r1, t0,e0), verifique

c0
?
=Com(r1,G(t0,r1)+ e0)

c1
?
=Com(t0,e0)

Figura 4.1: Descrição do protocolo MQID-3

28

igualdades. Se não, ele o rejeita. Como o verificador sempre aceita um provador ho-

nesto, então o protocolo é correto. Ademais, se C é computacionalmente vinculante,

verifica-se que um provador desonesto tem 2/3 de probabilidade de personificar com

êxito o provador honesto em cada execução do protocolo. Isso significa que, dadas sufi-

cientes iterações do protocolo, a probabilidade de personificação bem sucedida em todas

as iterações pode ser tão pequena quanto se queira, e portanto desprezível. Isso implica

que o protocolo é sólido. O protocolo MQID-3 é portanto prova de conhecimento, pois

possui correção e solidez. Se o esquema de comprometimento de cadeias C é estatisti-

camente ocultante, então verifica-se que o protocolo MQID-3 possui a propriedade de

conhecimento-zero estatístico. Como além disso o problema MQ é computacionalmente

difícil, então o protocolo é considerado seguro.

Exemplo 4.1. (Execução do protocolo MQID-3 com parâmetros artificialmente peque-

nos) Seja o parâmetro de sistema F do nosso esquema MQID-3 de exemplo a função

MQ descrita no exemplo 2.1, a saber:

A1 =

1 0

0 1

 , A2 =

0 0

1 0

 , b1 =

 0

0

 e b2 =

 1

1

 .
Suponhamos, para simplificar, que o algoritmo de compromisso de cadeias Com uti-

lizado em nosso esquema seja somente a soma dos dois parâmetros s e ρ (i.e. s é

concatenado e interpretado como uma representação de um número inteiro que é então

somado ao sal ρ). Observe que o esquema de comprometimento resultante não é nem

ocultante nem computacionalmente vinculante, servindo portanto apenas de exemplo.

Alice utiliza Gera e recebe como chaves secreta e pública aleatórias os vetores x e

y do exemplo 2.1, respectivamente. A chave secreta de Alice é então s = (1,0) e sua

chave pública é v = (1,1).

Alice deseja então provar sua identidade para Beto. O seguinte se sucede:

1. Alice escolhe aleatoriamente r0 = (1,1), t0 = (0,0), e0 = (1,1) e ρ = 15.

2. Alice computa r1 = (1,0)− (1,1) = (0,1), t1 = (1,1)− (0,0) = (1,1) e e1 =

29

F(1,1)− (1,1) = (1,0).

3. Alice computa os valores de compromisso c0 = 22, c1 = 18 e c2 = 29 e os envia

a Beto.

4. Beto escolhe aleatoriamente Ch = 1 e o envia a Alice.

5. Alice responde enviando a Beto o vetor (r1, t1,e1,ρ).

6. Beto computa, com os dados fornecidos por Alice:

(a) v−F(r1)−G(t1,r1)− e1 = (1,1)− (1,1)− (0,1)− (1,0) = (1,1);

(b) Com(r1,(1,1),ρ) = 22 e Com(t1,e1,ρ) = 29.

7. Beto aceita a identidade de Alice pois c0 = 22 e c2 = 29.

4.4 Protocolo MQID-5 de 5 passos

No protocolo de 5 passos, o provador divide sua chave secreta s e sua chave pública

F(s) em s = r0 + r1 e F(s) = F(r0 + r1) = F(r0)+F(r1)+G(r0,r1), respectivamente.

A diferença do protocolo de 3 passos é que r0 e F(r0) são divididos em αr0 = t0 + t1
e αF(r0) = e0 + e1, onde α ∈ Fq é escolhido pelo verificador. Após enviar (t1,e1) ao

verificador, segundo um desafio Ch ∈ {0,1}, o provador revela apenas um dentre os

dois vetores r0 e r1. Quando r0, t0 e e0 são escolhidos aleatoriamente, o verificador não

pode obter informação alguma sobre a chave secreta s à partir de apenas um dos dois

vetores. Por outro lado, a prova é prova de conhecimento pois, para mais de uma escolha

de α ∈ Fq, um personificador é incapaz de responder a ambos os desafios possíveis do

verificador a não ser que conheça uma solução s para o problema MQ em v.

O protocolo MQID-5 é descrito na figura 4.2, onde Com é o algoritmo de compro-

misso de cadeias de C e "∈R" denota uma escolha de um elemento aleatório pertencente

a um conjunto finito. Por simplicidade, a cadeia aleatória ρ é omitida.

30

Provador, entrada: ((F,v),s) Verificador, entrada: (F,v)

Escolha r0, t0 ∈R Fn
q, e0 ∈R Fm

q

r1← s− r0

c0←Com(r0, t0,e0)

c1←Com(r1,G(t0,r1)+ e0)

(c0,c1)−−−−−−−−−→
Escolha α ∈R Fq

α←−−−−−−−−−
t1← αr0− t0
e1← αF(r0)− e0

(t1,e1)−−−−−−−−−→
Escolha Ch ∈R {0,1}

Ch←−−−−−−−−−
Se Ch = 0, Rsp← r0

Se Ch = 1, Rsp← r1

Rsp−−−−−−−−−→
Se Ch = 0, leia Rsp = r0, verifique

c0
?
=Com(r0,αr0− t1,αF(r0)− e1)

Se Ch = 1, leia Rsp = r1, verifique

c1
?
=Com(r1,α(v−F(r1))−G(t1,r1)− e1)

Figura 4.2: Descrição do protocolo MQID-5

31

O verificador aceita o provador se a verificação de “ ?
=" resultar em igualdade. Se

não, ele o rejeita. Como anteriormente, o verificador sempre aceita um provador ho-

nesto, sendo o protocolo portanto correto. Se C é computacionalmente vinculante,

verifica-se que um provador desonesto tem 1/2+ 1/2q de probabilidade de executar

o protocolo com êxito com um verificador honesto. Isso significa que, dadas suficien-

tes iterações do protocolo, a probabilidade de personificação bem sucedida em todas as

iterações pode ser tão pequena quanto se queira, e portanto desprezível. O protocolo é

portanto sólido. Logo, o protocolo MQID-5 é prova de conhecimento. Se C é estatis-

ticamente ocultante, então verifica-se ademais que o protocolo é de conhecimento-zero

estatístico. Como além disso o problema MQ é computacionalmente difícil, então o

protocolo é considerado seguro.

