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Resumo

Conquanto problemas de fatoracao de nimeros inteiros e de logaritmos discretos
possam ser tratados por computadores quanticos, sistemas hodiernos de criptografia

ainda os empregam.

O problema MQ, que consiste em resolver um sistema de polindmios multivariados
quadraticos sobre um corpo finito, €, até onde se sabe, intratavel, at€ mesmo por com-
putadores quanticos, podendo em teoria ser usado para construir sistemas criptograficos

a sua prova.

Neste trabalho, estudamos o problema MQ propriamente e dois esquemas de iden-

tificac@o propostos em 2011 cuja seguranca nele se baseia.

Incluimos exemplos numéricos e extensdes desses algoritmos.
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1 Introducao

1.1 Protocolos de Identificacao

Em seguranca da informacao, um objetivo frequente é capacitar uma entidade (o
verificador) a corroborar que a identidade de outra entidade (o provador) corresponde
ao declarado, de sorte a impedir personificagdo por terceiros. Denominam-se as diversas

técnicas para tal de protocolos de identificacdo ou autenticacdo.

Normalmente isso se alcanca reclamando ao provador que demonstre conhecer um
segredo, tal como uma senha ou a solucdo de um problema. Diz-se que a autenticacao é
fraca quando o protocolo exige que o provador revele o segredo ao verificador, pois, uma

vez que o segredo € revelado, o verificador pode dai em diante personificar o provador.

Os protocolos de identificagdo do tipo desafio-resposta aperfeicoam a autenticagao
fazendo com que o provador responda a um desafio do verificador, a fim de demonstrar o
conhecimento do segredo de maneira varidvel com o tempo, impedindo que o verificador
reutilize diretamente a informacao cedida pelo provador. Esse tipo de técnica € chamada

autenticagdo forte, pois o segredo em si ndo € revelado ao longo do protocolo.

Um protocolo desafio-resposta que torna possivel a um provador demonstrar co-
nhecimento de um segredo sem revelar qualquer informacao que possa ser usada pelo

verificador para personificd-lo € dito de conhecimento-zero.



1.2 Os Protocolos MQID-3 e MQID-5

Chama-se de problema MQ o problema de encontrar solucdes para um sistema de
polindmios quadréticos multivariados sobre um corpo de Galois. Este problema é NP-
completo sobre qualquer corpo, podendo portanto ser usado para se construir protocolos
de identificacio em que a solucdo para uma determinada instancia do problema seja
o segredo do provador Assim sdo construidos os protocolos de conhecimento-zero
MQID-3 e MQID-5.

Nesses protocolos, um provador comeca dividindo seu segredo em partes e depois
demonstra a corre¢ao de algumas partes dependendo da escolha de um verificador sem
revelar o segredo em si. Toda funcdo formada de polindmios quadréticos multivariados,
chamada de fung¢do MQ, possui uma forma polar bilinear que permite dividir o segredo

em trés partes, possibilitando essa abordagem.

Diversos protocolos baseados no problema MQ ja foram propostos, e sdo conhe-
cidos como MPKC (criptografia de chave-publica multivaridvel). Entretanto, sua se-
guranca € baseada ndo apenas no problema MQ, mas também em algum problema de
isomorfismo de polindOmios, para os quais existe criptoandlise em andamento, tendo al-
guns desses esquemas j4 até se mostrado inseguros. Os protocolos MQID-3 e MQID-5,
baseando-se somente no problema MQ, prometem maior seguranca. Por ndo haver al-
goritmo quantico eficiente conhecido para resolver o problema MQ, estes protocolos

sdo candidatos a proverem criptografia pds-quantica.

Uma fun¢do MQ pode ser usada como funcdo de mao unica de entrada e saida
pequenas, permitindo que os protocolos MQID-3 e MQID-5 sejam usados com chaves

menores do que outros protocolos.

! [[Patarin ¢ Goubin (1997)]



2 O Problema MQ

2.1 Preliminares

2.1.1 Corpos

Um conjunto K com ao menos dois elementos, fechado por duas operacdes de-
nominadas adi¢cdo e multiplicacdo (denotadas respectivamente + e -) satisfazendo os

axiomas abaixo para quaisquer elementos x,y, € z em K é chamado de corpo.

A Axiomas da adigdo:

1 Associatividade: vérias ocorréncias seguidas da operacdo adicao podem ser
efetuadas em qualquer ordem contanto que nao se altere a ordem dos termos,
ie. (x+y)+z=x+(+2)

2 Comutatividade: a ordem dos termos nao altera o resultado da operagdo, i.e.
Xty=y+x

3 Elemento neutro (zero): existe um elemento 0 € K tal que x+0 = x

4 Elemento simétrico: existe para cada x de K um elemento simétrico —x tal

quex+(—x)=x—x=0
B Axiomas da multiplicacdo:

1 Associatividade: vérias ocorréncias seguidas da operacdo multiplicacdo po-
dem ser efetuadas em qualquer ordem contanto que ndo se altere a ordem

dos fatores, i.e. (x-y)-z=x-(y-z)
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2 Comutatividade: a ordem dos fatores ndo altera o resultado da operagao, i.e.
x . y = y . x
3 Elemento neutro (um): existe um elemento 1 € Ktalque 1 #0ex-1=x

4 Elemento inverso: existe para cada x # 0 de K um elemento inverso x ! = %

-1 _x _
talque x-x— =7 =1

C Axioma da distributividade: as operagdes de adi¢do e multiplicagdo relacionam-se

de formatal que x- (y+2z) =x-y+x-2

Desses axiomas, decorrem as propriedades da unicidade dos elementos neutros, do

simétrico e do inverso e as leis de corte. Vejamos.

Suponhamos que haja 0 € K tal que x+0 =x. Entio x+0—x=x—x=0=0
(unicidade do zero). Suponhamos que x -y = x para todo x € K. Entdo, tomando x =
1, temos que y = 1 (unicidade do um). Além disso, se y € tal que x +y = 0, entdo
y = 0 —x = —x (unicidade do simétrico). Se tivermos a igualdade x + z = y + z, entao,
somando —z a ambos os membros obtemos x =y (lei do corte da adi¢ao). Se tivermos
x-z=7y-zez7#0, entio, multiplicando z~' a ambos os membros obtemos x = y (lei do
corte da multiplicagdo). Temos também que x-0=0Vx € K, poisx-0+x=x-0+x-1=

x(0+1) =x-1=x. Disto segue-se que, se x-y=0ex#0,entdiox-y=x-0=x-y-x | =

x0-x 1= y =0, e, portanto, se x-y = 1, entdo x # 0, y # 0 e, multiplicando por x 1,

y= x~! (unicidade do inverso).

A caracteristica de um corpo € o menor nimero de vezes que € necessdrio somar
o elemento um de modo a se obter o elemento zero. Se esta soma nunca alcancar o

elemento neutro da adi¢do, entdo diz-se que a caracteristica do corpo € zero.

Um corpo € dito de Galois se o conjunto de seus elementos € finito. A caracteristica
de um corpo de Galois € sempre um numero primo. Para verifica-lo, suponhemos que
a caracteristica m de um dado corpo (K, +,+) seja um nimero composto, isto é, m = st
para algum s e algumfcom 1 <s <me 1l <t <m. Como m é, por defini¢do, 0 menor

nimero de vezes que se deve somar um para obter zero e s € ¢t sdo menores do que
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m, entdo, se somarmos um s vezes ou ¢ vezes, obteremos elementos de K diferentes

de zero. Por distributividade, temos que (1 +...+1)-(I+...+1)=(14+...4+1) =0.

svezes t vezes st=m vezes
Encontramos pois dois elementos de K diferentes de zero cujo produto € igual a zero,

o que € uma contradi¢do, decorrente da suposicao de que m seja composto. Portanto m

deve ser obrigatoriamente primo.

O corpo dos niimeros reais com as operagdes de soma e multiplicagao tipicas € um
exemplo de corpo de caracteristica zero. O conjunto Z, € um corpo se € somente se n

for primo, e neste caso tem caracteristica n.

2.1.2 Espacos Vetoriais

Um espago vetorial sobre K consiste num conjunto ndo-vazio V onde se definem
uma operacdo chamada de adi¢cdo, que associa a cada par de elementos u e v de V
um elemento u + v de V, e uma operacdo chamada de multiplicacdo por escalar, que
associa a cada par de elementos k de K e u de V um elemento ku de V, de maneira que
satisfacam os seguintes axiomas para todo u,ve wem V e todo k e m em K.

1. Comutatividade da adi¢do: u+v =v+u
2. Associatividade da adi¢do: u+ (v+w) = (u+v)+w

3. Vetor nulo: existe um elemento Oem V talque O+u=u+0=u

4. Vetor simétrico: existe para cada u em V um elemento —uem V tal que u+ (—u) =

u—u=>~0

5. Distributividade da multiplicacdo por escalar em relacdo a adigcdo: k(u+v) =

ku+ kv

6. Distributividade da adi¢do em relagdo a multiplicagdo por escalar: (k+m)u =

ku+mu

7. Associatividade da multiplicagdo por escalar: k(mu) = (km)(u)
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8. Elemento neutro da multiplica¢do por escalar: multiplicar um vetor u pelo ele-

mento neutro multiplicativo do corpo ndo altera o vetor, isto €, lu = u

Dado um corpo K, o conjunto de todas as énuplas (kj,k»,...,k,) de elementos de
K com adicdo e multiplicagdo por escalar componente a componente forma um espago

vetorial sobre K, que denotamos K".

