UNIVERSITY OF SA0 PAuLo
INSTITUTE OF MATHEMATICS AND STATISTICS
BACHELOR OF COMPUTER SCIENCE

Measuring the performance of a new eBPF
implementation of the Kubernetes
ClusterIP Service

Bruno Campos e Joao Henri

FiNAL EssAy

MAC 499 — CAPSTONE PROJECT

Supervisor: Prof. Dr. Daniel Macédo Batista

S30 Paulo
2023

The content of this work is published under the CC BY 4.0 license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Acknowledgments

The first acknowledgment is reserved for Professor Daniel, who, in addition to being
an exceptional supervisor, also taught the course MAC0470/MAC5856 - Free Software

Development, which was both essential and a precursor to this work.

Moving forward, we extend our appreciation to the Kubernetes community, whose
warm and supportive reception was invaluable, with special recognition for the maintainers

of ’kpng’: Jay Vyas, Andrew Stoycos, Ricardo Katz, and Per Andersson.

Lastly, we wish to convey our deep gratitude to our friends and family. Their unwa-
vering support, encouragement, and understanding have been pivotal throughout this

journey.

A journey of a thousand miles begins with a single step.

— Lao Tzu

Resumo

Bruno Campos e Jodo Henri. Medindo o desempenho de uma nova implementacio
em eBPF do servico ClusterIP do Kubernetes. Monografia (Bacharelado). Instituto

de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2023.

O Kubernetes é uma plataforma de orquestracio de contéineres de codigo aberto amplamente usada
para automatizar o gerenciamento, escalabilidade e implantacéo de aplicativos, principalmente em ambientes
cloud native. O kube-proxy é um de seus componentes fundamentais, responsavel por gerenciar as regras
de rede e os enderecos virtuais, ou seja, encaminhar o trafego entre os servigos e pods dentro de um cluster.
Tradicionalmente, o kube-proxy utilizou o iptables como backend principal para realizar essa tarefa. No
entanto, com a evolucio das tecnologias de rede e a busca por maior desempenho e flexibilidade, tem surgido
uma alternativa promissora: a integracdo do eBPF (extended Berkeley Packet Filter) como mecanismo de
encaminhamento de pacotes. O eBPF é uma tecnologia que permite a execucdo de cédigo personalizado no
kernel Linux, usado principalmente para processamento avancado de pacotes e monitoramento de recursos.
Nesta monografia, é feita uma analise de desempenho da implementacdo de um backend usando eBPF, a
partir de um comparativo de laténcia com o kube-proxy tradicional. Foi possivel observar uma laténcia
média da viagem de ida e volta, com um nivel de confianca de 99%, para a implementa¢do eBPF de 1,23 +
0,00223 ms e para a implementacio tradicional baseada em iptables de 1,28 + 0,00463 ms, indicando um

desempenho ligeiramente superior para a nova implementacéo.

Palavras-chave: Kubernetes. kube-proxy. eBPF. Linux. Roteamento de pacotes. Computacio em Nuvem.

Abstract

Bruno Campos e Jodo Henri. Measuring the performance of a new eBPF imple-
mentation of the Kubernetes ClusterIP Service. Capstone Project Report (Bachelor).

Institute of Mathematics and Statistics, University of Sdo Paulo, Sao Paulo, 2023.

Kubernetes is a widely used open-source container orchestration platform designed to automate ap-
plication management, scalability, and deployment, particularly in cloud-native environments. One of its
fundamental components is kube-proxy, responsible for managing network rules and virtual addresses, i.e.,
routing traffic between services and pods within a cluster. Traditionally, kube-proxy has utilized iptables as its
primary backend to perform this task. However, with the evolution of network technologies and the pursuit of
increased performance and flexibility, a promising alternative has emerged: the integration of eBPF (extended
Berkeley Packet Filter) as a packet forwarding mechanism. eBPF is a technology that allows the execution of
custom code in the Linux kernel, primarily used for advanced packet processing and resource monitoring.
This thesis conducts a performance analysis of the eBPF-backend implementation, comparing latency with
the traditional kube-proxy. It was possible to observe a round-trip average latency, with a 99% confidence
level, for the eBPF implementation of 1.23 + 0.00223 ms, and the traditional iptables implementation of 1.28

+ 0.00463 ms, indicating a slightly superior performance for the new implementation.

Keywords: Kubernetes. kube-proxy. eBPF. Linux. Packet routing. Cloud Computing.

vii

Contents

1 Introduction 1

2 Basic Concepts 3
2.1 Microservices Software Architecture 3

2.2 Containers 4

23 Kubernetes 8
2.3.1 Kubernetes Services 9

2.3.2 Kubernetes Workloads 12

2.4 Kube-Proxy New Generation 13

25 eBPF . . . 15
2.5.1 The eBPF Virtual Machine 15

252 eBPFMaps. 16

253 eBPFVerifier 16

254 XDP:the eXpressDataPath 17

2.5.5 cgroup/connectd 17

2.6 Observability Tooling 19
2.6.1 Prometheus 19

262 Grafana e 21

3 Solution 25
3.1 KPNG Implementation 25

3.2 k8s-node-latency 27
3.2.1 Server e e 29

3.22 Client e 29

3.23 Monitoring Lo 29

4 Results and Analysis 35
41 TestEnvironment, 35

42 iptables 36

viii

43 eBPF
44 Analysis

5 Conclusions and Future Work

References

36
40

41

43

Chapter 1

Introduction

Kubernetes is a widely used open-source container orchestration platform designed
to automate the management, scalability, and deployment of applications, primarily in
cloud-native environments. Kube-proxy is one of its fundamental components, responsible
for managing network rules, virtual addresses, and routing traffic between Services and
Pods within a cluster. Traditionally, kube-proxy used iptables as the primary backend
for this task. Our capstone project evaluates a promising alternative to iptables: eBPF
(extended Berkeley Packet Filter).

eBPF is an evolution of the original BSD packet filter (BPF) McCANNE and JACOBSON,
1993. BPF uses a register-based virtual machine to describe filtering actions. Support
for compiling (restricted) C and Rust code into eBPF is included in the LLVM compiler
infrastructure LATTNER and ADVE, 2004. eBPF allows the execution of custom code in the
Linux kernel.

Kube-Proxy New Generation (KPNG) ! is a project backed by the Cloud Native Com-
puting Foundation (CNCF) * that intends to decouple access to the Service description
objects from their network backend implementation. In this context, to introduce another
networking mode for Kubernetes Services, one could create a backend that uses any
networking tool. Our project evaluates an eBPF implementation of Kubernetes ClusterIP
service deployed through KPNG.

In Chapter 2, basic concepts and tools are explained. Chapter 3 addresses the test
environment and how the solutions were built. Chapter 4 shows the results and Chapter 5
the conclusions.