Exemplo 4.2. (Execução do protocolo MQID-5 com parâmetros artificialmente peque-

nos) Suponhamos que Alice e Beto sejam os mesmos e usem o mesmo esquema do

exemplo 4.1, exceto que desta vez eles querem utilizar o protocolo de 5 passos para

efetuar a identificação. Suponhamos também que Alice sorteia os mesmos valores para

ρ e os vetores r0, t0 e e0, por simplicidade. O seguinte se sucede:

1. Alice escolhe aleatoriamente r0 = (1,1), t0 = (0,0), e0 = (1,1) e ρ = 15.

2. Alice computa r1 = (1,0)− (1,1) = (0,1).

3. Alice computa os valores de compromisso c0 = 66 e c1 = 22 e os envia a Beto.

4. Beto escolhe aleatoriamente α = 0 e o envia a Alice.

5. Alice computa t1 = 0 · (1,1)− (0,0) = (0,0) e e1 = 0 · (0, l)− (1,1) = (1,1) e os

envia a Beto.

6. Beto escolhe aleatoriamente Ch = 1 e o envia a Alice.

7. Alice envia r1 para Beto.

8. Beto computa, com os dados fornecidos por Alice:

32

(a) α(v−F(r1))−G(t1,r1)− e1 = (0,0)− (0,0)− (1,1) = (1,1);

(b) Com(r1,(1,1),ρ) = 22.

9. Beto aceita a identidade de Alice pois c1 = 22.

33

5 Aplicações

Dentre os principais usos de identificação está simplificar o controle de acesso a um

recurso quando o direito de acesso está ligado a uma identidade em particular. Ela pode

ser usada também para rastrear o uso de recursos a fim de limitá-lo ou cobrá-lo.

Identificação é geralmente um requisito em protocolos de troca de chaves e está

particularmente relacionada a esquemas de assinatura digital. Em alguns casos, esque-

mas de identificação podem ser convertidos em esquemas de assinatura digital usando

técnicas padronizadas. Neste capítulo vamos explorar essa aplicação e uma melhoria do

protocolo MQID-3 indicada para aplicações em assinaturas digitais e em dispositivos

embarcados com limitações de energia.

5.1 Assinaturas Digitais

Assinaturas digitais são como as correspondentes digitais das assinaturas manuscri-

tas. Elas permitem verificar se uma parte de fato assinou determinada mensagem. A

assinatura digital de uma mensagem é um número dependente da mensagem em si e de

algum segredo conhecido apenas pelo assinante. Ela deve ser verificável sem que seja

necessário o conhecimento da informação secreta do assinante.

Um esquema de assinatura digital é uma tupla de algoritmos (Inicia,Gera,Assina,Veri f ica).

Inicia recebe um parâmetro de segurança κ e devolve um conjunto de parâmetros do

sistema. Gera é um algoritmo de geração de chaves que recebe os parâmetros devol-

vidos por Inicia e devolve um par de chaves pública e secreta. Assina é um algoritmo

34

probabilístico que emite uma assinatura σ à partir de uma chave secreta e uma certa

mensagem. Veri f ica é um algoritmo determinístico que recebe uma assinatura σ e uma

chave pública e devolve um valor booleano representando o resultado da verificação.

5.2 Heurística de Fiat-Shamir

Em 1986, os pesquisadores israelenses Amos Fiat e Adi Shamir criaram um mé-

todo para se obter provas de conhecimento-zero não-interativas à partir de protocolos

de identificação de conhecimento-zero canônicos. Isso permite a construção de um es-

quema de assinatura a partir de esquemas de identificação. O método ficou conhecido

como transformação Fiat-Shamir.

Assina (s,msg)

{

Com← P(s);

Ch← h(Com,msg);

Rsp← P(s,Com,Ch);

Devolver Com,Rsp;

}

Verifica (v,msg,σ)

{

Com,Rsp← σ ;

Ch← h(Com,msg);

Bool←V (v,Com,Ch,Rsp);

Devolver Bool;

}

Figura 5.1: Pseudocódigo dos algoritmos do esquema de assinatura

A transformação consiste em substituir o desafio aleatório do verificador por um

hash da concatenação do compromisso do provador com a mensagem a ser assinada.

Usa-se os algoritmos Inicia e Gera do esquema de identificação a ser transformado sem

modificação como os respectivos algoritmos Inicia e Gera do novo esquema de assi-

natura. O Assina computa à partir de uma chave secreta um compromisso usando P,

concatena-o com a mensagem e alimenta-o a uma função de hash h, cujo resultado é

então devolvido a P como desafio. A resposta de P é então concatenada com o com-

35

promisso e devolvida como assinatura σ . O algoritmo Veri f ica utiliza a metade de σ

correspondente ao compromisso, concatenando-a com a mensagem a ser verificada e

alimentando-o a h. O resultado é alimentado a V juntamente com o próprio σ e, claro,

uma chave pública. A resposta de V é usada então como a resposta de Veri f ica.

5.3 Protocolo de Identificação MQID-3A

Em 2012, o pesquisador brasileiro Fábio S. Monteiro apresentou um aprimoramento

do algoritmo MQID-3 que reduz o trâmite de dados entre as partes provadora e verifi-

cadora.

A melhoria consiste em dividir adicionalmente parte do segredo em r1 = d0 +d1 e

de F(r1) em F(r1) = u0 +u1. A equação 4.2 pode ser então aplicada a r1:

G(r0,d1)+u1 = v−F(r0)−G(r0,d0)−u0 (5.1)

Dessa forma, basta o provador demonstrar que conhece uma tupla (r0,r1, t0, t1,e0,e1,d0,d1,u0,u1)

que satisfaz 4.2, 4.3, 5.1 e 5.2.

(d0,u0) = (r1−d1,F(r1)−u1) (5.2)

Como revelar esta tupla seria equivalente a revelar o segredo completo, o provador

no protocolo MQID-3A revela, de acordo com um desafio Ch ∈ {0,1,2,3} do verifica-

dor, ou a tupla (r1, t1,e1,d0,u0), ou a tupla (r1, t0,e0,d1,u1), ou a tupla (r0, t0,e0,d1,u1),

ou a tupla (r0, t1,e1,d0,u0). O verificador pode então conferir cada membro das equa-

ções acima sem obter nenhuma informação a respeito da chave secreta s, conforme

esquematizado na figura 5.2.