2.1.3 Bilinearidade

Sejam V e W espagos vetoriais sobre o corpo K. Diz-se que uma funcio f:V — W
¢ linear se, para quaisquer vetores u € v em V e qualquer escalar k em K, as condi¢cdes
flu+v)=f(u)+ f(v)e f(ku) = kf(u) sdo satisfeitas.

Seja Y também um espago vetorial sobre K. Uma funcdo g: V x W — Y tal que,
fixando w qualquer em W, a fungdo v — g(v,w) é linear de V em Y, e, fixando v qualquer

em V, a fungdo w — g(v,w) é linear de W em Y ¢ dita bilinear.

2.2 Funcao MQ

Definimos a familia de funcdes

M 2(n,m,Fy) :z{ Fx) = (f1(x) s fnl0)) [ fi(x) = X j avijeix + 3i b 5 }

al,-j,bl,- EF(]VZ S {1,...,m}
2.1)

onde n,m € N, F, é um corpo de Galois de cardinalidade g e x = (x1,...,x,) € ]FZ Uma
fungdo qualquer F : ¥y — F € .4 2(n,m,F,) constitui um sistema de polindmios de
grau 2, e recebe o nome de funcdo MQ. Por simplicidade, os polindmios ndo possuem

termos constantes, pois isto ndo afetard a complexidade do problema MQ.

Uma fungdo G : Fy x Fy — 7 da forma G(x,y) := F(x+y) — F(x) — F(y) € cha-

mada forma polar de F. Podemos obter uma férmula para as componentes g; da funcao
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Vie{l,....m}, g(x,y):= filx+y)— filx)— fi(y)

f(x+y Zzalu xl+yl)(x] +)’j +Zblz xl+yl) =
i=1j=1 i=1

n 1 n n
=20 aij(xixj Xy +xyiFyivi) Y buxi+ Y biyi =

i*lj*l i=1 i=1
Zzall]xlx]+zbllxl Zzall]yly]+zbllyl +Zzalu Xiyj +x]yl) =
i=1j=1 i=1j=1 i=1j=1
f( )+fl +Zzallj Xiyj +x]yl)

i=1j=1

— g(x,y) M+M+szuxly,+x]yz) — fx) — 1)

i=1 j=1 (2.2)

— g/(x,y) ZZalU (xiyj+xjyi), Ve {l,....m}
i=1j=1

A funcdo G é bilinear. A demonstrac¢do decorre da férmula acima:

n

gi(x,y+z) Zzazuxly,+zj)+xj(y,+zz))—
i=1j=1

n l
=2 2 anij(xiyj +xizj +Xyi+xjz) =

i=1j=1
noi noi

= agi(xiyi+xyi) + D> aij(xizj+xjzi) =
i=1j=1 i=1j=1

= gi(x,y) +8&i(x,2)
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gi(x,ky) =D ayi(xikyj +xjkyi) =

i=1j=1

noi
=2 ak(xyj+xyi) =

i=1j=1

n l
=k > anj(xiyj+xjyi) =

i=1j=1
= kgi(x,y)
Vie{l,...m}; keFy x,y,z€ Fy
= G(x,y+z) =G(x,y) +G(x,2); G(x,ky) =kG(x,y) O

Como G ¢ simétrica, prova-se de forma andloga a linearidade na primeira varidvel.

2.3 Problema

Dados IF, um corpo de Galois de cardinalidade g, n,m € N, F : Fy — Fy' € 4 2(n,m,F,)
uma fungdo MQ e y = (y1,...,ym) € g, o problema MQ consiste em encontrar x =

(x1,...,%,) € F tal que F(x) =y, isto &, fi(x1,...,x,) =y;i Vi€ {1,...,m}.

Definindo m matrizes A; triangulares n x n e m vetores b; de dimensao n da forma

an 0 0 e 0 bll
apy ap 0 ... 0 b

A= ap azz a3z .. 0 |, D=1 b3 |, (2.3)
1dinl A2 Aip3 .- Q] L bin J

sendo ay;; € by; os coeficientes de F, podemos escrever F' matricialmente, permitindo-
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nos expressar o problema como encontrar x € Iy, tal que

[ xTA1x+b1Tx -I [ yi -I
: =1 : |. (2.4)

xTAx+ b;x Ym

Esta representagdo permite-nos ver claramente o nimero de parametros necessarios

para caracterizar um problema MQ. Os coeficientes de F cabem nas m matrizes A; e

A 2 . . . .
vetores by, que tém = ;’ % (por serem triangulares) e n elementos significativos respecti-

. 2 A .
vamente, totalizando m(% + n) parametros para descrever o sistema.

Ha vérias técnicas para resolver este problema, entre as quais as melhores sdo base-
adas em bases de Grobner e busca por for¢a bruta. Entretanto, mesmo os mais refinados
algoritmos possuem complexidade exponencial. O melhor algoritmo conhecido para
m = n < 200 foi concebido por Bouillaguet et al. e possibilita resolver o problema MQ
para F em .# 2(n,m,F,) com complexidade 2"+ - log, n. E| Nao se conhece algoritmo

quantico eficiente para resolver o problema MQ.

Exemplo 2.1. Seja Z, o nosso corpo de Galois, cuja cardinalidade é g = 2, e seja

F : 73 — 73 a seguinte
fi (X],XQ) :x%—i—x%
fa(x1,x2) = x1x02 +x1 +x2

comn =2em=2,isto é, o0 nosso sistema tem 2 incognitas e 2 equacdes. Dado y da

seguinte forma

-
i

hd x € [} tal que F(x) =y? Afirmamos que x = (1,0) satisfaz F(x) =y. Verifica-se

l[Bouillaguet et al. (2010)Bouillaguet, Chen, Cheng, Chou, Niederhagen, Shamir, e Yang]
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facilmente:

fi(1,00=1740*=1
£(1,00=1-0+1+0=1

O

Exemplo 2.2. Seja Z, o nosso corpo de Galois, cuja cardinalidade € g = 2, e seja

F : 735 — 73 a seguinte

Silxr,. . xs) :x%+x%—l—x2x3 + X1X5 + X0X5 + X3X5 + X1

Fr(X1,. 0 x5) = X7 +x1x3 +x3%5 +x2 + X3

F3(X1,. 0, Xs) = X5+ X0X3 -+ X1X4 +X0%X4 + X334 + X2 + X3+ X4

Sa(xt,...,x5) :x%—{—xlxg + x1x3 +x§+xpc4 + X1X5 + XoXx5 + X3X5 + X4X5 + X1 + X2 + X4

comn =15e m =4, isto é, o nosso sistema tem 5 incognitas e 4 equagdes. Dado y da

seguinte forma

o = O O

hd x € Iy tal que F(x) = y? Afirmamos que x = (1,0, 1,0, 1) satisfaz F(x) = y. Verifica-

se facilmente:

1240°40-14+1-140-14+1-14+1=0
1°4+1-14+1-140+1=0
0°+0-141-040-0+1-0+0+1+0=1
1P4+1-04+1-141241-0+1-140-14+1-140-14+14+04+0=0

f1(1,0,1,0,1)
f2(1,0,1,0,1)
f3(1,0,1,0,1)
f4(1,0,1,0,1)
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3 Identificacao Conhecimento-Zero

Protocolos de identificacdo de conhecimento-zero permitem demonstrar conheci-
mento de um segredo sem revelar informagdo alguma que possa ser usada pelo verifica-

dor para expressar essa mesma demonstracao a outrem.

Eles sdo projetados para funcionar sem o uso de assinaturas digitais, criptografia de
chave-publica e cifras de bloco. Eles sdo em muito semelhantes aos protocolos desafio-
resposta ordindrios, mas sdo baseados nos conceitos de sistemas de prova interativa e
provas de conhecimento-zero, empregando nimeros aleatérios como desafios e também

como compromissos para prevengdo de fraudes.

3.1 Esboco

Um sistema de prova interativa € um sistema no qual provador e verificador trocam
varias mensagens (desafios e respostas), geralmente em fun¢do de nimeros aleatorios.
O objetivo do provador € demonstrar ao verificador a veracidade de uma afirmacao, por
exemplo o dito conhecimento de um segredo. O verificador pode aceitar ou rejeitar a
demonstracdo. Entretanto, ao contrario das demonstra¢des matemaéticas tradicionais, as
demonstracdes fornecidas pelo provador ndo sdao absolutas, mas probabilisticas. Isso
significa que uma demonstracio neste contexto necessita estar correta apenas com certa

probabilidade, talvez arbitrariamente préxima de 1.

Provas interativas para fins de identificacdo sdo formuladas como provas de conhe-

cimento. Alice tem posse de um segredo s, e pretende convencer Beto de que possui
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conhecimento de s respondendo corretamente questdes que envolvem informacdes pu-
blicas e fun¢des padronizadas e requerem conhecimento de s para serem respondidas

corretamente.

3.2 Definicoes

3.2.1 Probabilidade Desprezivel

Quando a probabilidade € de um evento € expressada em fun¢do de um parametro
inteiro positivo / de seguranga (€ : Z* — [0,1]), dizemos que a probabilidade é despre-

zivel se, para todo d € N, existe Iy € Z™ tal que, se [ > [y, entdo (1) < 1%1

3.2.2 Correcao

Um protocolo de identificacdo € dito correto se funciona apropriadamente com par-
ticipantes honestos, isto é, a probabilidade de que um provador honesto seja rejeitado
por um verificador honesto € desprezivel. Em particular, se essa probabilidade é nula

entdo dizemos que a corre¢do € perfeita.