! The official KPNG repository is https://github.com/kubernetes-sigs/kpng
2 More information about the CNCF can be found at https://cncf.io

https://github.com/kubernetes-sigs/kpng
https://cncf.io

Chapter 2

Basic Concepts

Container communication is essential for the proper operation of applications that em-
brace the microservices architecture. Understanding the concepts behind this architecture
is crucial for comprehending the motivation behind solutions like Kubernetes and KPNG.
Therefore, this chapter introduces some fundamental concepts such as Microservices
Architecture, Containers, Kubernetes’ resources, Kubernetes Services’ inner workings,
KPNG (Kube-proxy new generation), Linux networking, and eBPF.

2.1 Microservices Software Architecture

In the early days of software development, applications were mostly monoliths. That
is, they ran in a single process on a single computer. Such applications had what is
known as a monolithic architecture and were simpler to develop and deploy, making them
more suitable for small programs. However, during the 2000s, with the advancement of
network communications, computer programs grew larger, became harder to maintain, and
demanded many more resources than before. It was in this context that the microservices
architecture was created. This approach mandates breaking down an application into
multiple program modules running in different processes that communicate with each other
using inter-process communication mechanisms when they run on the same operating
system or network communication mechanisms when they run on distinct computers or
containers. The new architecture proved to be more reliable for more complex systems
and has become the industry standard for these environments RaAHARjO et al., 2022.

There are several advantages to using the microservices architecture over the monolith,
including:
+ Code Maintenance: It’s easier to understand and maintain small, decoupled programs
than a large monolithic one.

« Runtime Errors: A runtime error in a monolith impairs the entire application, whereas
in a microservices-based system, it only affects the module in which it occurred.

+ Deployment Independence: With a monolithic architecture, when scaling horizon-
tally (adding copies of the process), you must run the entire application in each

2 | BASIC CONCEPTS

replica. In a microservices-based application, you can scale individual modules that
may require more resources than others without having to run the entire application
again.

Considering that each microservices module runs in a different process, it is important
to isolate these processes from one another to prevent one from interfering with another
and causing unexpected runtime errors. A container provides a way to run these processes
in complete isolation, even when they are running on the same machine with the same
operating system (without using a virtual machine).

2.2 Containers

Virtual machines have been in existence since the era of mainframes. Due to the
immense processing power of these machines, it was improbable that a single process would
consistently utilize all the available resources. Consequently, users were allocated a fraction
of the machine’s capacity for their processes, enabling concurrent program execution.
This execution model was termed "multi-programming" and significantly improved the
efficiency of computer resource utilization HANSEN, 1972. With the advent of personal
computing, this concept transitioned to smaller computers, primarily designed to facilitate
the simultaneous operation of two operating systems on the same hardware. Instances of
operating systems coexisting on the same hardware are referred to as Virtual Machines
GOLDBERG, 1974. Virtual Machines necessitated the installation of an entirely new operating
system and the use of specialized software known as a hypervisor to mediate between the
virtualized operations of the guest operating system and the host system. However, when
the need arises to run an isolated program exclusively in user space, a Virtual Machine can
introduce significant overhead. A more efficient approach involves employing lightweight
tools like chroot !, leading to the development of lightweight virtualization solutions, such
as containers.

A container is an isolated runtime environment for a process, offering a streamlined
alternative to running a complete operating system within a virtual machine. Containers
share the kernel of their host system and can possess varying degrees of isolation. These
degrees of isolation are determined by the host system’s allocation of resources, typically
including the file system, PID list, network connections, as well as resources like memory
and CPU.

The primary advantages of using containers are as follows:

« Lightweight: Containers are exceptionally lightweight because they do not require
booting, installing, and managing an entire operating system (OS), running a sepa-
rate kernel, or executing various OS-related processes to host a single process. For
example, in ZHANG et al, 2018, the authors conducted experiments in which they
compared the boot-up time of Docker containers and VMs running the same appli-
cation with an increasing number of instances. With 256 instances, the containers

! Chroot, short for ’change root, is a Unix operating system feature that enables the modification of the
apparent root directory for a process, limiting its access to specific file systems.

2.2 | CONTAINERS

brunopec
lemTotal:
brunopec

took 479 seconds to initialize, whereas the VMs took 24,295 seconds to initialize,
which is 50.72 times longer.

Portability: Containers are OS-agnostic, allowing the same container to run on
diverse OSs without requiring extensive configuration changes. For example, on
https://hub.docker.com/_/postgres, it is possible to obtain an image of the PostgreSQL
DBMS that is compatible with any Linux distribution and Windows Subsystem for
Linux, without the need for any specific configuration for these systems.

Isolation: Containers are constrained to access only the specified resources, limiting
their resource consumption and enhancing security. For example, Figure 2.1 is a
screenshot of four terminals. The top left one shows the total amount of memory of
the computer, which is 16 gigabytes. In the example, a fork bomb (an infinite loop
that allocates memory in each iteration) was run inside two Python containers, one
with a limit of 2 gigabytes (left terminals) and another with a 4-gigabyte limit (right
terminals). The bottom terminals show the running resource stats of both containers,
indicating that they are restricted to only 2 gigabytes and 4 gigabytes of memory,
even though the computer on which it is running has 16 gigabytes of memory.

Dependency Management: Containers can maintain isolated file systems, elimi-
nating conflicts and simplifying dependency management when running complex
applications. For instance, Figure 2.2 displays two terminals in which two containers
were executed: one containing a PostgreSQL database, and the other containing the
tools for running Python programs. When we inspect the Python dependencies in
both containers, it becomes evident that the PostgreSQL container lacks many of
the dependencies present in the Python container.

ocker run -it --rm --name forkbomb4G --memc

NAME % MEM USAGE / LIMIT MEM % NET I/ |CONTAINER ID NAME PU % MEM USAGE / LIMIT MEM %
C

100.00% 6B / 0 b4G -17% 3.994GiB / 4GiB 99.84%

Figure 2.1: Screenshot of an example of Docker’s container resource constraint feature

2 | BASIC CONCEPTS

brunopec
chi-1 #1 SMP PREEMPT_DYNAMIC Mon, 24 Jul 2023 20:1 |Linux ar 4. chl-1 #1 SMP PREEMPT_DYNAMIC Mon, 24 Jul 2023 20:l
dinux Linux
run -it --rm postg /bin/sh c run —it --rm python /bin/sh
ython
ptographic 1

Tibimath-3-1-
libimath-d
Tibnettl

n)
.11-minimal - Minimal subset of the Python language (version 3.1

ive high-level object-oriented language (st

3.11-minimal - Minimal

Figure 2.2: Screenshot of an example of Docker’s container package isolation feature

Containers rely on Linux’s isolation capabilities, including Namespaces (Process ID
(PID), Networks, Interprocess Communication (IPC)), Cgroups (CPU, memory, disk space),
and chroot (filesystems). To run a container, two key components are required: a container
engine and a container runtime. A container engine is software that interprets user data or
Representational State Transfer (REST) API commands into calls to the container runtime.
Common examples of container engines include Docker ? and Podman *. A container
runtime, on the other hand, is a low-level software that leverages OS-level isolation tools
to create and manage containers. Prominent container runtimes include ContainerD * and
CRI-O°.