O protocolo MQID-3A é prova de conhecimento-zero estatístico como o MQID-3,

porém com probabilidade de erro 1/2 ao invés de 2/3. Isso significa que menos itera-

ções são necessárias para se atingir o nível de segurança desejado. Assim a comunicação

36

Provador, entrada: ((F,v),s) Verificador, entrada: (F,v)

Escolha r0, t0,d0 ∈R Fn
q, e0,u0 ∈R Fm

q

r1← s− r0, t1← r0− t0, d1← r1−d0

e1← F(r0)− e0, u1← F(r1)−u0

c0←Com(r0,G(r0,d1)+u1)

c1←Com(r1,G(t0,r1)+ e0)

c2←Com(t0,e0), c3←Com(t1,e1)

c4←Com(d0,u0), c5←Com(d1,u1)

(c0 ,c1,c2 ,c3 ,c4 ,c5)−−−−−−−−−−−−→
Escolha Ch ∈R {0,1,2,3}

Ch←−−−−−−−−−−−−
Se Ch = 0, Rsp← (r1, t1,e1,d0,u0)

Se Ch = 1, Rsp← (r1, t0,e0,d1,u1)

Se Ch = 2, Rsp← (r0, t0,e0,d1,u1)

Se Ch = 3, Rsp← (r0, t1,e1,d0,u0)

Rsp−−−−−−−−−−−−→
Se Ch = 0, leia Rsp = (r1, t1,e1,d0,u0), verifique

c1
?
=Com(r1,v−F(r1)−G(t1,r1)− e1)

c3
?
=Com(t1,e1)

c4
?
=Com(d0,u0)

c5
?
=Com(r1−d0,F(r1)−u0)

Se Ch = 1, leia Rsp = (r1, t0,e0,d1,u1), verifique

c1
?
=Com(r1,G(t0,r0)+ e0)

c2
?
=Com(t0,e0)

c4
?
=Com(r1−d1,F(r1)−u1)

c5
?
=Com(d1,u1)

Se Ch = 2, leia Rsp = (r0, t0,e0,d1,u1), verifique

c0
?
=Com(r0,G(r0,d1)+u1)

c2
?
=Com(t0,e0)

c3
?
=Com(r0− t0,F(r0)− e0)

c5
?
=Com(d1,u1)

Se Ch = 3, leia Rsp = (r0, t1,e1,d0,u0), verifique

c0
?
=Com(r0,v−F(r0)−G(r0,d0)−u0)

c2
?
=Com(r0− t1,P(r0)− e1)

c3
?
=Com(t1,e1)

c4
?
=Com(d0,u0)

Figura 5.2: Descrição do protocolo MQID-3A

37

necessária entre provador e verificador é menor, resultando em economia de energia em

dispositivos embarcados onde a transmissão de dados é dispendiosa. Além disso, o de-

safio do verificador nesta versão do protocolo cabe em 2 bits sem sobras, facilitando a

implementação de uma função de hash para transformá-lo por Fiat-Shamir.

38

APÊNDICE A -- Implementação de exemplo

Disponibilizamos abaixo o código fonte em C de uma implementação ingênua dos

protocolos MQID-3 e MQID-5 criada para estudo. O programa abaixo não deve ser

utilizado em qualquer aplicação prática, pois o gerador de números pseudo-aleatórios

empregado não é seguro. Foi utilizada a função de hash Whirlpool do professor Paulo

S. L. M. Barreto da Escola Politécnica da Universidade de São Paulo, cujo código fonte

não está incluso. O código também pode ser obtido com maior facilidade em http:

//www.linux.ime.usp.br/~cfilipe/tcc/mqid.tar.gz.

A.1 field.h

1 /* generic interface for finite-field operations */

2

3 typedef int Field;

4

5 /* returns the order in use */

6 int getOrder();

7

8 /* adds two field elements (modulo order addition) */

9 Field add(Field a, Field b);

10

11 /* multiplies two field elements (modulo order multiplication) */

12 Field mult(Field a, Field b);

13

http://www.linux.ime.usp.br/~cfilipe/tcc/mqid.tar.gz
http://www.linux.ime.usp.br/~cfilipe/tcc/mqid.tar.gz

39

14 /* returns the zero element of the field (s.t. x+0 = x, x*0 = 0)

*/

15 Field zero();

16

17 /* returns -a (s.t. a + (-a) = 0) */

18 Field neg(Field a);

19

20 /* whether a is zero or not */

21 int isZero(Field a);

22

23 /* adds two n-dimentional vectors on the field */

24 Field * vadd(Field *a, Field *b, int n);

25

26 /* subtracts two n-dimentional vectors on the field */

27 Field * vsub(Field *a, Field *b, int n);

28

29 /* performs scalar multiplication on a vector */

30 void vmult(Field *a, Field x, int n);

31

32 /* returns a string on the heap containing a hex representation of

a vector */

33 char * tohexstr(Field *a, int n);

MQID/field.h

A.2 field2.c

1 /* order 2 implementation of field.h interface */

2

3 #include <stdlib.h>

4 #include "field.h"

5

6 static int order = 2;

7

8 int getOrder()

40

9 {

10 return order;

11 }

12

13 Field add(Field a, Field b)

14 {

15 return a ^ b;

16 }

17

18 Field mult(Field a, Field b)

19 {

20 return a & b;

21 }

22

23 Field zero()

24 {

25 return 0;

26 }

27

28 Field neg(Field a)

29 {

30 return a;

31 }

32

33 int isZero(Field a)

34 {

35 return !a;

36 }

37

38 Field * vadd(Field *a, Field *b, int n)

39 {

40 int i;

41

42 for (i = 0; i < n; i++)

43 a[i] = add(a[i], b[i]);

44

41

45 return a;

46 }

47

48 Field * vsub(Field *a, Field *b, int n)

49 {

50 return vadd(a, b, n); /* addition and subtraction are

equivalent in GF(2) */

51 }

52

53 void vmult(Field *a, Field x, int n)

54 {

55 int i;

56

57 for(i = 0; i < n; i++)

58 a[i] = mult(a[i], x);

59 }

60

61 char * tohexstr(Field *a, int n)

62 {

63 int i, j, m, p;

64 char s;

65 char *str;