3.2.3 Solidez

Dizemos que um algoritmo € eficiente se ele pode ser computado em tempo poli-
nomial em fun¢@o do tamanho n de sua entrada, isto é, o algoritmo é O(f(n)) e existe

k € R* tal que f(n) < n* para n suficientemente grande.
g

Dizemos que um protocolo de identificacdo é solido se funciona apropriadamente
com um provador desonesto, isto €, existe um algoritmo eficiente tal que, se um deter-
minado provador desonesto pode executar com sucesso o protocolo com um verificador
honesto com probabilidade nao-desprezivel, entdo esse algoritmo pode ser usado para,
a partir desse provador, extrair conhecimento suficiente para permitir execugdes bem-

sucedidas consecutivas com probabilidade ndo-desprezivel do protocolo.
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Em outras palavras, para ser capaz de personificar um provador honesto com pro-
babilidade ndo-desprezivel, faz-se necessario conhecer o seu segredo (ou algo equiva-
lente). Dessa forma, a solidez garante que o protocolo de fato nos dd uma prova de
conhecimento do segredo, pois ele € requerido para que o protocolo possa ser execu-
tado com sucesso. Por via de regra, estabelece-se a solidez de um protocolo supondo
a existéncia de um provador desonesto capaz de executar o protocolo com sucesso e

demonstrando que isso nos permite computar o segredo do provador verdadeiro.

3.2.4 Funcao de Hash

Uma fungéo 4 : {0,1}* — {0,1}" € dita de hash se houver um algoritmo eficiente
para computé-la e se levar cadeias de bits de tamanho arbitrario a cadeias de tamanho n

fixo (denominadas hashes).

Pelo principio da casa do pombo, havera cadeias diferentes que serdo levadas no
mesmo hash. A esse evento damos o nome de colisdo. Uma func¢do de hash € dita
a prova de colisoes ou resitente a colisdo quando ndo houver algoritmo eficiente que

encontre colisdes, isto €, que encontre entradas diferentes cujos hashes sdo idénticos.

3.2.5 Funcao de mao Gnica

Uma fun¢do f : A — B € dita de mdo tinica se houver um algoritmo eficiente para
computd-la, porém nenhum algoritmo eficiente para inverté-la, isto é, dado y € Im(f),

encontrar x € A tal que f(x) = y.

Como visto no capitulo anterior, a funcdo MQ € uma fun¢do de mao unica.

3.2.6 Indistinguibilidade

Sejam Py e P, duas distribui¢cdes de probabilidade em {0,1}", isto é, no espago de

cadeias de bits de tamanho n. Dizemos que P e P> sao computacionalmente indistin-
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guiveis se, para todo algoritmo eficiente A : {0,1}" — {0, 1},

| PrlA(x) =1]— Pr [A(x) = 1]]

x(*Pl x(—Pz

€ desprezivel.

Dizemos que P; e P> sdo estatisticamente indistinguiveis se

1
APLP) =5 Y |PriP=a]~PriP=a]
oec{0,1}"

¢é desprezivel.

Dizemos que P; e P, sao indistinguiveis quando forem ou idénticas, ou computaci-

onalmente indistinguiveis, ou estatisticamente indistinguiveis.

3.3 Protocolos de Conhecimento-zero

3.3.1 Propriedade de Conhecimento-zero

Uma prova interativa € dita ser prova de conhecimento se tiver as propriedades de

corre¢do e solidez.

Um protocolo que € prova de conhecimento tem a propriedade de conhecimento-
zero se hd um algoritmo eficiente (denominado simulador) capaz de produzir, a partir
da entrada da afirmacdo a ser verificada e sem interacio com o provador verdadeiro,

transcri¢des indistinguiveis das resultantes da interacdo com o provador verdadeiro.

Esta propriedade implica que a execucao do protocolo por um provador nao revela
nenhuma informac¢do que ndo seja computdvel a partir de informagdes publicas, ainda
que o provador esteja interagindo com um verificador desonesto. Entretanto, ela ndo
garante a segurancga do protocolo a ndo ser que seja dificil computacionalmente de se

descobrir o segredo.

O conhecimento-zero € dito perfeito quando a distribui¢do de probabilidade do si-
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mulador e da interacdo entre provador e verificador honestos s@o idénticas. Se forem
computacionalmente indistinguiveis, entdo o conhecimento-zero € dito computacional.
Finalmente, se forem estatisticamente indistinguiveis, entdo o conhecimento-zero € dito

estatistico.

3.3.2 Esquemas de Comprometimento

Um esquema de comprometimento serve para ocultar temporariamente uma deter-
minada informacdo, com a possibilidade de reveld-la posteriormente sem alteracdes,

isto €, sem que se possa modificar a informagao apds ter-se comprometido com ela.

Esquemas de comprometimento sdo particularmente uteis em provas de conhecimento-
zero. Eles permitem ao provador dividir seu segredo e apresentar ao verificador a op¢ao
de qual parte verificar, podendo o provador comunicar todo o segredo de antemao es-
condido na forma de um compromisso e depois revelar somente o que corresponde a

escolha do verificador.

A defini¢do formal de um esquema de comprometimento de cadeias C € a de um
protocolo em duas fases que faz uso de um algoritmo de compromisso de cadeias Com,
que recebe dois parametros s € p, onde s € a informacao a ser ocultada e p € uma cadeia
aleatoria denominada sal. Na primeira fase, o provador utiliza Com para computar um
valor de compromisso ¢, que € enviado ao verificador. Na segunda fase, o provador

envia (s,p) ao verificador, que por sua vez verifica se ¢ = Com(s,p).

Um esquema de comprometimento seguro € ocultante € computacionalmente vin-
culante. Essas propriedades significam que dois valores de compromisso quaisquer sao
indistinguiveis (i.e. € dificil extrair quaisquer informacdes a respeito de s a partir de ¢) e
que ndo hd algoritmo eficiente capaz de encontrar s’ # s e p’ ndo necessariamente igual

a p tais que Com(s',p’) = Com(s, p), respectivamente.

E possivel construir esquemas de comprometimento de cadeias seguros a partir de

funcdes de hash a prova de colisdes.

![Halevi e Micali (1996)]
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3.3.3 Estrutura Geral dos Protocolos

Protocolos de identificacdo de conhecimento-zero candnicos sdo compostos de 3

passos.

Alice — Beto: Comprometimento
Alice «— Beto: Desafio

Alice — Beto: Resposta

Inicialmente, o provador, que alega ser Alice, seleciona como compromisso secreto
um elemento aleatério de um conjunto predefinido e a partir dele computa um compro-
misso publico. Isso define um conjunto de perguntas que o provador alega ser capaz
de responder corretamente, dai em diante restringindo a priori suas possiveis respostas.
O desafio sucessivo de Beto seleciona uma dessas perguntas. Alice entdo fornece sua
resposta, que Beto verifica se estd correta. Se necessario, o protocolo pode ser reiterado

a fim de minimizar a probabilidade de embuste.

Normalmente utiliza-se uma funcdo de mao tnica para determinar os segredos dos
provadores, sendo os elementos do dominio da fun¢do candidatos a segredo, € a sua
imagem os valores que permitirdo verificd-los, pois isso torna facil verificar a veracidade
dos segredos e ao mesmo tempo dificil de descobri-los. O segredo de um provador é
chamado de chave secreta, e o valor que permite a um verificador verificd-lo € a sua

respectiva chave piiblica.

3.4 Esquemas de Identificacao

Um esquema de identificacdo € composto por um protocolo de identificacdo mais a
infraestrutura de chaves e os algoritmos necessdrios para preparar o seu uso, que sao 0s

algoritmos de inicializacao e de geracao de chaves.
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Formalmente, um esquema de identifica¢do é uma tupla de algoritmos (Inicia, Gera,P,V).
Inicia recebe um parametro de seguranca A e devolve um conjunto de pardmetros do
sistema. Gera € um algoritmo de geracdo de chaves que recebe os parametros devolvi-
dos por Inicia e devolve um par de chaves publica e secreta. Finalmente, o par (P,V),
de provador e verificador respectivamente, constitui o protocolo de identificacdo cor-
respondente. Eles recebem os pardmetros de sistema e uma chave ptblica e P recebe
também uma chave secreta. Apds a interacdo protocolar entre ambos, V' devolve um

valor booleano representando o resultado da verificago.
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4  Protocolos de Identificacao MQID

Em 2011, os pesquisadores japoneses Koichi Sakumoto, Taizo Shirai, e Harunaga
Hiwatari apresentaram uma proposta de protocolos de identificagcdo de conhecimento-
zero baseados somente no problema MQ. Até entdo, todos os sistemas criptograficos
propostos em cima do problema MQ baseavam-se também em algum problema de iso-
morfismo de polindmios, isto é, utilizavam-se de uma funcao MQ nao-aleatdria e duas
transformacoes afins para leva-la a uma instancia aparentemente aleatéria de uma fun-
¢do MQ.

Isso faz da proposta dos pesquisadores japoneses uma Gtima candidata para cripto-
grafia pos-quantica, isto é, para substituir os atuais sistemas criptograficos vulnerdveis
aos vindouros computadores quanticos, pois, como vimos anteriormente, ndo se co-
nhece algoritmo quantico eficiente para resolver o problema MQ, fazendo-o intratavel

até mesmo por computadores quinticos.

A proposta é composta de dois protocolos de identificagdo, um candnico de 3 passos

a que nos referimos por MQID-3 e um de 5 passos que chamamos MQID-5.