Figure 2.3 provides a visual comparison between traditional VMs and containers,
illustrating the role of the Hypervisor and Container Engine, as well as the VMs and
Containers themselves. Additionally, Figure 2.4 offers an in-depth overview of Docker’s
internal structure, showcasing the various layers and components involved in Docker and
container execution. For example, a user employs the Docker CLI program to create a
container. Subsequently, the program sends a request to the Docker daemon API, which
runs in the background. The Docker API performs various checks, including authentication,
security, state, and network checks, to determine the validity of the request at that moment.
If the checks are successful, it utilizes the container engine (containerD) to carry out
operations in the OS layer with Runc (container engine module responsible for spawning
and running containers), effectively creating the container.

Containers can be effectively employed in Microservices architecture to combine the
strengths of both paradigms. However, achieving scalability, automation, and compatibility
across diverse infrastructure environments necessitates more than just using a container
engine. To address these requirements, specialized software known as container orches-

2 https://www.docker.com/
3 https://podman.io/

* https://containerd.io/

> https://cri-o.io/

2.2 | CONTAINERS

’ 1 ’ s

|) | y
] 1

i Virtual Machines (VM)) Containers]

i 1 1

! | i

! ; '

]

! Virtual Machine 1 Virtual Machine 2 Virtual Machine 3) i

H I 1

i i Container 1 Container 2 Container 3 i

! Application Application Application |]

H 1 1

i i Application Application Application i

i

! Bins/Libraries Bins/Libraries Bins/Libraries D |

1} 1

1} (I 1

! P Bins/Libraries Bins/Libraries Bins/Libraries i

1} 'y 1

1} (I 1

! Guest Operating Guest Operating Guest Operating !

i System System System i

i i Container Engine

i i

i i

L} 1

i i

1 Hypervisor (VM Emulator) 1 Dperating System

L} 1

1} 1

L} 1

L} 1

1 Infrastructure 1 Infrastructure

E : .

i : :

i

! o i

i b]

| Y /

Figure 2.3: Comparison between Containers and Virtual Machines. Source: https://bi-
insider.com/posts/virtual-machines-vs-containers/

DOCKER CLI DOCKER API

INTEGRATED LIFECYCLE
MANAGEMENT

CONTENT TRUST AND AUTHENTICATION
COMPOSE VERFICATION

SECURITY METWORK VOLUMES
CONTAINER ENGINE
DISTRIBUTED STATE SECRETS ORCHESTRATION

CONTAINERD CONTAINER RUNTIME
ocl

WINDOWS os

HARDWARE INFRASTRUCTURE

Figure 2.4: Breakdown of Docker internal structure. Source: https://tansanrao.com/docker-explained/

2 | BASIC CONCEPTS

trator is recommended. Container orchestrators enable Microservices systems to operate
their components within containers, offering scalability, reliability, redundancy, security,
and centralized control over the application.

2.3 Kubernetes

Kubernetes ¢, also referred to as K8s by its community, is a container orchestration
tool that has seen significant growth since its inception in 2015. A container orchestration
tool’s purpose is to manage the entire environment in which containerized applications
run. It generally holds the following responsibilities:

« Automation of container deployment: creating and deleting containers across multi-
ple computing instances.

« Auto-scaling: managing the container fleet based on predetermined factors like
service demand or time period.

« Service discovery: classifying containers according to their service type.

« Load balancing: distributing request loads across multiple containers of a service.

« Rolling updates: managing container versions within the container fleet.

« Self-healing: overseeing the container’s life cycle to ensure high service availability.

+ Resource management: handling the computer cluster’s resources and distributing
containers across them.

« Security and compliance: ensuring security throughout the entire infrastructure.

Kubernetes delivers these primary functionalities and additional auxiliary functions in
a declarative manner. In other words, the desired end state is described without detailing
the step-by-step process of achieving it, and Kubernetes ensures the necessary changes
are made to achieve it. Moreover, it is entirely infrastructure-agnostic, meaning it has no
requirements for the machines it runs on, making it an excellent choice for cloud-based
environments where machines can be quickly and easily exchanged and provisioned.

Furthermore, according to a 2022 report by Red Hat The State of Enterprise Open Source:
A Red Hat report 2022, 70% of IT leaders worldwide work for companies that use K8s. The
Kubernetes project is an open-source initiative that has garnered 98,400 stars and 3,432
contributors on its GitHub repository since its inception. These figures, combined with its
relatively short lifespan (9 years), highlight the rapid importance that the software has
gained in both enterprise and open-source contexts.

Kubernetes Resources

Kubernetes boasts a highly sophisticated structure and divides its features into a
Resource-Based System. This system instantiates internal functionalities into entities called
Resources. Each resource has its own role in running the user-demanded microservice

¢ https://kubernetes.io/

2.3 | KUBERNETES

application. Resource creation and access can be automated with the help of other higher-
level resources.

The fundamental Kubernetes resource is the Pod. The Pod’s responsibility is to encap-
sulate a container or a set of containers that represent an instance of a micro-service app.
All containers can communicate with each other via localhost, and they can be accessed
by other pods in the cluster using a single IP address. Additionally, the containers share
the network namespace and can share the same volumes. Finally, Pods can be categorized
using Labels. Pods with the same label can, for example, represent multiple instances of
a micro-service application. Since the Pod is the resource that encapsulates a container,
we’re going to use both terms interchangeably to describe the entity that effectively runs
a microservice process.

A Kubernetes cluster operates in a distributed manner within a computer cluster. A
fundamental resource in the Kubernetes architecture for identifying and abstracting these
computers is the 'Node. There are two primary types of Nodes: the ’control plane’ Nodes,
dedicated to managing and controlling Kubernetes functions, and the *worker’ Nodes,
which host the Pods responsible for running applications. Each Node possesses its own
unique IP address and a set of Pods that execute within its environment. Application Pods
exclusively operate within the worker Nodes, while system-control Pods, which will be
elaborated upon later, are confined to the control-plane Nodes.

Another significant Kubernetes resource is the Service. The service represents a gate-
way through which a micro-service can be reached. Using labels, a service can select a
fleet of Pods running the same application (Pod replication can be automated by other
resources). Services enable accessing a service through a single IP address, rather than
having to reach each individual IP address of every Pod. Kubernetes Services are the
primary focus of this work.