66

67 p = m = (n + 3) / 4;

68

69 if(m % 2 == 0)

70 str = malloc((m + 1) * sizeof(char));

71 else { /* this is because we want an even number of

hexadecimal digits */

72 m++;

73 str = malloc((m + 1) * sizeof(char));

74 str[0] = ’0’;

75 }

76 str[m] = ’\0’;

77

78 for (i = 0; i < p; ++i) {

42

79 int q = 4*i, t;

80

81 s = 0;

82 t = 1;

83 for (j = 0; j < 4 && (q + j) < n; ++j) {

84 s += a[q + j]*t;

85 t *= 2;

86 }

87

88 if (s < 10)

89 str[m-(i+1)] = ’0’ + s;

90 else

91 str[m-(i+1)] = ’A’ + s - 10;

92 }

93

94 return str;

95 }

MQID/field2.c

A.3 field2_4.c

1 /* order 16 implementation of field.h interface */

2 /* GF(2^4) with decimal 19 as primitive */

3

4 #include <stdlib.h>

5 #include "field.h"

6

7 static int order = 16;

8

9 int getOrder()

10 {

11 return order;

12 }

13

43

14 Field add(Field a, Field b)

15 {

16 return (a ^ b) % order;

17 }

18

19 Field mult(Field a, Field b)

20 {

21 int p = 0;

22 int i;

23 int carry;

24 for (i = 0; i < 4; i++) {

25 if (b & 1)

26 p ^= a;

27 carry = (a & 8);

28 a <<= 1;

29 if (carry)

30 a ^= 19; /* x^4 + x + 1 */

31 b >>= 1;

32 }

33 return p % order;

34 }

35

36 Field zero()

37 {

38 return 0;

39 }

40

41 Field neg(Field a)

42 {

43 return a;

44 }

45

46 int isZero(Field a)

47 {

48 return (a == 0);

49 }

44

50

51 Field * vadd(Field *a, Field *b, int n)

52 {

53 int i;

54

55 for (i = 0; i < n; i++)

56 a[i] = add(a[i], b[i]);

57

58 return a;

59 }

60

61 Field * vsub(Field *a, Field *b, int n)

62 {

63 int i;

64

65 for (i = 0; i < n; i++)

66 a[i] = add(a[i], neg(b[i]));

67

68 return a;

69 }

70

71 void vmult(Field *a, Field x, int n)

72 {

73 int i;

74

75 for(i = 0; i < n; i++)

76 a[i] = mult(a[i], x);

77 }

78

79 char * tohexstr(Field *a, int n)

80 {

81 int i, m;

82 char *str;

83

84 if(n % 2 == 0) {

85 m = n + 1;

45

86 str = malloc(m * sizeof(char));

87 str[n] = ’\0’;

88

89 } else { /* this is because we want an even number of

hexadecimal digits */

90 m = n + 2;

91 str = malloc(m * sizeof(char));

92 str[0] = ’0’;

93 str[n+1] = ’\0’;

94 }

95

96 for (i = 0; i < n; ++i) {

97 if (a[i] < 10)

98 str[m-(i+2)] = ’0’ + (char)(a[i]);

99 else

100 str[m-(i+2)] = ’A’ + (char)(a[i]) - 10;

101 }

102

103 return str;

104 }

MQID/field2_4.c

A.4 mqid.h

1 /* MQID-3 and MQID-5 generic interfaces */

2

3 #include "field.h"

4 #include "Whirlpool/Whirlpool.h"

5

6 typedef struct mqid *MQIDScheme; /* stores a reference for the

scheme and its data */

7

8 typedef Field *MQID_key; /* a key is a vector of field elements */

9

46

10

11 /* returns the size of all commitment strings */

12 int getComStrSize();

13

14 /* initializes a mxn sized scheme with random parameters */

15 MQIDScheme setupMQIDScheme (int m, int n);

16

17 /* returns the number of equations of a scheme */

18 int MQID_getm(MQIDScheme s);

19

20 /* returns the number of unknowns of a scheme */

21 int MQID_getn(MQIDScheme s);

22

23 /* returns the quadratic coefficients */

24 Field MQID_geta(MQIDScheme s, int k, int i, int j);

25

26 /* returns the linear coefficients */

27 Field MQID_getb(MQIDScheme s, int k, int i);

28

29 /* F(x) */

30 MQID_key MQID_F(MQIDScheme s, MQID_key x);

31

32 /* G(x,y) */

33 MQID_key MQID_G(MQIDScheme s, MQID_key x, MQID_key y);

34

35 /* key-generation algorithm */

36 void MQID_Gen(MQIDScheme s, MQID_key *pk, MQID_key *sk);

37

38 /* sorts a uniformly distributed random m-dimentional Field array

*/

39 MQID_key MQID_unidrndkey(int m);

40

41 // takes as parameters n keys and its respective sizes, computes

the commitment scheme function on them

42 // puts it on comstr and returns it

47

43 // sample usage: comstr = MQID_com(comstr, 3, key1, n1, key2, n2,

key3, n3)

44 char * MQID_Com(char * comstr, int n, ...);

45

46 // clears memory

47 void clearMQIDScheme(MQIDScheme s);

MQID/mqid.h

A.5 mqid.c

1 /* sample naive implementation of Sakumoto, Shirai and Hiwatari’s

2 * public-key id. scheme based on the MQ problem

3 *

4 * WARNING: this is a naive implementation made for academic

purposes and

5 * shouldn’t be put to security sensitive use

6 *

7 * NOTE: this implementation does not provide a mechanism to store

scheme system

8 * parameter data

9 *

10 * by: Carlos Filipe Lombizani

11 * cfilipe@linux.ime.usp.br

12 */

13

14 #include <stdlib.h>

15 #include <stdarg.h>

16 #include <string.h>

17 #include "mqid.h"

18

19 struct mqid {

20 /* system parameters */

21 int m; /* equations */

22 int n; /* unknowns */

48

23

24 /* coefficient matrixes */

25 Field ***a; /* quadratic */

26 Field **b; /* linear */

27 };

28

29 int getComStrSize(){

30 return HEXHASHSIZE;

31 }

32

33 /* initialization */

34 MQIDScheme setupMQIDScheme (int m, int n)

35 {

36 int i, j, l, row;

37 int sizeA, sizeB;

38 MQIDScheme s;

39

40 sizeA = m * (n * n + n)/2;