4.1 Principios

Dada F : Fj — FJ € .4 2(n,m,F,;) uma fungdo MQ, v € FJ/ e s € Fy tais que
F(s) = v, temos, da equagdo 2.4]:
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sTAls—i—blTs Vi
F(S) — E =

I
<

sTA,,s+ b,as Vi

A; e b; sdo parametros do sistema e portanto comuns a todos seus usudrios, s € a
chave secreta, isto €, o segredo sabido apenas pelo provador, e v € a chave publica, isto
¢, informacao partilhada que permite a uma parte verificar a identidade do provador que

alegar conhecer s.

A técnica usada para dividir o segredo s e demonstrar seu conhecimento consiste
em utilizar a forma polar G de F. Sejam ry e r; em I, quaisquer tais que s = ro +ry.
A chave publica v = F(rg+ r;) pode ser representada da forma v = F(rg) + F(r) +
G(ro,r1) usando a forma polar. Esta representacdo nao obstante contém ainda um termo

dependente de ambos rg € ry.

Considere entdo a divisao adicional de ro em ry = #y +¢; para algum 7y e algum
t em Iy, e de F(rp) em F(rg) = eo + e) para algum e e algum e; em Fy’. Usando a
bilinearidade de G, a chave publica pode ser dividida em duas partes:
v=ey+e +F(r1)+G(to+11,r1)
=eo+ey+F(r)+G(to,r1) +G(t1,71)

— V:(G(l‘(),l’])+€0)+(F(l’1)—|—G(l‘1,l’1)+€1) “4.1)
Cada parte depende apenas ou da tupla (ry,7,ep) ou da tupla (ry,1,e;), e nenhuma
informacao sobre a chave secreta s pode ser obtida de apenas uma das duas tuplas.

Faz-se uso de um esquema de comprometimento de cadeias C estatisticamente ocul-

tante e computacionalmente vinculante arbitrério.



26

4.2 Inicializacao e Geracao de Chaves

Os algoritmos de inicializacdo e geragcdo de chaves que compdem os esquemas com-

pletos sdo idénticos para as duas versdes do protocolo MQID.

Sejam n =n(A), m=m(A) e g = q(A) fungdes polinomialmente limitadas de um
parametro de seguranga A. O algoritmo de inicializacdo Inicia escolhe como parimetro
de sistema F aleatoriamente em .# 2(n,m,F,). O algoritmo gerador de chaves Gera

recebe F', escolhe um vetor aleatério s € Fy, computa v = F(s) e devolve (v,s).

4.3 Protocolo MQID-3 de 3 passos

Dado que, se (ro,71,%0,t1,€0,€1) sdo tais que

G(to,r1)+eo=v—F(r))—G(t1,r1) —e) 4.2)

(to,e0) = (ro —t1,F(ro) —e1) (4.3)

entdo v = F(rp+r;), bastalogo o provador demonstrar que possui uma tupla (ro, r,%,11,€p,€1)

que satisfaz as igualdades 4.2 e [4.3| para provar conhecimento do segredo.

No entanto, revelar esta tupla seria equivalente a revelar o segredo completo. Por-
tanto, no protocolo MQID-3 o provador revela, de acordo com um desafio Ch € {0, 1,2}
do verificador, ou a tupla (rg,1,e;), ou a tupla (ry,t,e1), ou a tupla (r1,79,ep). O ve-
rificador pode entdo conferir cada membro das equagdes 4.2] e 4.3 usando uma das trés
tuplas. Como ry, 7o € eg sao escolhidos aleatoriamente, o verificador nao obtém nenhuma

informacdo a respeito da chave secreta s a partir dela.

O protocolo MQID-3 ¢ descrito na figura[d.1) onde Com € o algoritmo de compro-
misso de cadeias de C e "€g" denota uma escolha de um elemento aleatdrio pertencente

a um conjunto finito. Por simplicidade, a cadeia aleatéria p € omitida.

13

. . . ~ ?
O verificador aceita o provador se ambas as verificagdes de “="resultarem em



Provador, entrada: ((F,v),s) Verificador, entrada: (F,v)

Escolha ro, 7 €g Fy, eo €g Fy
r 4 s—ro, 1 < ro—1to

e < F(ro) — e

co < Com(ry,G(to,r1) + €o)
c1 < Com(to,ep)

¢y + Com(ty,ey)

(cosc1,¢2)
Escolha Ch € {0,1,2}
Ch
. CE
Se Ch =0, Rsp « (ro,t1,e1)
Se Ch =1, Rsp + (r1,11,e1)
Se Ch =2, Rsp < (r1,10,€0)
Rsp
-

Se Ch =0, leia Rsp = (ro,11,e1), verifique
e1 £ Com(ro 1, F(ro) —e1)

)
¢y = Coml(ty,eq)
Se Ch = 1, leia Rsp = (r1,11, 1), verifique

co 2 Com(r,v—F(r1) —G(t1,r1) —e1)

c 2 Com(ty,e1)

Se Ch =2, leia Rsp = (r1,10,€9), verifique
?
co = Com(ry,G(to,r1) + o)

cl 2 Com(ty,ep)

Figura 4.1: Descri¢ao do protocolo MQID-3
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igualdades. Se ndo, ele o rejeita. Como o verificador sempre aceita um provador ho-
nesto, entdo o protocolo é correto. Ademais, se C € computacionalmente vinculante,
verifica-se que um provador desonesto tem 2/3 de probabilidade de personificar com
€xito o provador honesto em cada execucao do protocolo. Isso significa que, dadas sufi-
cientes iteracdes do protocolo, a probabilidade de personificacdo bem sucedida em todas
as iteragdes pode ser tdo pequena quanto se queira, e portanto desprezivel. Isso implica
que o protocolo € sélido. O protocolo MQID-3 ¢é portanto prova de conhecimento, pois
possui corre¢do e solidez. Se o esquema de comprometimento de cadeias C € estatisti-
camente ocultante, entdo verifica-se que o protocolo MQID-3 possui a propriedade de
conhecimento-zero estatistico. Como além disso o problema MQ € computacionalmente

dificil, entdo o protocolo é considerado seguro.

Exemplo 4.1. (Execucdo do protocolo MQID-3 com pardmetros artificialmente peque-
nos) Seja o parametro de sistema F do nosso esquema MQID-3 de exemplo a fungdo

MQ descrita no exemplo [2.1} a saber:

O R P
I R T R Y Rl B

Suponhamos, para simplificar, que o algoritmo de compromisso de cadeias Com uti-
lizado em nosso esquema seja somente a soma dos dois parametros s € p (i.e. s €
concatenado e interpretado como uma representacao de um nimero inteiro que € entao
somado ao sal p). Observe que o esquema de comprometimento resultante ndao € nem

ocultante nem computacionalmente vinculante, servindo portanto apenas de exemplo.

Alice utiliza Gera e recebe como chaves secreta e publica aleatérias os vetores x e
y do exemplo respectivamente. A chave secreta de Alice é entdo s = (1,0) e sua

chave publicaév = (1,1).

Alice deseja entdo provar sua identidade para Beto. O seguinte se sucede:

1. Alice escolhe aleatoriamente ro = (1,1), 7o = (0,0), o = (1,1) e p = 15.

2. Alice computa r; = (1,0) — (1,1) = (0,1), 1 = (1,1) — (0,0) = (1,1) e ] =
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F(1,1)—(1,1) = (1,0).

3. Alice computa os valores de compromisso cg = 22, ¢y = 18 e ¢c; =29 e os envia

a Beto.
4. Beto escolhe aleatoriamente Ch = 1 e o envia a Alice.
5. Alice responde enviando a Beto o vetor (r1,t1,e1,p).

6. Beto computa, com os dados fornecidos por Alice:

(@ v—F(r))—G(t1,r1)—e; = (1,1)— (1,1) — (0,1) — (1,0) = (1,1);
(b) Com(ry,(1,1),p) =22 e Com(ty,e1,p) =29.

7. Beto aceita a identidade de Alice pois ¢y =22 e ¢ = 29.

4.4 Protocolo MQID-5 de 5 passos

No protocolo de 5 passos, o provador divide sua chave secreta s e sua chave publica
F(s)ems=ro+rieF(s)=F(ro+r) =F(rg)+F(r1)+ G(ro,r), respectivamente.
A diferenca do protocolo de 3 passos é que ry e F(rp) sdo divididos em arg = 1o+ 1
e aF(rg) = eo+ej, onde a € F, é escolhido pelo verificador. Apés enviar (t1,e;) ao
verificador, segundo um desafio Ch € {0,1}, o provador revela apenas um dentre os
dois vetores rg e r;. Quando rg, ty € eg sdo escolhidos aleatoriamente, o verificador ndo
pode obter informacg@o alguma sobre a chave secreta s a partir de apenas um dos dois
vetores. Por outro lado, a prova € prova de conhecimento pois, para mais de uma escolha
de a € Fy, um personificador € incapaz de responder a ambos os desafios possiveis do

verificador a ndo ser que conheca uma solugdo s para o problema MQ em v.

O protocolo MQID-5 ¢ descrito na figura#.2] onde Com € o algoritmo de compro-
misso de cadeias de C e "€g" denota uma escolha de um elemento aleatério pertencente

a um conjunto finito. Por simplicidade, a cadeia aleatéria p € omitida.