2.3.1 Kubernetes Services

The microservices architecture allows applications to decouple their internal parts and
run them in a distributed manner. For example, an e-commerce microservice application
could have a service for item storage and retrieval, one for managing user operations
such as authentication and order history, and another for processing payments. In a
Kubernetes Cluster, all these services run in multiple distinct Pods, and it would be too
difficult to find which Pods provide a service and distribute the requests among those
Pods. In this context, the Service resource is responsible for creating a central point of
access for a certain service and distributing requests for this specified service to their
corresponding container fleet. That way, users don’t need to know the IP of every Pod to
reach a certain service. Furthermore, the Service resource also provides load balancing
between the Pods that provide a certain service, making it an essential part of a Kubernetes
cluster architecture.

Aside from those fundamental Service features, there are multiple types of Service,
that provide different usages and enhance its functionality with additional features. The
ones that are the focus of this work are:

« ClusterIP: The ClusterIP service is the basic type of service, and as such, it only

2 | BASIC CONCEPTS

provides the functionalities previously described. Its definition requires a label
selector to select the Pod replicas that are in the same category, the port at which
the process is running inside the Pod allocated to receive the service’s requests, and
which external parties can use to access that Service resource. These ports can be
distinct; for instance, the Pod can run an HTTP server on port 80, and the Service
can receive requests for that service on port 443. It is important to mention that a
ClusterIP service can only be accessed by Pods within the Kubernetes Cluster and
not by external entities.

« NodePort: The NodePort service is built on top of the ClusterIP Service. It provides
endpoints for clients outside of the cluster to connect to a Service. To achieve this, it
allocates a port on each of the Cluster’s Nodes that redirects requests to an internal
ClusterIP service. In addition to the ClusterIP parameters, the NodePort requires
the port to be allocated on each Node to establish outbound connections. Figure 2.5
provides a graphical overview of NodePort and, consequently, ClusterIP Services.
Within the Cluster, there are two working Nodes, and a NodePort Service allocates
port 30080 on each of them to receive external requests from the cluster. These
requests are received and then redirected to the internal ClusterIP service, which
distributes them to the Pods that are part of this Service on port 80.

Kubernetes Service

A service allows you to dynamically access a group of replica pods.

\d Y
port 30080 port 3008
——
port 80
POD
L-l
[
portso POD port 80
atii. g B POD

Node 1 Node 2
IP: 172.31.41126 IP: 172.31.47.81

Figure 2.5: Kubernetes’s Service Resource overview. Source: https://medium.com/avmconsulting-
blog/single-and-multi-port-service-in-kubernetes-k8s-8b08529d9ba6

2.3 | KUBERNETES

Services Internal Structure

Internally, Kubernetes Services work by creating another resource called an "Endpoint"
for each new pod that integrates with the Service’s fleet. The Endpoint resource contains
the IP address and port at which the pod is running the server process.

Furthermore, an important aspect of Services is that they do not require a server to
be running in order to route packages to the corresponding Pods. All the forwarding
is achieved through Network Address Translation (NAT) techniques. There are various
methods to achieve this, and the internal component of a Kubernetes Cluster responsible for
this task is known as "Kube-Proxy!" In practice, "Kube-Proxy" is a fleet of Pods distributed
across the Cluster Nodes (with at least one for each Node to ensure functionality throughout
the cluster). These Pods use various Linux features and software to create equivalent NAT
rules for Services. Figure 2.6 illustrates an example of how a packet transmission to a
ClusterIP Service is handled. First, Pod A tries to establish a connection to Service 1, which
is a ClusterIP service. Consequently, the packet has a source IP address of Pod A and a
destination IP address of Service 1. Then, Kube-Proxy applies NAT to change the packet’s
destination address to Pod B. If there were multiple Pods, it would perform load balancing
to determine which Pod to forward the packet to. After Pod B receives the packet, it sends
a response back to Pod A through Kube-Proxy. Finally, Kube-Proxy changes its source
address to the ClusterIP address, and the packet is delivered to Pod A.

Node 1 Node 2
dst = Cluster IP dst = Pod B
Pod A Connection > Kube-prox - Pod B
(Client) | Pod A — Service 1 (Cluster IP) > proxy " (Service 1)
src = Cluster IP src=Pod B

Figure 2.6: Kubernetes Kube-Proxy functionality for ClusterIP Services. Source:
https://docs.tigera.io/calico-cloud/tutorials/training/about-kubernetes-services

The default method used by Kube-Proxy to implement NAT is through Linux’s iptables,
a software tool responsible for creating rules for handling incoming and outgoing network
packets. In addition to iptables, out of the box, there’s also the possibility to utilize IP
Virtual Server (IPVS) as the NAT provider. IPVS is a utility that implements transport-layer
load balancing on Linux.

Due to its internal code structure, Kube-Proxy is tightly coupled with these two
solutions. Therefore, employing another NAT program to handle packet forwarding would
necessitate the recreation of the entire component. In this context, there is a project known
as Kube-Proxy New Generation (KPNG) that aims to redesign the Kube-Proxy component
in a way that decouples it from its NAT solution. KPNG’s Kube-Proxy component is
agnostic regarding its NAT backend, making it a suitable option for testing new NAT
software for Kubernetes (K8s).

11

12

2 | BASIC CONCEPTS

2.3.2 Kubernetes Workloads

A workload within Kubernetes refers to an application being executed. Whether it’s a
single part or multiple components working in tandem, when running on Kubernetes, it
operates within a set of pods. In Kubernetes, a pod is a representation of actively running
containers within the cluster.

Kubernetes pods follow a predefined lifecycle. For instance, if a pod is running in the
cluster and there’s a critical issue with the node it’s on, all pods on that node fail. In this
scenario, Kubernetes considers the failure irreversible, requiring the creation of a new pod
for recovery, even if the node later becomes stable.

To simplify operations, there’s no need to directly manage each pod. Instead, workload
resources are used, controlling a set of pods. These resources configure controllers that
ensure the right number of the correct type of pods are running to match the specified
state.

DaemonSet

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added
to the cluster, Pods are added to them. As nodes are removed from the cluster, those Pods
are garbage collected. Deleting a DaemonSet will clean up the Pods it created.

ReplicaSet

The primary objective of a ReplicaSet is to ensure a consistent set of replica Pods
is continuously running. This functionality is commonly employed to ensure a specific
number of identical Pods remain available.

To define a ReplicaSet, various fields are specified, including a selector for identifying
Pods it can acquire, the desired number of replicas to maintain, and a pod template detailing
the configuration of new Pods required to meet the replica count. The ReplicaSet achieves
its purpose by dynamically creating and deleting Pods as necessary to achieve the specified
number. When new Pods need creation, the ReplicaSet employs its Pod template.