41 sizeB = n * m;

42

43 /* alocacao de espaco e configuracao de ponteiros */

44 s = malloc(sizeof(struct mqid));

45 s->n = n;

46 s->m = m;

47

48 s->a = malloc(m * sizeof(Field **));

49 s->a[0] = malloc(sizeB * sizeof(Field *));

50

51 for (i = 1; i < m; i++) {

52 s->a[i] = s->a[i-1] + n;

53 }

54

55 s->a[0][0] = malloc(sizeA * sizeof(Field));

56

57 j = 1;

58 row = 0;

49

59 for (i = 0; i < m; i++) {

60 while (j < n) {

61 int set = i;

62 if (row == n - 1)

63 set--;

64 s->a[i][j] = s->a[set][row] + (row + 1);

65 if (row == n - 1)

66 set++;

67 j++; row++;

68 row = row % n;

69 }

70 j = 0;

71 }

72

73 s->b = malloc(m * sizeof(Field *));

74 s->b[0] = malloc(sizeB * sizeof(Field));

75

76 for (i = 1; i < m; i++) {

77 s->b[i] = s->b[i-1] + n;

78 }

79

80 for (l = 0; l < m; l++)

81 for (i = 0; i < n; i++) {

82 for (j = 0; j <= i; j++) {

83 s->a[l][i][j] = rand() % getOrder();

84 }

85 s->b[l][i] = rand() % getOrder();

86 }

87

88 return s;

89 }

90

91 int MQID_getm(MQIDScheme s)

92 {

93 return s->m;

94 }

50

95

96 int MQID_getn(MQIDScheme s)

97 {

98 return s->n;

99 }

100

101 Field MQID_geta(MQIDScheme s, int l, int i, int j)

102 {

103 /* boundcheck */

104 if (l >= s->m || i >= s-> n || j > i)

105 return -1;

106

107 return s->a[l][i][j];

108 }

109

110 Field MQID_getb(MQIDScheme s, int l, int i)

111 {

112 /* boundcheck */

113 if (l >= s->m || i >= s->n)

114 return -1;

115

116 return s->b[l][i];

117 }

118

119 /* calcula y = F(x) */

120 MQID_key MQID_F(MQIDScheme s, MQID_key x)

121 {

122 int l, i, j;

123 MQID_key y;

124

125 y = malloc(s->m * sizeof(Field));

126

127 for (l = 0; l < s->m; l++) {

128 y[l] = zero();

129 for (i = 0; i < s->n; i++) {

130 y[l] = add(y[l], mult(s->b[l][i], x[i]));

51

131 for (j = 0; j <= i; j++)

132 y[l] = add(y[l], mult(s->a[l][i][j], mult(x[i], x[

j])));

133 }

134 }

135

136 return y;

137 }

138

139 /* computes the polar form F(x+y)-F(x)-F(y) = G(x,y) */

140 MQID_key MQID_G(MQIDScheme s, MQID_key x, MQID_key y)

141 {

142 int l, i, j;

143 MQID_key g;

144

145 g = malloc(s->m * sizeof(Field));

146

147 for (l = 0; l < s->m; l++) {

148 g[l] = zero();

149 for (i = 0; i < s->n; i++)

150 for (j = 0; j <= i; j++)

151 g[l] = add(g[l], mult(s->a[l][i][j], add(mult(x[j

], y[i]), mult(x[i], y[j]))));

152 }

153

154 return g;

155 }

156

157 void MQID_Gen(MQIDScheme s, MQID_key *pk, MQID_key *sk)

158 {

159 *sk = MQID_unidrndkey(s->n);

160 *pk = MQID_F(s, *sk);

161 }

162

163 MQID_key MQID_unidrndkey(int m)

164 {

52

165 MQID_key key;

166 int l;

167

168 key = malloc(m * sizeof(Field));

169

170 for (l = 0; l < m; l++)

171 key[l] = rand() % getOrder();

172

173 return key;

174 }

175

176 /* String commitment scheme */

177 char * MQID_Com(char * comstr, int n, ...)

178 {

179 va_list ap;

180 int i, m;

181 MQID_key k;

182 char * auxstr, * tmpstr, * hex;

183

184 auxstr = malloc(sizeof(char));

185 auxstr[0] = ’\0’;

186

187 va_start(ap, n);

188 for (i = 0; i < n; i++) {

189 k = va_arg(ap, MQID_key);

190 m = va_arg(ap, int);

191

192 hex = tohexstr(k, m);

193 tmpstr = malloc((strlen(auxstr) + strlen(hex) + 1) *

sizeof(char));

194 tmpstr[0] = ’\0’;

195 tmpstr = strcat(tmpstr, auxstr);

196 tmpstr = strcat(tmpstr, hex);

197

198 free(auxstr);

199 auxstr = tmpstr;

53

200 }

201

202 comstr = whirlpoolsum(comstr, tmpstr);

203

204 free(tmpstr);

205

206 return comstr;

207 }

208

209 void clearMQIDScheme(MQIDScheme s)

210 {

211 free(s->b[0]);

212 free(s->b);

213 free(s->a[0][0]);

214 free(s->a[0]);

215 free(s->a);

216 free(s);

217 }

MQID/mqid.c

A.6 mqid3.h

1 /* MQID-3 specific interface */

2

3 #include "mqid.h"

4

5 /* store prover and verifier data */

6 typedef struct mqid3_prover *MQID3_prover;

7 typedef struct mqid3_verifier *MQID3_verifier;

8

9 /* step-by-step protocol algorithm implementation */

10

11 MQID3_prover prover1stStep(MQIDScheme s, MQID_key sk, char * c0,

char * c1, char * c2);

54

12

13 MQID_key * prover2ndStep(MQID3_prover p, char ch);

14

15 MQID3_verifier verifier1stStep(MQIDScheme s, MQID_key pk, char *

c0, char * c1, char * c2, char * ch);

16

17 int verifier2ndStep(MQID3_verifier v, MQID_key * rsp);

18

19 /* clears everything up */

20 void clearMQID3(MQID3_prover p, MQID3_verifier v);

MQID/mqid3.h

A.7 mqid3.c

1 /* sample naive implementation of Sakumoto, Shirai and Hiwatari’s

2 * 3-pass public-key id. scheme based on the MQ problem

3 * by: Carlos Filipe Lombizani

4 * cfilipe@linux.ime.usp.br

5 */

6

7 #include <stdlib.h>

8 #include <string.h>

9 #include "mqid3.h"