Provador, entrada: ((F,v),s)

Escolha rg,ty €g ]F'q’, eo g F”

ri<s—r
co %Com(ro,to,é,’o)
c1 < Com(r1,G(to,11) +eo)

1 < Org—1p
e] < OCF(r()) — €0

Se Ch =0, Rsp < ry
SeCh=1,Rsp<+nr

q

(cosc1)

(t1,e1)

Ch

Rsp

Verificador, entrada: (F,v)

Escolha a €x F,

Escolha Ch € {0,1}

Se Ch =0, leia Rsp = ry, verifique

9
co = Com(rg,arg —t1,aF (rg) —ey)
Se Ch =1, leia Rsp = ry, verifique

c1 ;Com(rl,(x(v—F(rl)) —G(t1,r1)—ey)

Figura 4.2: Descric¢ao do protocolo MQID-5
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O verificador aceita o provador se a verificacio de “L resultar em igualdade. Se
ndo, ele o rejeita. Como anteriormente, o verificador sempre aceita um provador ho-
nesto, sendo o protocolo portanto correto. Se C é computacionalmente vinculante,
verifica-se que um provador desonesto tem 1/2 + 1/2¢ de probabilidade de executar
o protocolo com éxito com um verificador honesto. Isso significa que, dadas suficien-
tes iteracdes do protocolo, a probabilidade de personificagdo bem sucedida em todas as
iteracdes pode ser tdo pequena quanto se queira, e portanto desprezivel. O protocolo é
portanto sélido. Logo, o protocolo MQID-5 é prova de conhecimento. Se C € estatis-
ticamente ocultante, entdo verifica-se ademais que o protocolo € de conhecimento-zero
estatistico. Como além disso o problema MQ € computacionalmente dificil, entdo o

protocolo é considerado seguro.

Exemplo 4.2. (Execugdo do protocolo MQID-5 com pardmetros artificialmente peque-
nos) Suponhamos que Alice e Beto sejam os mesmos € usem o mesmo esquema do
exemplo 4.1} exceto que desta vez eles querem utilizar o protocolo de 5 passos para
efetuar a identificagdo. Suponhamos também que Alice sorteia os mesmos valores para

p e os vetores ry, ty € eg, por simplicidade. O seguinte se sucede:

1. Alice escolhe aleatoriamente ry = (1,1), 7y = (0,0), ep = (1,1) e p = 15.

2. Alice computa r; = (1,0) — (1,1) = (0, 1).

3. Alice computa os valores de compromisso c¢p = 66 € ¢; = 22 e os envia a Beto.
4. Beto escolhe aleatoriamente o = 0 e o envia a Alice.

5. Alice computat; =0-(1,1)—(0,0) = (0,0)ee; =0-(0,/) — (1,1) = (1,1) e os

envia a Beto.
6. Beto escolhe aleatoriamente Ch = 1 € 0 envia a Alice.
7. Alice envia r| para Beto.

8. Beto computa, com os dados fornecidos por Alice:



(a) (X(V—F(Fl)) —G(l‘l,l’l) —e| = (0,0) — (070) — (1,1)
(b) Com(ry,(1,1),p) =22.

9. Beto aceita a identidade de Alice pois ¢y = 22.

(1,1);

32
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5 Aplicacoes

Dentre os principais usos de identifica¢do estd simplificar o controle de acesso a um
recurso quando o direito de acesso estd ligado a uma identidade em particular. Ela pode

ser usada também para rastrear o uso de recursos a fim de limit4-lo ou cobra-lo.

Identificacdo é geralmente um requisito em protocolos de troca de chaves e estd
particularmente relacionada a esquemas de assinatura digital. Em alguns casos, esque-
mas de identificacdo podem ser convertidos em esquemas de assinatura digital usando
técnicas padronizadas. Neste capitulo vamos explorar essa aplica¢do e uma melhoria do
protocolo MQID-3 indicada para aplicagdes em assinaturas digitais € em dispositivos

embarcados com limita¢des de energia.

5.1 Assinaturas Digitais

Assinaturas digitais sao como as correspondentes digitais das assinaturas manuscri-
tas. Elas permitem verificar se uma parte de fato assinou determinada mensagem. A
assinatura digital de uma mensagem ¢ um nimero dependente da mensagem em si e de
algum segredo conhecido apenas pelo assinante. Ela deve ser verificidvel sem que seja

necessario o conhecimento da informacao secreta do assinante.

Um esquema de assinatura digital é uma tupla de algoritmos (Inicia, Gera,Assina, Verifica).
Inicia recebe um parametro de seguranca K e devolve um conjunto de parametros do
sistema. Gera é um algoritmo de geracdo de chaves que recebe os parametros devol-

vidos por Inicia e devolve um par de chaves publica e secreta. Assina é um algoritmo
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probabilistico que emite uma assinatura ¢ a partir de uma chave secreta e uma certa
mensagem. Verifica é um algoritmo deterministico que recebe uma assinatura ¢ e uma

chave publica e devolve um valor booleano representando o resultado da verificagdo.

5.2 Heuristica de Fiat-Shamir

Em 1986, os pesquisadores israelenses Amos Fiat e Adi Shamir criaram um mé-
todo para se obter provas de conhecimento-zero nao-interativas a partir de protocolos
de identificacdo de conhecimento-zero candnicos. Isso permite a constru¢do de um es-
quema de assinatura a partir de esquemas de identificagdo. O método ficou conhecido

como transformagado Fiat-Shamir.

Assina (s, msg) Verifica (v,msg, o)
{ {
Com + P(s); Com,Rsp + o,
Ch < h(Com,msg); Ch < h(Com,msg);
Rsp « P(s,Com,Ch); Bool < V(v,Com,Ch,Rsp);
Devolver Com, Rsp; Devolver Bool,
¥ ¥

Figura 5.1: Pseudocddigo dos algoritmos do esquema de assinatura

A transformacgdo consiste em substituir o desafio aleatério do verificador por um
hash da concatena¢cd@o do compromisso do provador com a mensagem a ser assinada.
Usa-se os algoritmos Inicia e Gera do esquema de identificacio a ser transformado sem
modificacdo como os respectivos algoritmos Inicia € Gera do novo esquema de assi-
natura. O Assina computa a partir de uma chave secreta um compromisso usando P,
concatena-o com a mensagem e alimenta-o a uma fun¢do de hash A, cujo resultado é

entdo devolvido a P como desafio. A resposta de P € entdo concatenada com o com-
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promisso € devolvida como assinatura ¢. O algoritmo Verifica utiliza a metade de ¢
correspondente a0 compromisso, concatenando-a com a mensagem a ser verificada e
alimentando-o a A. O resultado € alimentado a V juntamente com o préprio o e, claro,

uma chave publica. A resposta de V € usada entdo como a resposta de Verifica.

5.3 Protocolo de Identificacao MQID-3A

Em 2012, o pesquisador brasileiro Fabio S. Monteiro apresentou um aprimoramento
do algoritmo MQID-3 que reduz o tramite de dados entre as partes provadora e verifi-

cadora.

A melhoria consiste em dividir adicionalmente parte do segredo em r; = dy+d; e

de F(ry) em F(r;) = up+u;. A equagio[4.2]pode ser entdo aplicada a ry:

G(ro,d1)+u1 ZV—F(I”())—G(I’(),CZQ)—MO (5.1)

Dessa forma, basta o provador demonstrar que conhece uma tupla (ro, r1,%o,t1, €0, e1,do,d1, uo, uy)

que satisfaz e

(do,uo):(rl—dl,F(rl)—ul) (52)

Como revelar esta tupla seria equivalente a revelar o segredo completo, o provador
no protocolo MQID-3A revela, de acordo com um desafio Ch € {0,1,2,3} do verifica-
dor, ou a tupla (ry,t;,e1,do,up), ou a tupla (ry, 1y, eo,dy,u1 ), ou a tupla (ro,to,eq,d1,uy),
ou a tupla (rg,t1,ey,do,up). O verificador pode entdo conferir cada membro das equa-
¢Oes acima sem obter nenhuma informagdo a respeito da chave secreta s, conforme

esquematizado na figura[5.2]

O protocolo MQID-3A € prova de conhecimento-zero estatistico como o MQID-3,
porém com probabilidade de erro 1/2 ao invés de 2/3. Isso significa que menos itera-

¢oOes sao necessdrias para se atingir o nivel de seguranca desejado. Assim a comunicagao



Provador, entrada: ((F,v),s)

Escolha ro,1,do €g Iy, eo,uo €r Ty
r = S—r0, ] < ro—tg, dy < r; —dy
ey < F(ro) —eo, u1 < F(r1) —up

co < Com(ro,G(ro,d1) +uy)

¢y + Com(ry,G(to,r1)+eo)

¢y + Com(tg,ep), c3 < Com(ty,e;)
cq + Com(dy,ugp), ¢s < Com(dy,uy)

(€0,€1,02,¢3,¢4,C5)

Ch
- -

Se Ch =0, Rsp < (r1,t1,e1,do,up)
Se Ch =1, Rsp < (r1,10,€0,d1,u1)
Se Ch =2, Rsp < (ro,10,€0,d1,u1)
Se Ch =3, Rsp < (ro,11,e1,do,up)
Rsp

Verificador, entrada: (F,v)

Escolha Ch € {0,1,2,3}

Se Ch =0, leia Rsp = (r1,11,e1,do, up), verifique

1 ;Com(r],v—F(rl)—G(h,rl)—e])
3 iCom(tl7 1)
c4 7C0m(d0,u0)

5 = Com(ri —do,F (r1) — uo)

Se Ch =1, leia Rsp = (ry,19,€0,d1,u; ), verifique

c 2 Com(ry, G(to,ro) +eo

)
) = Com(t07 0)
cy z Com(ry —dy,F(r1) —uy)

)

cs —Com(d1 1

Se Ch =2, leia Rsp = (ro,19,€0,d1,u1), verifique
o 7Com(r0 G(ro,di)+uy)
1o —Com(to o)