The association between a ReplicaSet and its Pods is established through the meta-
data.ownerReferences field in the Pods. This field indicates the resource that currently
owns the object. All Pods acquired by a ReplicaSet contain information about their own-
ing ReplicaSet within their ownerReferences field. This linkage allows the ReplicaSet to
monitor the state of the maintained Pods and make informed decisions accordingly.

Deployment
A Deployment provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a Deployment, and the Deployment Controller changes
the actual state to the desired state at a controlled rate. You can define Deployments to
create new ReplicaSets, or to remove existing Deployments and adopt all their resources
with new Deployments.

2.4 | KUBE-PROXY NEW GENERATION

2.4 Kube-Proxy New Generation

Kube-Proxy New Generation ’ (KPNG) is a project backed by the Cloud Native Comput-
ing Foundation (CNCF) that intends to decouple access to the Service description objects
from their Network Backend implementation. This makes it simpler to use different options
for packet forwarding for Services. The primary advantage of KPNG, in comparison to
the out-of-the-box Kube-Proxy, is that the default one is tied to the two Network Backend
options that come with it: iptables and IPvs. Therefore, KPNG provides more flexibility
and agility for using newer and superior technologies to handle networking for Services.
For instance, iptables, the default option for K8s cluster services, is now deprecated and
faces scalability issues, which also apply to the ipvs backend. A new technology that can
be used in spite of the default ones is eBPF, which will be discussed later.

To achieve its objectives, KPNG’s structure consists of a client-server architecture.
The server provides actual data about the Services, such as their corresponding Endpoint
resources, types, and ports. The client consumes this information through an API. Finally,
the Backend utilizes the client infrastructure to program the networking rules required to
implement the desired actions on the actual Nodes. In this context, to introduce another
networking mode for Kubernetes Services, one could create a Backend that uses any
networking tool with the data provided by the client to establish the necessary rules for it
to function. Figure 2.7 provides an in-depth overview of KPNG’s internal structure. The
KPNG client retrieves the state from the API endpoint and delivers it to the Backend.
Inside the blue area, there are the interfaces that the Backend should implement. These
include the Sink interface, which defines how the Backend receives resource information
from the KPNG client, the FilterReset Syncer, which specifies the incremental update of
information, and the custom logic responsible for the proper installation and management
of the Backend to create networking rules.

To ensure that the network rules are applied throughout the entire cluster, KPNG
deploys one working pod for each of the Cluster’s Nodes. Each of these pods is responsible
for correctly deploying the backend program and managing it to reflect the current state
in terms of Services and Pods. Figure 2.8 shows the KPNG working pods, which are
highlighted by the red squares and named kpng-XXXX. From the "Node" column, it is
evident that there is exactly one of these pods for each Node. There are two working
Nodes and one Control-plane Node.

An interesting technology that has been used for networking is Berkeley Packet Filter
(BPF). BPF, or eBPF ® (Extended Berkeley Packet Filter), is a Linux kernel feature that
enables the creation of hooks in kernel functions to execute verified, safe code in the
kernel space. With BPF, it is possible to hook functions to analyze packets and modify
them in the kernel space, across multiple layers of Linux’s network stack. Since it operates
in the kernel space, it has the potential to be faster than traditional filtering applications
such as iptables and IPvs for performing operations like NAT. KPNG enables developers
to create solutions for Service networking with BPF programs. This project aims to test
the performance of an existing BPF-based KPNG Backend solution.

7 https://github.com/kubernetes-sigs/kpng
8 https://ebpf.io/

13

2 | BASIC CONCEPTS

In-depth KPNG FilterReset Syncer Reference

KPNG Backend _
Components o Backends first implement the Cmd Interface

: I e) Which allows each backend to specify specific CLI Flags
a— Receive State L. /

Backend

E retumedﬂ'omlnit(}'“"""

E - Every backend must decide how they would like to
fi] __Sink Interface ELRLEERLELE receive K8s information from the KPNG Client, to do
é . - so they implement the Sink Interface

g + Backend..Sink()

[Code written by every

g8 new backend FilterReset Syncersssssssanan

[

e Decoder -............) The FilterReset Sink Provides the Backend with

. Incremental state of the AP1 anytime a change is
ECTTTTTTTTT T T PTTITrrT TS -

g J registered
Backend.SetService()
Backend.DeleteService()
Backend.SetEndpoint()
Backend.DeleteEndpoint()

The Decoder package is a small shim to convert
P the native kpng GRPC api

Backend Custom

sassnsnnn into the sink’s data transfer methods

Logic
After a custom Backend receives the Services/Endpaint
CEEEEELTEL) Information via the sink it decodes the information
into implementation specific networking rules to
handle the actual packet proxying
(:/ DataPath Networking rules \:>
. .) .
Figure 2.7: Overview of KPNG’s internal components. Source:

https://github.com/kubernetes/enhancements/blob/599a2ef14df7a7172c1933¢3d989c1cfbfeSc11c/keps/sig-
network/2104-reworking-kube-proxy-architecture/README.md

Run
Runnin;
Run
Runnin;
Runnin;
Runnin,
Runnin;
Run

Runnin;

Ru e 7 <p v ontrol-pla

Runnin,

Figure 2.8: Kubernetes Kube-Proxy functionality for ClusterIP Services.

2.5 | EBPF

2.5 eBPF

2.5.1 The eBPF Virtual Machine

The eBPF, extended Berkeley Packet Filter, is an evolution of the original BSD packet
filter (BPF) McCANNE and JAcoBsON, 1993 which has seen extensive use in various packet-
filtering applications over the last decades. BPF uses a register-based virtual machine to
describe filtering actions. Support for compiling (restricted) C and Rust code into eBPF is
included in the LLVM compiler infrastructure LATTNER and ADVE, 2004.

eBPF evolved to have a broader instruction set, including arithmetic and logic instruc-
tions and, mainly, a call instruction for function calls. It adopts the C language conventions
used on the architectures supported by the kernel. eBPF also increased register width
to 64-bit, enabling one-to-one mapping to hardware registers on the 64-bit architectures
supported by the kernel, making efficient just-in-time (JIT) compilation into native machine
possible. Even further, it is achievable to map a BPF call instruction to a single native call
instruction, enabling function calls with close to zero additional overhead, both in eBPF
helper functions and calls within the same program.

It is important to notice that, although most eBPF programs are written in C, a very
important component of its architecture is the verifier, which places limitations on the
programs loaded into the kernel to ensure that the user-supplied programs cannot harm
the running kernel. The verifier is further approached in Subsection 2.5.3.