10

11 struct mqid3_prover {

12 MQID_key r0, t0, e0, r1, t1, e1;

13 };

14

15 struct mqid3_verifier {

16 char ch;

17 char * com1;

18 char * com2;

19 MQIDScheme s;

20 MQID_key pk;

55

21 };

22

23 MQID3_prover prover1stStep(MQIDScheme s, MQID_key sk, char * c0,

char * c1, char * c2)

24 {

25 MQID3_prover p;

26 size_t unknowns;

27 MQID_key fr0, gt0r1_e0;

28

29 p = malloc(sizeof(struct mqid3_prover));

30

31 p->r0 = MQID_unidrndkey(MQID_getn(s));

32 p->t0 = MQID_unidrndkey(MQID_getn(s));

33 p->e0 = MQID_unidrndkey(MQID_getm(s));

34

35 unknowns = MQID_getn(s) * sizeof(Field);

36 fr0 = MQID_F(s, p->r0);

37

38 p->r1 = malloc(MQID_getn(s) * sizeof(Field));

39 p->t1 = malloc(MQID_getn(s) * sizeof(Field));

40 p->e1 = malloc(MQID_getm(s) * sizeof(Field));

41

42 p->r1 = memcpy(p->r1, sk, unknowns);

43 p->t1 = memcpy(p->t1, p->r0, unknowns);

44 p->e1 = memcpy(p->e1, fr0, MQID_getm(s) * sizeof(Field));

45

46 p->r1 = vsub(p->r1, p->r0, MQID_getn(s));

47 p->t1 = vsub(p->t1, p->t0, MQID_getn(s));

48 p->e1 = vsub(p->e1, p->e0, MQID_getm(s));

49

50 gt0r1_e0 = MQID_G(s, p->t0, p->r1);

51 gt0r1_e0 = vadd(gt0r1_e0, p->e0, MQID_getm(s));

52

53 c0 = MQID_Com(c0, 2, p->r1, MQID_getn(s), gt0r1_e0, MQID_getm(

s));

56

54 c1 = MQID_Com(c1, 2, p->t0, MQID_getn(s), p->e0, MQID_getm(s))

;

55 c2 = MQID_Com(c2, 2, p->t1, MQID_getn(s), p->e1, MQID_getm(s))

;

56

57 free(fr0);

58 free(gt0r1_e0);

59

60 return p;

61 }

62

63 MQID_key * prover2ndStep(MQID3_prover p, char ch)

64 {

65 MQID_key * rsp;

66

67 rsp = malloc(3 * sizeof(MQID_key));

68

69 switch (ch) {

70 case 0:

71 rsp[0] = p->r0;

72 rsp[1] = p->t1;

73 rsp[2] = p->e1;

74 free(p->t0);

75 p->t0 = NULL;

76 free(p->e0);

77 p->e0 = NULL;

78 free(p->r1);

79 p->r1 = NULL;

80 break;

81 case 1:

82 rsp[0] = p->r1;

83 rsp[1] = p->t1;

84 rsp[2] = p->e1;

85 free(p->r0);

86 p->r0 = NULL;

87 free(p->t0);

57

88 p->t0 = NULL;

89 free(p->e0);

90 p->e0 = NULL;

91 break;

92 case 2:

93 rsp[0] = p->r1;

94 rsp[1] = p->t0;

95 rsp[2] = p->e0;

96 free(p->r0);

97 p->r0 = NULL;

98 free(p->t1);

99 p->t1 = NULL;

100 free(p->e1);

101 p->e1 = NULL;

102 break;

103 default:

104 free(rsp);

105 rsp = NULL;

106 }

107

108 return rsp;

109 }

110

111 MQID3_verifier verifier1stStep(MQIDScheme s, MQID_key pk, char *

c0, char * c1, char * c2, char * ch)

112 {

113 MQID3_verifier v;

114

115 v = malloc(sizeof(struct mqid3_verifier));

116

117 v->ch = (*ch) = (char)(rand()%3);

118

119 v->s = s;

120 v->pk = pk;

121

122 switch(v->ch) {

58

123 case 0:

124 v->com1 = c1;

125 v->com2 = c2;

126 break;

127 case 1:

128 v->com1 = c0;

129 v->com2 = c2;

130 break;

131 case 2:

132 v->com1 = c0;

133 v->com2 = c1;

134 break;

135 }

136

137 return v;

138 }

139

140 int verifier2ndStep(MQID3_verifier v, MQID_key * rsp)

141 {

142 int verified;

143 char * c1;

144 char * c2;

145 MQID_key f, g, second;

146

147 f = NULL;

148 g = NULL;

149

150 switch(v->ch) {

151 case 0:

152 f = MQID_F(v->s, rsp[0]);

153 vsub(f, rsp[2], MQID_getm(v->s));

154 vsub(rsp[0], rsp[1], MQID_getn(v->s));

155 second = f;

156 break;

157 case 1:

158 f = MQID_F(v->s, rsp[0]);

59

159 g = MQID_G(v->s, rsp[1], rsp[0]);

160 vadd(g, rsp[2], MQID_getm(v->s));

161 vadd(f, g, MQID_getm(v->s));

162 vsub(v->pk, f, MQID_getm(v->s));

163 second = v->pk;

164 break;

165 case 2:

166 g = MQID_G(v->s, rsp[1], rsp[0]);

167 vadd(g, rsp[2], MQID_getm(v->s));

168 second = g;

169 break;

170 }

171

172 c1 = malloc(sizeof(unsigned char) * (getComStrSize() + 1));

173 c2 = malloc(sizeof(unsigned char) * (getComStrSize() + 1));

174 c1 = MQID_Com(c1, 2, rsp[0], MQID_getn(v->s), second,

MQID_getm(v->s));

175 c2 = MQID_Com(c2, 2, rsp[1], MQID_getn(v->s), rsp[2],

MQID_getm(v->s));

176

177 verified = (strcmp(c1, v->com1) == 0) && (strcmp(c2, v->com2)

== 0);

178

179 free(c1);

180 free(c2);

181

182 free(f);

183 free(g);

184

185 return verified;

186 }

187

188 void clearMQID3(MQID3_prover p, MQID3_verifier v)