3 £ Com(ro 10, F (1) — e0)
Com(dl,ul)

Se Ch =3, leiaRsp = (r07t17e17d07 up), verifique

o ;Com(ro,v—F(rO)—G(ro,do) up)
zicf)m(of;. P(ro)—e1)
Com(tl,el)

4= Com(do,uo)

Figura 5.2: Descri¢do do protocolo MQID-3A
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necessdria entre provador e verificador € menor, resultando em economia de energia em
dispositivos embarcados onde a transmissdo de dados € dispendiosa. Além disso, o de-
safio do verificador nesta versao do protocolo cabe em 2 bits sem sobras, facilitando a

implementagao de uma fungao de hash para transforméa-lo por Fiat-Shamir.
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APENDICE A - Implementacdo de exemplo

Disponibilizamos abaixo o cédigo fonte em C de uma implementagdo ingénua dos
protocolos MQID-3 e MQID-5 criada para estudo. O programa abaixo ndo deve ser
utilizado em qualquer aplicacdo prética, pois o gerador de niimeros pseudo-aleatérios
empregado ndo € seguro. Foi utilizada a funcdo de hash Whirlpool do professor Paulo
S. L. M. Barreto da Escola Politécnica da Universidade de Sdo Paulo, cujo cddigo fonte
ndo estd incluso. O cédigo também pode ser obtido com maior facilidade em http:

//www.linux.ime.usp.br/~cfilipe/tcc/mgid.tar.gz.

A.1 field.h

1 /+ generic interface for finite-field operations =/
2

3 typedef int Field;

4

5 /+* returns the order in use =/

6 int getOrder();

8 /x adds two field elements (modulo order addition) =/

9 Field add(Field a, Field b);

1 /* multiplies two field elements (modulo order multiplication) =*/
12 Field mult (Field a, Field Db);

13



http://www.linux.ime.usp.br/~cfilipe/tcc/mqid.tar.gz
http://www.linux.ime.usp.br/~cfilipe/tcc/mqid.tar.gz
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/% returns the zero element of the field (s.t. x+0 = x, xx0 = 0)
*/

Field zero();

/* returns -a (s.t. a + (-a) = 0) «/

Field neg(Field a);

/* whether a is zero or not x/

int isZero(Field a);

/* adds two n-dimentional vectors on the field =x/

Field * vadd(Field =*a, Field *b, int n);

/* subtracts two n—-dimentional vectors on the field */

Field * vsub(Field =xa, Field *b, int n);

/+ performs scalar multiplication on a vector =/

void vmult (Field =*a, Field x, int n);

/+ returns a string on the heap containing a hex representation of
a vector «*/

char * tohexstr (Field =*a, int n);

A.

MQID/field.h

2 field2.c

1

3

4

6

8

/* order 2 implementation of field.h interface x/

#include <stdlib.h>
#include "field.h"

static int order = 2;

int getOrder ()
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return order;

Field add(Field a, Field b)
{

return a * b;

Field mult (Field a, Field b)
{

return a & b;

Field zero()

{

return 0;

Field neg(Field a)
{

return a;

int isZero(Field a)

{

return !a;

Field % vadd(Field =*a, Field xb,
{

int i;

for (i = 0; 1 < n; i++)

int n)

40
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return 3a;

Field * vsub(Field *a, Field *b, int n)
{
return vadd(a, b, n); /* addition and subtraction are

equivalent in GF (2) */

void vmult (Field =*a, Field x, int n)

{

int i;
for(i = 0; i < n; i++)
ali] = mult(ali], x);

char * tohexstr (Field =*a, int n)
{

int i, j, m, p;

char s;

char x*str;

p=m= (n+ 3) / 4;

str = malloc((m + 1) * sizeof (char));
else { /* this is because we want an even number of
hexadecimal digits =/
m++;
str = malloc((m + 1) * sizeof (char));
str[0] = '0";
}
str[m] = "\0’";

for (i = 0; 1 < p; ++i) |
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79 int g = 4%1i, t;

80

81 s = 0;

82 t =1;

83 for (j =0; jJ < 4 && (g + J) < n; ++3) |
84 s += alg + Jjl=*t;

85 t *x= 2;

86 }

87

88 if (s < 10)

89 str[m-(i+1)] = 0" + s;

90 else

91 str[m-(i+1l)] = A" + s - 10;
92 }

93

94 return str;

95 }

MQID/field2.c

A.3 field2 4.c

1 /+ order 16 implementation of field.h interface =/
2 /+x GF(274) with decimal 19 as primitive =/
3

4 #include <stdlib.h>

5 #include "field.h"

6

7 static int order = 16;

8

9 int getOrder ()

10 {

11 return order;

12}

13
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Field add(Field a, Fi

{

return

(a ~ b) %

Field mult (Field a, F

{

int p
int i;

int ca

for (i =

return

= 0;
rry;
=0; 1 < 4

(b & 1)

p "= a;j
rry = (a &
<<= 1;

(carry)

a = 19;
>>= 1,

p % order;

Field zero ()

{

return

0;

Field neg(Field a)

{

return

ay

int isZero(Field a)

{

return

(a == 0);

eld b)

order;

ield b)
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Field % vadd(Field =*a,

{

Field % vsub (Field =a,

{

void vmult (Field =*a,

{

int

for

i;

(i

Field b, int n)

= 0; 1 < n; i++)

al[i] = add(ali], bli]);

return a;

int

for

i;

(1

Field *b, int n)

= 0; 1 < n; i++)

ali] = add(ali], neg(b[i]l));

return a;

int

i;
i 0; 1 < n; 1i++)
ali] = mult(ali],

char * tohexstr (Field =*a,

{

int

i,

m;

char *str;

Field x, int n)

int n)
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86 str = malloc(m * sizeof (char));

87 str[n] = "\0’;

88

89 } else { /* this is because we want an even number of

hexadecimal digits =/

90 m=n + 2;

91 str = malloc(m * sizeof (char));

92 str[0] = ’0’;

93 strn+l] = "\0’;

94 }

95

96 for (i = 0; 1 < n; ++i) {

97 if (a[i] < 10)

98 str[m—-(1+2)] = "0’ + (char) (a[i]);
99 else

100 str[m-(i+2)] = A’ + (char) (af[i]) - 10;
101 }

102

103 return str;

104 }

45

MQID/field2_4.c

A4 mgqid.h

1 /* MQID-3 and MQID-5 generic interfaces */

3 #include "field.h"
4 #include "Whirlpool/Whirlpool.h"

¢ typedef struct mgid *MQIDScheme; /% stores a reference for the

scheme and its data =/

8 typedef Field xMQID_key; /* a key is a vector of field elements

*/
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/+ returns the size of all commitment strings =*/

int getComStrSize () ;

/+ initializes a mxn sized scheme with random parameters =/

MQIDScheme setupMQIDScheme (int m, int n);

/+ returns the number of equations of a scheme */

int MQID_getm (MQIDScheme s);

/* returns the number of unknowns of a scheme */

int MQID_getn (MQIDScheme s);

/+ returns the quadratic coefficients =/

Field MQID_geta (MQIDScheme s, int k, int i, int 3J);

/* returns the linear coefficients x/

Field MQID_getb (MQIDScheme s, int k, int 1i);

/*x F(x) */
MQID_key MQID_F (MQIDScheme s, MQID_key X);

/* G(x,y) */
MQID_key MQID_G(MQIDScheme s, MQID_key x, MQID_key vy);

/+ key—-generation algorithm =/

void MQID_Gen (MQIDScheme s, MQID_key *pk, MQID_key #*sk);

/+ sorts a uniformly distributed random m-dimentional Field array
*/
MQID_key MQID_unidrndkey (int m);

// takes as parameters n keys and its respective sizes, computes
the commitment scheme function on them

// puts it on comstr and returns it

46




47

43 // sample usage: comstr = MQID_com(comstr, 3, keyl, nl, key2, n2,
key3, n3)
4 char  MQID_Com(char * comstr, int n, ...);

4 // clears memory

47 void clearMQIDScheme (MQIDScheme s);

MQID/mgqid.h

A.5 mgqid.c

1 /+ sample naive implementation of Sakumoto, Shirai and Hiwatari’s

2 x public-key id. scheme based on the MQ problem

4 * WARNING: this is a naive implementation made for academic
purposes and

5 x shouldn’t be put to security sensitive use

7 % NOTE: this implementation does not provide a mechanism to store
scheme system

8 * parameter data

10 * by: Carlos Filipe Lombizani
nox cfilipe@linux.ime.usp.br

2 o/

14 #include <stdlib.h>
15 #include <stdarg.h>
16 #include <string.h>

17 #include "mgid.h"

19 struct mgid {
20 /* system parameters x/
21 int m; /* equations */

2 int n; /* unknowns =x/
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/* coefficient matrixes x/
Field ***a; /* quadratic */
Field *xxb; /* linear =/

}i

int getComStrSize () {
return HEXHASHSIZE;

/* initialization =/
MQIDScheme setupMQIDScheme (int m, int n)
{

int i, 3, 1, row;

int sizeA, sizeB;

MQIDScheme s;

sizeA m* (n * n + n)/2;

sizeB = n * m;

/+ alocacao de espaco e configuracao de ponteiros */
s = malloc (sizeof (struct mqgid));
s=>n = n;

s=>m = m;

s—>a = malloc(m * sizeof (Field #*x));

s—>a[0] = malloc(sizeB * sizeof (Field «*));
for (i = 1; 1 < m; i++) {

s->al[i] = s->al[i-1] + n;
}
s—>a[0] [0] = malloc(sizeA * sizeof (Field));
j=1;
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(row + 1);