Due to the security provided by the verifier, it is safe to execute the code directly in
the kernel address space, which makes eBPF useful for a wide variety of tasks in the Linux
kernel. As all programs can share the same set of maps, they are able to react to arbitrary
events in many distinct parts of the kernel.

The Figure 2.9 shows the general interaction between user space and kernel space,

which occurs through the bpf syscall.
code _
: sendmsg() frecvmsg()

bpf() eBPF
Syscall

Program
> W eBPF

Syscall
\ A
[ﬁeBPF Verifier [Sockets]

= = (TCP/IP]

= p Network Device
[ﬁeaPF JIT Compiler } o []

Linux
Kernel

Figure 2.9: The interaction begins when a user space process executes the first in the series of bpf
syscalls used to load an eBPF program into the kernel. The kernel then runs the verifier, which enforces
constraints that ensure the eBPF program is valid (more on that later). If the verifier approves the
program, the verifier will finalize the process of loading it into the kernel, and it will run when it is
triggered.

15

16

2 | BASIC CONCEPTS

2.5.2 eBPF Maps

eBPF programs are executed in response to an event in the kernel (a packet arrival,
file creation, a specific system call, etc.). Each time they are executed they start in the
same initial state, and they do not have access to persistent memory storage in their
program context. Instead, the kernel exposes helper functions giving programs access to
BPF maps.

Maps are key/value stores that are defined upon loading an eBPF program and can be
referred to from within the eBPF code. They can exist in both global and per-CPU variants,
and can be shared, both between different eBPF programs running at various places in the
kernel, as well as between eBPF and userspace. In packet-filter applications, it is common
for a map to be fully operated by a userspace program, meanwhile, a responsible eBPF
program just accesses the map to make the routing decisions.

They can have different types, e.g. generic hash maps, arrays, and radix trees, as well
as specialized types containing pointers to eBPF programs (used for tail calls between
eBPF programs).

2.5.3 eBPF Verifier

Since eBPF code runs directly in the kernel address space, it can directly access, and
potentially corrupt, arbitrary kernel memory.

To prevent this from happening, the kernel enforces a single entry point for loading
all eBPF programs (through the bpf () system call). When loading an eBPF program it is
first analysed by the in-kernel eBPF verifier. The verifier performs a static analysis of the
program byte code to ensure that the program performs no actions that are unsafe (such
as accessing arbitrary memory), and that the program will terminate. The latter is ensured
by disallowing loops and limiting the maximum program size.

The verifier operates through a two-stage process. Initially, it constructs a directed
acyclic graph (DAG) representing the control flow of the program. In the first stage, a
depth-first search is conducted on this DAG to confirm its acyclic nature, meaning it should
not contain loops, and to ensure that there are no unsupported or unreachable instructions.
The aim here is to validate the fundamental structure of the program.

In the second stage, the verifier meticulously examines all possible paths within the
DAG. This pass is designed to verify that the program exclusively conducts safe memory
accesses and that any invoked helper functions receive the correct argument types. The
verifier enforces safety by rejecting programs that contain load or call instructions with
invalid arguments. To ascertain the validity of these arguments, the verifier carefully tracks
the state of all registers and stack variables throughout the program’s execution. This
comprehensive analysis during both stages ensures that only secure and well-structured
eBPF programs are allowed to execute within the kernel.

The goal of this register state tracking mechanism is to make sure the program doesn’t
access memory in places it shouldn’t, even when we don’t know the exact boundaries
beforehand. We can’t know the boundaries because programs have to handle data packets
of various sizes, and the content of maps isn’t known in advance, so we can’t be sure if a

2.5 | EBPF

particular lookup will succeed. To address this, the verifier ensures that the program itself
checks for boundaries before using data from packets and verifies that map lookups don’t
involve NULL values before using them. This approach gives control to the program writer
for how these checks are implemented THE LiINUx KERNEL DOCUMENTATION, 2023.

The verifier’s main role is to protect the kernel from potentially harmful or buggy
eBPF programs rather than optimizing their performance. Loading programs requires
administrative privileges, and it’s up to eBPF programmers to avoid such issues.

2.5.4 XDP: the eXpress Data Path

XDP, or eXpress Data Path, is a powerful packet processing framework tightly inte-
grated into the Linux kernel. It operates just above the network device driver, offering
the capability to handle packets with remarkable speed and efficiency. XDP is designed
for low-level packet processing, making it well-suited for scenarios where rapid packet
analysis and manipulation are essential. It accomplishes this by leveraging the Berkeley
Packet Filter (BPF) technology, allowing for the execution of user-defined programs in the
kernel to filter, modify, or drop packets in real-time.

In terms of performance, XDP is renowned for its exceptional capabilities. It excels in
environments that demand low-latency, high-throughput packet processing, such as net-
work function virtualization (NFV), data centers, and cloud infrastructures. This framework
can work seamlessly alongside other Linux networking technologies like Traffic Control
(TC) and routing, enabling complex network policy enforcement and packet steering
based on application requirements. Furthermore, XDP is an open-source solution, meaning
it’s accessible to a broad community of users and developers, fostering collaboration
and innovation in the realm of high-performance networking Ho1LAND-JORGENSEN et al.,
2018.

In Figure 2.10, there’s a diagram showing how XDP integrates with the Linux network
stack.

The XDP system is composed of four major components, they being:

1. The eBPF virtual machine executes the byte code of the XDP program and just-in-
time-compiles it for increased performance.

2. BPF maps are key/value stores that serve as the primary communication channel
to the rest of the system.

3. The eBPF verifier statically verifies programs before they are loaded to make sure
they do not crash or corrupt the running kernel.

4. The XDP driver hook is the main entry point for an XDP program and is executed
when a packet is received from the hardware.

2.5.5 cgroup/connect4

The current eBPF implementation uses a hook at the cgroup/connect4 kernel func-
tion. Cgroups (short for control groups) are a Linux Kernel feature that allows grouping

17

18

2 | BASIC CONCEPTS

@
é VMs and containers Applications Control plane
S
=]
h 4 A A A A
Id : :
= Y Y
E -
= Network stack
g
i |

Y
Virtual devices i—

AF_INET
=
gl
- = 3
E IP layer E
| [] :
' Queueing
{ and forwarding - ™
L ¥
Device driver
> XDP Build sk_buff
Drop
i
A i +
N el
[Network hardware]
—_— % oo >
Packet data flow Control data flow
D Userspace-accessible sockets i User applications, VMs, containers

D Network stack processing steps [j Parts of the XDP system

Figure 2.10: When a packet arrives, a special program runs in the device driver before handling
the packet data. This program can choose to do various things like dropping packets, sending them
back through the same interface, redirecting them to other interfaces (including virtual machines),
or passing them to userspace via special AF_XDP sockets. It can also allow packets to continue into
the regular network stack for further processing using a separate TC BPF hook. These programs can
communicate with each other and with userspace through BPF maps. The source of this Figure is the
original XDP paper HoILAND-JORGENSEN et al., 2018.