189 {

190 free(v);

191 free(p->r0);

60

192 free(p->t0);

193 free(p->e0);

194 free(p->r1);

195 free(p->t1);

196 free(p->e1);

197 free(p);

198 }

MQID/mqid3.c

A.8 mqid5.h

1 /* MQID-3 specific interface */

2

3 #include "mqid.h"

4

5 /* store prover and verifier data */

6 typedef struct mqid5_prover *MQID5_prover;

7 typedef struct mqid5_verifier *MQID5_verifier;

8

9 /* step-by-step protocol algorithm implementation */

10

11 MQID5_prover prover1stStep(MQIDScheme s, MQID_key sk, char * c0,

char * c1);

12

13 void prover2ndStep(MQID5_prover p, Field alpha, MQID_key * t1,

MQID_key * e1);

14

15 MQID_key prover3rdStep(MQID5_prover p, char ch);

16

17 MQID5_verifier verifier1stStep(MQIDScheme s, MQID_key pk, char *

c0, char * c1, Field * alpha);

18

19 char verifier2ndStep(MQID5_verifier v, MQID_key t1, MQID_key e1);

20

61

21 int verifier3rdStep(MQID5_verifier v, MQID_key rsp);

22

23 /* clears everything up */

24 void clearMQID5(MQID5_prover p, MQID5_verifier v);

MQID/mqid5.h

A.9 mqid5.c

1 /* sample naive implementation of Sakumoto, Shirai and Hiwatari’s

2 * 5-pass public-key id. scheme based on the MQ problem

3 * by: Carlos Filipe Lombizani

4 * cfilipe@linux.ime.usp.br

5 */

6

7 #include <stdlib.h>

8 #include <string.h>

9 #include "mqid5.h"

10

11 struct mqid5_prover {

12 MQIDScheme s;

13 MQID_key r0, t0, e0, r1, t1, e1;

14 };

15

16 struct mqid5_verifier {

17 Field alpha;

18 char ch;

19 char * com0;

20 char * com1;

21 MQIDScheme s;

22 MQID_key pk, t1, e1;

23 };

24

25 MQID5_prover prover1stStep(MQIDScheme s, MQID_key sk, char * c0,

char * c1)

62

26 {

27 MQID5_prover p;

28 MQID_key gt0r1_e0;

29

30 p = malloc(sizeof(struct mqid5_prover));

31

32 p->s = s;

33

34 p->r0 = MQID_unidrndkey(MQID_getn(s));

35 p->t0 = MQID_unidrndkey(MQID_getn(s));

36 p->e0 = MQID_unidrndkey(MQID_getm(s));

37

38 p->r1 = malloc(MQID_getn(s) * sizeof(Field));

39 p->r1 = memcpy(p->r1, sk, MQID_getn(s) * sizeof(Field));

40 p->r1 = vsub(p->r1, p->r0, MQID_getn(s));

41

42 gt0r1_e0 = MQID_G(s, p->t0, p->r1);

43 gt0r1_e0 = vadd(gt0r1_e0, p->e0, MQID_getm(s));

44

45 c0 = MQID_Com(c0, 3, p->r0, MQID_getn(s), p->t0, MQID_getn(s),

p->e0, MQID_getm(s));

46 c1 = MQID_Com(c1, 2, p->r1, MQID_getn(s), gt0r1_e0, MQID_getm(

s));

47

48 return p;

49 }

50

51 void prover2ndStep(MQID5_prover p, Field alpha, MQID_key * t1,

MQID_key * e1)

52 {

53 MQID_key f;

54

55 p->t1 = malloc(MQID_getn(p->s) * sizeof(Field));

56 p->t1 = memcpy(p->t1, p->r0, MQID_getn(p->s) * sizeof(Field));

57 vmult(p->t1, alpha, MQID_getn(p->s));

58 p->t1 = vsub(p->t1, p->t0, MQID_getn(p->s));

63

59

60 f = MQID_F(p->s, p->r0);

61 p->e1 = malloc(MQID_getm(p->s) * sizeof(Field));

62 p->e1 = memcpy(p->e1, f, MQID_getm(p->s) * sizeof(Field));

63 vmult(p->e1, alpha, MQID_getm(p->s));

64 p->e1 = vsub(p->e1, p->e0, MQID_getm(p->s));

65

66 *t1 = p->t1;

67 *e1 = p->e1;

68

69 free(f);

70 }

71

72 MQID_key prover3rdStep(MQID5_prover p, char ch)

73 {

74 MQID_key rsp;

75

76 switch (ch) {

77 case 0:

78 rsp = p->r0;

79 p->r0 = NULL;

80 break;

81 case 1:

82 rsp = p->r1;

83 p->r1 = NULL;

84 break;

85 default:

86 rsp = NULL;

87 }

88

89 return rsp;

90 }

91

92 MQID5_verifier verifier1stStep(MQIDScheme s, MQID_key pk, char *

c0, char * c1, Field * alpha)

93 {

64

94 MQID5_verifier v;

95

96 v = malloc(sizeof(struct mqid5_verifier));

97

98 *alpha = v->alpha = rand() % getOrder();

99

100 v->s = s;

101 v->pk = pk;

102

103 v->com0 = c0;

104 v->com1 = c1;

105

106 return v;

107 }

108

109 char verifier2ndStep(MQID5_verifier v, MQID_key t1, MQID_key e1)

110 {

111 v->t1 = t1;

112 v->e1 = e1;

113 v->ch = rand() % 2;

114 return v->ch;

115 }

116

117 int verifier3rdStep(MQID5_verifier v, MQID_key rsp)

118 {

119 int verified;

120 char * c0;

121 MQID_key f, g, second;

122

123 f = NULL;

124 g = NULL;

125 second = NULL;

126

127 switch(v->ch) {

128 case 0:

129 second = malloc(MQID_getn(v->s) * sizeof(Field));

65

130 second = memcpy(second, rsp, MQID_getn(v->s) * sizeof(

Field));

131 vmult(second, v->alpha, MQID_getn(v->s));

132 second = vsub(second, v->t1, MQID_getn(v->s));

133

134 f = MQID_F(v->s, rsp);

135 vmult(f, v->alpha, MQID_getm(v->s));

136 f = vsub(f, v->e1, MQID_getm(v->s));

137

138 c0 = malloc(sizeof(char) * (getComStrSize() + 1));