[)

getOrder () ;

% getOrder();

59 for (i = 0; 1 < m; 1i++) {

60 while (j < n) {

61 int set = 1i;

62 if (row == - 1)

63 set——;

64 s->a[i][J] = s—>alset][row] +
65 if (row == n - 1)

66 set++;

67 Jj++; row++;

68 row = row % nj;

69 }

70 J = 0;

71 }

7

73 s—>b = malloc(m * sizeof (Field x));
74 s—>b[0] = malloc(sizeB * sizeof (Field));
75

76 for (i = 1; 1 < m; 1i++) {

77 s—>b[i] = s—>b[i-1] + n;

78 }

79

80 for (1 = 0; 1 < m; 1++)

81 for (i = 0; 1 < n; i++) {

82 for (j = 0; j <= 1; j++) {

83 s=>a[l][i][J] = rand() %
84 }

85 s=>b[1][i] = rand() %

86 }

87

88 return s;

89 }

90

91 int MQID_getm (MQIDScheme s)
92 {

93 return s-—>m;

94 }




96 int MQID_getn (MQIDScheme s)
97 {

98 return s->n;

99 }

100

101 Field MQID_geta (MQIDScheme s, int 1, int i, int J)

102 {

103 /* boundcheck =/

104 if (1L >>= s->m || 1 >= s->n || J > 1)
105 return -1;

106

107 return s->al[l][i][]];

108 }
109

1

0 Field MQID_getb (MQIDScheme s, int 1, int 1)

1 {

112 /* boundcheck =/

13 if (1 >= s->m || 1 >= s—->n)
114 return -1;

115

116 return s->b[1l][1i];

17 }

118

19 /* calcula y = F(x) */

120 MOID_key MQID_F (MQIDScheme s, MQID_key x)

121 {

122 int 1, 1, 3;

123 MQID_key y;

124

125 y = malloc (s->m » sizeof (Field));
126

127 for (1 = 0; 1 < s->m; 1++) {

128 yI[1l] = zero();

129 for (i = 0; 1 < s->n; i++) {

130 y[1l] = add(y[1l], mult(s->b[1][i], x[i]));




131 for (j = 0; Jj <= 1; J++)

132 y[1l] = add(yI[l], mult(s->al[l]l[i][J], mult(x[i],
31

133 }

134 }

135

136 return y;

137 }

138

139 /x computes the polar form F (x+y)-F(x)-F(y) = G(x,y) */

140 MQID_key MQID_G(MQIDScheme s, MQID_key x, MQID_key V)

141 |

142 int 1, 1, J;

143 MQID_key g;

144

145 g = malloc(s—>m * sizeof (Field));

146

147 for (1 = 0; 1 < s-—>m; 1++) {

148 gll] = zero();

149 for (i = 0; i < s—=>n; 1i++)

150 for (j = 0; Jj <= 1; J++)

151 gl[l] = add(g[l], mult(s->al[l]l[i][3]], add(mult(x
I, y[il), mult(x[i], yI[31))));

152 }

153

154 return g;

155 }

156

157 void MQID_Gen (MQIDScheme s, MQID_key x*pk, MQID_key =*sk)
158 {

159 x*sk = MQID_unidrndkey (s->n);

160 *pk MQID_F (s, #*sk);

161 }

162

163 MQID_key MQID_unidrndkey (int m)

164 {
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MQOID_key key;

int 1;
key = malloc(m x sizeof (Field));
for (1 = 0; 1 < m; 1++)

key[l] = rand() % getOrder();

return key;

/* String commitment scheme */

char * MQID_Com(char = comstr, int n,
{

va_list ap;

int i, m;

MQOID_key k;

char % auxstr, * tmpstr, »* hex;

auxstr = malloc (sizeof (char));

auxstr[0] = "\0’;

va_start (ap, n);

for (i = 0; 1 < n; i++) {

va_arg(ap, MQID_key);

m = va_arg(ap, int);

hex = tohexstr(k, m);

tmpstr = malloc((strlen(auxstr)
sizeof (char));
tmpstr[0] = "\0’;

tmpstr = strcat (tmpstr, auxstr);

tmpstr = strcat (tmpstr, hex);

free (auxstr);

auxstr = tmpstr;

+ strlen (hex)

+ 1)

*
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comstr = whirlpoolsum(comstr, tmpstr);

free (tmpstr);

return comstr;

void clearMQIDScheme (MQIDScheme s)
{

free(s->b[0]);

free(s—>b);

free(s->a[0][0]1);

free(s—>al[0]);

free(s—>a);

free(s);

}
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A.

MQID/mgqjid.c

6 mgqid3.h

9

10

11

/* MQID-3 specific interface =/

#include "mgid.h"

/+ store prover and verifier data =/

typedef struct mgid3_prover xMQID3_prover;
typedef struct mgid3_verifier «MQID3_verifier;

/* step-by-step protocol algorithm implementation =*/

MQID3_prover proverlstStep (MQIDScheme s, MQID_key sk,

char * cl, char x c2);

char * cO,




13 MOID_key * prover2ndStep (MQID3_prover p, char ch);

15 MQID3_verifier verifierlstStep (MQIDScheme s, MQID_key pk, char =

c0, char = cl, char % c2, char % ch);

17 int verifier2ndStep (MQID3_verifier v, MQID_key * rsp);

19 /* clears everything up =/

20 void clearMQID3 (MQID3_prover p, MQID3_verifier v);

54

MQID/mgqid3.h

A.7 mgqid3.c

1 /+ sample naive implementation of Sakumoto, Shirai and Hiwatari’s
2 * 3-pass public-key id. scheme based on the MQ problem

3 % by: Carlos Filipe Lombizani

4 % cfilipe@linux.ime.usp.br

5 %/

6

7 #include <stdlib.h>

8 #include <string.h>

9 #include "mgid3.h"
1 struct mgid3_prover {
12 MQID_key r0O, t0, e0, rl, tl, el;

13 };

15 struct mgid3_verifier {

16 char ch;

17 char % coml;
18 char * com2;
19 MQIDScheme s;

20 MQID_key pk;




21}

22

23 MQID3_prover proverlstStep (MQIDScheme s,

24 |
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char * cl, char * c2)

MQID3_prover p;
size_t unknowns;

MQID_key fr0, gtOrl_e0;

p = malloc (sizeof (struct mgid3_prover));

p—>r0 MQID_unidrndkey (MQID_getn(s));

p—>t0 MQID_unidrndkey (MQID_getn(s));

p—>e0 = MQID_unidrndkey (MQID_getm(s));

unknowns = MQID_getn(s) x sizeof (Field);

fr0 = MQID_F (s, p—>r0);

p—>rl = malloc (MQID_getn(s) * sizeof(Field));
p—>tl = malloc (MQID_getn(s) * sizeof (Field));
p—>el = malloc (MQID_getm(s) * sizeof (Field));

p—>rl = memcpy (p—->rl, sk, unknowns);
p—>tl = memcpy (p->tl, p->r0, unknowns);

p—>el = memcpy (p—>el, fr0, MQID_getm(s)

p—->rl = vsub(p->rl, p—->r0, MQID_getn(s))
p—>tl = vsub(p->tl, p—->t0, MQID_getn(s));
p—>el = vsub(p->el, p—->e0, MQID_getm(s));

gtOrl_e0 = MQID_G(s, p—>t0, p->rl);

gtOrl_e0 = vadd(gtOrl_e0O, p—->e0, MQID_getm(s));

c0 = MQID_Com(cO, 2, p->rl, MQID_getn(s),

s));

MQID_key sk,

gtOrl_eO,

char * cO,

* sizeof (Field));
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cl MQID_Com(cl, 2, p—->t0, MQID_getn(s), p—>e0,

c2

MQID_Com(c2, 2, p—->tl, MQID_getn(s), p—->el,

free (£x0);

free(gtOrl_e0);

return p;

MQID_key * prover2ndStep (MQID3_prover p, char ch)

{

MQID_key * rsp;

rsp = malloc (3 » sizeof (MQID_key));

switch (ch) {

case O:
rspl[0] = p—->r0;
rspll] = p—>tl;
rspl2] = p—>el;

free (p—>t0);
p->t0 = NULL;
free(p—>e0);
p—>e0 = NULL;
free(p-—>rl);

p->rl = NULL;

break;

case 1:
rsp[0] = p—->rl;
rspl[l] = p—>tl;
rspl2] = p—->el;

free (p—>r0);
p->r0 = NULL;
free (p—>t0);
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MQID_getm(s))

MQID_getm(s))
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p->t0 = NULL;
free (p—>e0);
p—>e0 = NULL;
break;

case 2:
rsp[0] = p->rl;
rspl[l] = p—>t0;
rspl[2] = p—>e0;

free(p—>r0);
p->r0 = NULL;
free(p—>tl);
p->tl = NULL;
free(p—>el);
p—>el = NULL;
break;
default:
free(rsp);

rsp = NULL;

return rsp;

MQID3_verifier verifierlstStep (MQIDScheme s,

c0, char x cl, char % c2, char * ch)

MQID3_verifier v;

MQID_key pk,

v = malloc (sizeof (struct mgid3_verifier));
v->ch = (xch) = (char) (rand()%3);

v—->s = S;

v->pk = pk;

switch (v—->ch) {

char =«

57




123

124

125
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129

130
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140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

int

case 0:
v—>coml
v—>com2
break;

case 1:
v—>coml
v—>com2
break;

case 2:
v—>coml
v—>com2

break;

return v;

verifier2ndStep (MQID3_verifier v,

int verified;
char * cl;
char * c2;