2.6 | OBSERVABILITY TOOLING

processes and managing, allocating, and restricting their access to system resources. The
connect4 hook is executed after every IPv4 packet is received in the kernel. The eBPF
function has a socket buffer, a fundamental data structure in the Linux networking code
that contains basic information about a packet at the network and transport layer levels,
which can be modified during its execution. In the implementation, a modification of
source and destination IP addresses and ports takes place to forward the packet to the
correct service backend.

2.6 Observability Tooling

This section will go over the technologies used to create metrics, monitor, and compare
the eBPF backend to the iptables one.

2.6.1 Prometheus

Prometheus is a powerful open-source monitoring and alerting toolkit designed for
achieving comprehensive observability in modern, dynamic environments. It is a Cloud
Native Computing Foundation (CNCF) project that has gained widespread adoption in
the realm of DevOps and system administration. At its core, Prometheus is designed to
collect and store time-series data, making it particularly well-suited for monitoring the
performance and health of various components within a distributed system.

One key feature of Prometheus is its ability to scrape and collect metrics from diverse
sources, such as applications, services, and infrastructure components. It utilizes a pull-
based model, where Prometheus servers periodically query designated endpoints, known as
exporters, to retrieve metrics data. This flexibility allows Prometheus to adapt to dynamic
and cloud-native environments, where components may be constantly scaling up or
down.

In addition to its data collection capabilities, Prometheus provides a powerful query
language called PromQL, enabling users to perform sophisticated analysis on the collected
metrics. This includes aggregations, filtering, and transformation of data to derive mean-
ingful insights into system behavior. Furthermore, Prometheus supports alerting rules,
allowing users to define conditions based on the collected metrics and receive notifications
when certain thresholds are reached. This combination of data collection, querying, and
alerting makes Prometheus a crucial component in the observability stack, empowering
organizations to proactively monitor and troubleshoot issues in their applications and
infrastructure.

In the Prometheus monitoring and alerting toolkit, a Golang library is available
with a set of functions that allow applications to export custom metrics. For instance,
prometheus.NewSummaryVec and prometheus.NewHistogramVec are functions used to
create vectorized versions of summary and histogram metrics, respectively. These vector-
ized versions allow you to define and work with multiple instances of the same metric,
each distinguished by a set of labeled dimensions. This capability is particularly useful
in scenarios where you want to differentiate metrics based on specific characteristics or
attributes of the observed entities.

19

20

2 | BASIC CONCEPTS

NewSummaryVec

NewSummaryVec is used to create a vectorized version of the summary metric type in
Prometheus. A summary metric is designed for tracking the distribution of observed values
over time, providing insights into the quantiles (percentiles) of a dataset. The vectorized
version enables you to create multiple summaries, each identified by a unique set of labels.
For example, you might use this to track the response time percentiles for different API
endpoints, and the sender and receiver Kubernetes nodes.

The code below shows how the summary metric for an HTTP request latency is
declared. It has only a name, a description, and a list of strings. The list of strings is the
parameters/dimensions of the given metrics. In this example, a user would be able to filter
the latencies of a specific endpoint or a specific server node.

summaryVec := prometheus.NewSummaryVec(
prometheus.SummaryOpts{
Name: "http_request_duration_seconds",
Help: "Summary of HTTP request durations",
}’

[Istring{"endpoint", "clientNodeName", "serverNodeName"},

Then, the code below shows how the client code can register a new latency after
executing an HT TP request. Note that endpoint, clientNodeName, and serverNodeName
are string variables.

start = time.Now()
// Perform HTTP request
end := time.Since(start)

summaryVec.
WithLabelValues(endpoint, clientNodeName, serverNodeName).
Observe(float64(end.Milliseconds()))

NewHistogramVec

NewHistogramVec is used to create a vectorized version of the histogram metric type
in Prometheus. A histogram metric is ideal for observing the distribution of samples (such
as request durations or response sizes) and calculating quantiles. The vectorized version
allows you to create multiple histograms with different labels to distinguish between
various dimensions or characteristics of the observed data.

The code below is very similar to summaryVec previously. The main difference is that
HistogramVecs allows users to define the buckets into which observations are counted.
Each element in the slice is the upper inclusive bound of a bucket. The values must be
sorted in strictly increasing order.

histogramVec := prometheus.NewHistogramVec(
prometheus.HistogramOpts{
Name: "http_request_duration_seconds",

2.6 | OBSERVABILITY TOOLING

Help: "Histogram of HTTP request durations",
Buckets: []float64{1, 2, 4, 8, 16, 32, 64, 128, 256, 512},
b

[Istring{"endpoint", "clientNodeName", "serverNodeName"},

The API to register a new observation into an HistogramVec is the same as the
SummaryVec:

start = time.Now()
// Perform HTTP request ...
end := time.Since(start)

histogramVec.
WithLabelValues(endpoint, clientNodeName, serverNodeName).
Observe(float64 (end.Milliseconds()))

2.6.2 Grafana

Grafana is a widely adopted open-source platform designed for observability and
visualization of time-series data. Originally released in 2014, Grafana has become a central
component in many monitoring and analytics stacks, empowering users to create insightful
dashboards, alerts, and explore their data in real-time. It plays a crucial role in enhancing
the observability of complex systems by providing a unified and visually intuitive interface
to analyze and understand metrics, logs, and traces.

One of Grafana’s key strengths is its ability to integrate with various data sources,
making it a versatile solution for different monitoring needs. It supports popular time-series
databases such as Prometheus, InfluxDB, Graphite, and Elasticsearch, as well as relational
databases like MySQL and PostgreSQL. This flexibility enables users to consolidate data
from diverse sources into a single, cohesive dashboard for holistic insights into their
infrastructure, applications, and services. Figure 2.11 has an example similar to what
happens in the architecture used in this project, with Prometheus acting as the metrics
repository.

Grafana’s dashboard creation is both user-friendly and feature-rich. Users can design
dashboards through an intuitive web interface, arranging panels that visualize different
metrics or logs. The platform offers a wide range of visualization options, including graphs,
tables, heatmaps, and more. Additionally, Grafana supports templating and annotation
features, allowing users to dynamically explore and analyze data over time. A sample of
Grafana’s capabilities is shown in Figure 2.12.

The alerting capabilities of Grafana further contribute to its role in observability. Users
can define alert rules based on the metrics displayed on their dashboards and receive
notifications when predefined thresholds are crossed. Integration with various notification
channels, including email, Slack, and others, ensures that critical information reaches the
right people at the right time.