139 c0 = MQID_Com(c0, 3, rsp, MQID_getn(v->s), second,

MQID_getn(v->s), f, MQID_getm(v->s));

140

141 verified = (strcmp(c0, v->com0) == 0);

142 break;

143 case 1:

144 f = MQID_F(v->s, rsp);

145 g = MQID_G(v->s, v->t1, rsp);

146 vadd(g, v->e1, MQID_getm(v->s));

147 vsub(v->pk, f, MQID_getm(v->s));

148 vmult(v->pk, v->alpha, MQID_getm(v->s));

149 vsub(v->pk, g, MQID_getm(v->s));

150

151 c0 = malloc(sizeof(char) * (getComStrSize() + 1));

152 c0 = MQID_Com(c0, 2, rsp, MQID_getn(v->s), v->pk,

MQID_getm(v->s));

153

154 verified = (strcmp(c0, v->com1) == 0);

155 break;

156 }

157

158 free(f);

159 free(g);

160 free(second);

161 free(c0);

162

66

163 return verified;

164 }

165

166 void clearMQID5(MQID5_prover p, MQID5_verifier v)

167 {

168 free(v);

169 free(p->r0);

170 free(p->t0);

171 free(p->e0);

172 free(p->r1);

173 free(p->t1);

174 free(p->e1);

175 free(p);

176 }

MQID/mqid5.c

A.10 Whirlpool/Whirlpool.h

1 #define HEXHASHSIZE 128

2

3 /* computes the hex Whirlpool hash checksum of str and copies it

to *sum, returns sum */

4 char * whirlpoolsum(char * sum, char * const str);

MQID/Whirlpool/Whirlpool.h

67

Referências Bibliográficas

[Anton e Rorres (2005)] Anton e Rorres (2005) Howard Anton e Chris Rorres. Ele-
mentary Linear Algebra, Applications Version. John Wiley and Sons, Inc., ninth
edition ed. ISBN 978-04-716-6959-8.

[Bouillaguet et al. (2010)Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, e Yang]
Bouillaguet et al. (2010) Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou
Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir e Bo-Yin Yang. Fast
Exhaustive Search for Polynomial Systems in F2. Cryptographic Hardware and
Embedded Systems, 6225:203–218.

[Fiat e Shamir (1986)] Fiat e Shamir (1986) Amos Fiat e Adi Shamir. How to Prove
Yourself: Practical Solutions to Identification and Signature Problems. páginas
186–194. Springer-Verlag London. ISBN 0-387-18047-8.

[Goldreich et al. (1991)Goldreich, Micali, e Widgerson] Goldreich et al. (1991) Oded
Goldreich, Silvio Micali e Avi Widgerson. Proofs that yield nothing but their
validity, or all languages in NP have zero-knowledge proof systems. Journal of
the ACM, 38:690–728.

[Halevi e Micali (1996)] Halevi e Micali (1996) Shai Halevi e Silvio Micali. Practical
and Provably-Secure Commitment Schemes from Collision-Free Hashing. páginas
201–215. Springer-Verlag London. ISBN 3-540-61512-1.

[Lima (2009)] Lima (2009) Elon Lages Lima. Curso de Análise, volume 1 of Projeto
Euclides. IMPA - Instituto Nacional de Matemática Pura e Aplicada, 4a imp. da
12a ed. ISBN 978-85-244-0118-3.

[Matsumoto e Imai (1988)] Matsumoto e Imai (1988) Tsutomu Matsumoto e Hideki
Imai. Public quadratic polynomial-tuples for efficient signature-verification and
message-encryption. páginas 419–453. Springer-Verlag New York, Inc. ISBN
0-387-50251-3.

[Menezes et al. (1996)Menezes, Vanstone, e Oorschot] Menezes et al. (1996) Alfred J.
Menezes, Scott A. Vanstone e Paul C. Van Oorschot. Handbook of Applied Cryp-
tography. CRC Press, Inc. ISBN 0-849-38523-7.

68

[Monteiro (2012)] Monteiro (2012) Fábio S. Monteiro. Protocolo de Identificação ba-
seado em Polinômios Multivariáveis Quadráticos. Dissertação de Mestrado, Uni-
versidade de São Paulo.

[Patarin e Goubin (1997)] Patarin e Goubin (1997) Jacques Patarin e Louis Goubin.
Trapdoor One-Way Permutations and Multivariate Polynomials. Information and
Communications Security, 1334:356–368.

[Sakumoto et al. (2011)Sakumoto, Shirai, e Hiwatari] Sakumoto et al. (2011) Koichi
Sakumoto, Taizo Shirai e Harunaga Hiwatari. Public-Key Identification Sche-
mes Based on Multivariate Quadratic Polynomials. Advances in Cryptology -
CRYPTO’2011, 6841:706–723.

[Shoup (2008)] Shoup (2008) Victor Shoup. A Computational Introduction to Number
Theory and Algebra. Cambridge University Press. ISBN 978-05-215-1644-0.

[Terada (2011)] Terada (2011) Routo Terada. Segurança de dados: Criptografia em
redes de computador. Editora Blucher, 2a ed. ISBN 978-85-212-0439-8.

	Introdução
	Protocolos de Identificação
	Os Protocolos MQID-3 e MQID-5

	O Problema MQ
	Preliminares
	Corpos
	Espaços Vetoriais
	Bilinearidade

	Função MQ
	Problema

	Identificação Conhecimento-Zero
	Esboço
	Definições
	Probabilidade Desprezível
	Correção
	Solidez
	Função de Hash
	Função de mão única
	Indistinguibilidade

	Protocolos de Conhecimento-zero
	Propriedade de Conhecimento-zero
	Esquemas de Comprometimento
	Estrutura Geral dos Protocolos

	Esquemas de Identificação

	Protocolos de Identificação MQID
	Princípios
	Inicialização e Geração de Chaves
	Protocolo MQID-3 de 3 passos
	Protocolo MQID-5 de 5 passos

	Aplicações
	Assinaturas Digitais
	Heurística de Fiat-Shamir
	Protocolo de Identificação MQID-3A

	Apêndice A – Implementação de exemplo
	field.h
	field2.c
	field2_4.c
	mqid.h
	mqid.c
	mqid3.h
	mqid3.c
	mqid5.h
	mqid5.c
	Whirlpool/Whirlpool.h

	Referências Bibliográficas