MQOID_key £, g,

h
I

NULL;
g = NULL;

switch (v—->ch) {

case 0:

f = MQID_F (v->s,

vsub (f,

cl;

c2;

c0;

c2;

c0;

cl;

second;

rspl2],

vsub (rsp[0],

second = f;

break;

case 1:

f = MQID_F (v—->s,

MQID_key * rsp)

MQID_getm(v—->s));
MQID_getn (v—->s));
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159 g = MQID_G(v->s, rspl[l], rspl[0]);

160 vadd (g, rspl2], MQID_getm(v->s));

161 vadd (f, g, MQID_getm(v->s));

162 vsub (v->pk, f, MQID_getm(v->s));

163 second = v-—>pk;

164 break;

165 case 2:

166 g = MQID_G(v->s, rspl[l], rspl[0]);

167 vadd (g, rspl2], MQID_getm(v->s));

168 second = g;

169 break;

170 }

171

172 cl = malloc(sizeof (unsigned char) * (getComStrSize ()
173 c2 = malloc (sizeof (unsigned char) * (getComStrSize ()
174 cl = MQID_Com(cl, 2, rspl[O], MQID_getn(v->s), second,

MQID_getm(v—->s));
175 c2 = MQID_Com(c2, 2, rspll], MQID _getn(v->s), rspl2],
MQID_getm(v—->s));

176

177 verified = (strcmp(cl, v->coml) == 0) && (strcmp(c2,
== 0);

178

179 free(cl);

180 free(c2);

181

182 free (f);

183 free(qg);

184

185 return verified;

186 }

187

188 void clearMQID3 (MQID3_prover p, MQID3_verifier v)
189 {

190 free (v);

191 free (p—>r0);

+ 1))
+ 1));
v—>com?2)
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192 free(p—>t0);
193 free (p—>e0);
194 free(p-—>rl);
195 free(p—>tl);
196 free(p—>el);
197 free(p);

198 }

60

MQID/mqid3.c

A.8 mgqid5.h

1 /+» MQID-3 specific interface x/

2

3 #include "mgid.h"

4

5 /* store prover and verifier data =/

6 typedef struct mgid5_prover *MQID5_prover;

7 typedef struct mgid5_verifier «MQID5_verifier;

8

9 /* step-by-step protocol algorithm implementation =/

10

11 MQID5_prover proverlstStep (MQIDScheme s, MQID_key sk, char * cO,

char * cl);

12

13 void prover2ndStep (MQIDS5_prover p, Field alpha, MQID_key * t1,

MQID_key * el);
14
15 MQID_key prover3rdStep (MQID5_prover p, char ch);

16

17 MQID5_verifier verifierlstStep (MQIDScheme s, MQID_key pk, char x

c0, char x cl, Field x alpha);
18
19 char verifier2ndStep (MQID5_verifier v, MQID_key tl1,

20

MQID_key el);




21

22

23

24

int verifier3rdStep (MQID5_verifier v,

/* clears everything up */

MQID_key rsp);

void clearMQID5 (MQID5_prover p, MQIDS5_verifier v);

A.

MQID/mqid5.h

9 mgqid>S.c

16

20

21

22

23

24

N
G

/+ sample naive implementation of Sakumoto,

Shirai and Hiwatari’s

* 5-pass public-key id. scheme based on the MQ problem

x by: Carlos Filipe Lombizani
* cfilipe@linux.ime.usp.br

*/

#include <stdlib.h>
#include <string.h>

#include "mgid5.h"

struct mgid5_prover ({
MQIDScheme s;
MQID_key r0O, t0, e0, rl, tl, el;

struct mgid5_verifier {
Field alpha;
char ch;
char % comQ;
char * coml;
MQIDScheme s;
MQID_key pk, tl, el;
i

MQID5_prover proverlstStep (MQIDScheme s,

char * cl)

MQID_key sk,

char * cO,




27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46

47
48
49 }

50

62

MQIDS5_prover p;
MQID_key gtOrl_eO;

p = malloc (sizeof (struct mgid5_prover));

p~>s = s;

p—>r0 = MQID_unidrndkey (MQID_getn(s));

p—>t0 = MQID_unidrndkey (MQID_getn(s));

p—>e0 = MQID_unidrndkey (MQID_getm(s));

p—>rl = malloc (MQID_getn(s) =* sizeof(Field));

p—>rl = memcpy (p—->rl, sk, MQID_getn(s) * sizeof(Field));
p—>rl = vsub(p->rl, p->r0, MQID_getn(s));

gtOrl_eO MQID_G(s, p—->t0, p->rl);

gtOrl_eO vadd (gtO0rl_e0, p->e0, MQID_getm(s));

c0 = MQID_Com(cO, 3, p->r0, MQID_getn(s), p—->t0, MQID_getn(s),
p—>e0, MQID_getm(s));

cl = MQID_Com(cl, 2, p—->rl, MQID getn(s), gtOrl_eO, MQID_getm(
s));

return p;

51 void prover2ndStep (MQID5_prover p, Field alpha, MQID_key * tl1,

54

55

56

57

58

MQID_key x el)

MQID_key £f;

p—>tl = malloc (MQID_getn (p—->s) * sizeof (Field));

p—>tl memcpy (p—>tl, p->r0, MQID_getn(p->s) * sizeof (Field));
vmult (p—>t1l, alpha, MQID_getn(p->s));

p—>tl = vsub(p->tl, p—->t0, MQID_getn (p—->s));
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* sizeof (Field));

60 f = MQID_F (p—>s, p->r0);

61 p—>el = malloc (MQID_getm(p—->s) x sizeof (Field));
62 p—>el = memcpy (p—->el, f, MQID_getm(p->s)

63 vmult (p—>el, alpha, MQID_getm(p—->s));

64 p—>el = vsub(p->el, p->e0, MQID_getm(p->s));

65

66 *tl = p—>tl;

67 xel = p—>el;

68

69 free(f);

70 }
71
72 MQID_key prover3rdStep (MQID5_prover p,

73 {

74 MQID_key rsp;

75

76 switch (ch) {

77 case O:

78 rsp = p—>r0;
79 p—->r0 = NULL;
80 break;

81 case 1:

82 rsp = p->rl;
83 p->rl = NULL;
84 break;

85 default:

86 rsp = NULL;
87 }

88

89 return rsp;

90 }
91

92 MQID5_verifier verifierlstStep (MQIDScheme s,
char * cl1,

cO, Field » alpha)

93 {

char ch)

MQID_key pk,

char =«
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94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

char verifier2ndStep (MQID5_verifier v,

{

int

MQIDS5_verifier v;

v = malloc (sizeof (struct mgid5_verifier));

xalpha = v->alpha = rand() % getOrder();

v->s = s;

v->pk = pk;

v—->com0 c0;

v->coml = cl;

return v;

MQID_key t1,

v->tl = tl;
v—->el = el;
v-=>ch = rand() % 2;

return v->ch;

verifier3rdStep (MQID5_verifier v, MQID_key rsp)

int verified;

char * cO;

MQID_key f, g, second;
f = NULL;

g = NULL;

second = NULL;

switch (v—->ch) {
case 0:

second = malloc (MQID_getn (v—>s)

64

MQID_key el)

+ sizeof (Field));
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131

132
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135

136
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138

139
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141
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143

144

145

146

147

148
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150

151

152

153

154

155

156

157

158

159

160

161

162
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second = memcpy (second, rsp, MQID_getn(v->s) * sizeof (

Field));
vmult (second, v->alpha, MQID_getn(v->s));

second = vsub(second, v->tl, MQID_getn(v->s));

f = MQID_F (v->s, rsp);
vmult (£, v—->alpha, MQID_getm(v->s));
f = vsub(f, v->el, MQID_getm(v->s));

c0 = malloc(sizeof (char) * (getComStrSize ()

c0 = MQID_Com(cO, 3, rsp, MQID_getn(v->s),
MQID_getn(v->s), f, MQID_getm(v->s));

verified = (strcmp(c0, v->com0) == 0);
break;

case 1:
f = MQID_F (v—->s, rsp);

free (f);
free(qg);

g MQID_G(v—->s, v—->tl, rsp);

vadd (g, v->el, MQID_getm(v->s));

vsub (v—->pk, f, MQID_getm(v->s));

vmult (v—>pk, v—->alpha, MQID_getm(v->s));

vsub (v—->pk, g, MQID_getm(v->s));

c0 = malloc(sizeof (char) » (getComStrSize()

c0 = MQID_Com(cO, 2, rsp, MQID_getn(v->s),
MQID_getm(v—->s));

verified = (strcmp(c0, v->coml) == 0);

break;

free (second);

free (c0)

4

+ 1));

second,

+ 1))
v—>pk,




163
164 }

165

return verified;

166 void clearMQID5 (MQIDS5_prover p, MQID5_verifier v)

167 {
168
169
170
171
172
173
174
175

176}

free (v);

free(p—>r0);
free (p—>t0);
free(p—>e0);
free(p->rl);
free(p—>tl);
free (p—>el);

free(p);

66

MQID/mgid5.c

A.10 Whirlpool/Whirlpool.h

| #define HEXHASHSIZE 128

3 /* computes the hex Whirlpool hash checksum of str and copies it

to xsum, returns sum */

4 char « whirlpoolsum(char x sum, char % const str);

MQID/Whirlpool/Whirlpool.h
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