Grafana’s vibrant community and extensive plugin ecosystem contribute to its con-

22

2 | BASIC CONCEPTS

APl Server

F Y

Pull Metrics

|

F 3

Pull Metrics

Prometheus Grafana
Client Server

Yy

Time-series
database

Figure 2.11: Observability stack with Grafana querying from Prometheus, who is responsible for
scraping metrics from API and client servers.

tinuous evolution and adaptation to emerging technologies. As organizations embrace
cloud-native architectures and microservices, Grafana remains a go-to solution for visu-
alizing and understanding the dynamic and complex nature of modern systems. Overall,
Grafana’s combination of flexibility, user-friendliness, and powerful features makes it
an indispensable tool for teams seeking to enhance their observability and monitoring
capabilities.

2.6 | OBSERVABILITY TOOLING

2 S8 Website Overview .

Logins Sign ups Sign outs

Memory /| CPU logins Memory | CPU

= memory

server requests

Figure 2.12: Grafana example dashboard page. Source: Linux Screenshots, (2016, January 25th).

https:// www.flickr.com/photos/xmodulo/24311604930/. Accessed on January 21st, 2024.

23

https://www.flickr.com/photos/xmodulo/24311604930/

Chapter 3

Solution

Our objective is to create a reliable environment for testing the existing eBPF imple-
mentation of Kubernetes ClusterIP Service and then compare it to the current iptables
kube-proxy. For that, a solution that constantly measures the latency between all of the
nodes in the cluster and all of the Pods in the Service’s fleet was created. This tool is called
k8s-node-latency and will be further addressed in Subchapter 3.2.

Before getting into the details of the latency measuring solution, it is important to
describe how the eBPF implementation works in conjunction with KPNG.

3.1 KPNG Implementation

Every service backend in KPNG implements the sink interface to retrieve the current
status of the services. To implement this interface, it is necessary to set up callback functions
for service state changes: SetService(), DeleteService(), SetEndpoint(), DeleteEndpoint().
These callback functions call routines from the underlying tool used to properly create
NAT rules for the packets. An overview of this process can be seen in Figure 3.1.

The eBPF code of this implementation makes use of two eBPF features: eBPF maps and
a cgroup/connect4 hook. eBPF maps are used to copy Kubernetes services’ state data to the
BPF environment, allowing the hook to use this data for correct address translations. To
create and update these maps every time a change is made to the services, the callback
functions call makeebpfmaps(), which correctly parses the services’ data and uses system
calls to generate/update the maps, as shown in Figure 3.2.

The structure of the maps is designed in a way that when a new packet arrives at the
cgroup/connect4 hook, it uses the IP destination of the packet to look in the services. If it
finds that the packet is directed at a running service, it then randomly chooses a backend
(Pod) and retrieves its address through the eBPF maps, as described in Figure 3.3.

Once the hook function has the proper address of the backend pod that will receive
the request, it can alter the destination IP and port of the packet and send it up through
the Linux kernel network stack.

25

26

Kubernetes APl Server

3 | SOLUTION

Receive State

KPNG Client

Sink Interface

Backend.SetService()
Backend.DeleteService()
Backend.SetEndpoint()
Backend.DeleteEndpoint()

Custom Backend Logic
(eBPF routines)

Figure 3.1: Overview of the data consumption model of the KPNG backend.

Mew update in the Kubernetes
Services

Callback Function are activated
(SetService(), DeleteService(),
SetEndpoint(). DeleteEndpoint(])

Theses functions call makebpfmaps(),
which uses the data to create the
comesponding ebpf maps

Figure 3.2: Triggering of callback functions by the KPNG backend.

3.2 | K8S-NODE-LATENCY

cgroup/connectd ebpf

hook Linux Kernel

eBPF
maps

Asks if there is a service with the destination address packet enters eBPF haok

Answers the reu::|Uf:5.t"‘—'—-—-—-_._._,____‘i
o

If positive answer, asks for address of backend Pod (random one)
—_—

Answers with the Pod address————

Figure 3.3: Sequence diagram illustrating the interaction between the eBPF function, eBPF maps, and
the Linux kernel.

3.2 k8s-node-latency

The main implementation done in this capstone project is k8s-node-latency. It is
available as free and open-source software in https://github.com/jaehnri/k8s-node-latency.
k8s-node-latency was developed in Golang and is deployed as a client-server architecture,
where the client pods are deployed once per node, and an arbitrary number of server
pods are distributed between all Kubernetes nodes. Note that the clients are deployed as a
DaemonSet and the servers are deployed as a Deployment.

The objective of k8s-node-latency is to measure the latency between two Kubernetes
nodes (or even the latency inside a node itself). Modern Kubernetes clusters are usually
composed of tens of nodes that may be distributed across different regions. Thus, it is
very important to monitor and consider the average request time from each node to
each other. This is also a very good way of health-checking the nodes. One scenario of
k8s-node-latency being deployed in a cluster is shown in Figure 3.4.

A few times per second !, the client calls the server’s ClusterIP and receives an OK from
a random server pod. For every request, the client registers a few different metrics:

« http_connection_request_duration_ms: time to complete the connection’s dial,
i.e., to establish the connection.

« http_first_byte_request_duration_ms: time to receive the first byte of the re-
sponse headers.

« http_total_ping_request_duration_ms: total time to send the request and receive
the response. This is what we will call round-trip latency from now on.

! The exact parameters used in the tests will be detailed in the next chapter.

https://github.com/jaehnri/k8s-node-latency

28

3 | SOLUTION
Kubernetes Cluster
Server Server
Server Server
Client ClusterIP Client
Server | | i E Server
Server | b : Server
Node Node

Server Server Client Server Server

Node

Figure 3.4: Overview of the architecture of k8s-node-latency. In this example, there’s a Kubernetes
cluster with 3 nodes, represented by the blue panels. In the image, we can see there are 3 clients and
12 server pods equally distributed across all nodes. Clients access the servers through the ClusterIP,
represented by the thick lines. The ClusterIP then does Layer 4 NAT to one of the servers, represented
by the dashed lines.

The server response is also composed of three important pieces of information that
are parsed by the client and incorporated into its metrics:

type NodelatencyResponse struct {

OneTripTime time.Time ‘json:"oneTripTime"*
ServerNodeName string ‘json:"serverNodeName" ¢
ServerPodName string ‘json:"serverPodName" ¢

OneTripTime represents the time when the request was received by the server. This
metric is important because, essentially, the client-to-server path is where the ClusterIP
NAT happens, so it is possible to compare this time to the request start time to measure
what we call one-way-trip latency. However, it is important to notice that if the client and
the server aren’t in the same node or physical computer, the times may not be synchronized,
so the one-way-trip latency must be used carefully.

The other two pieces of information, ServerNodeName and ServerPodName respond to
the names of the server node and pod, respectively. As mentioned in Subchapter 2.6.1, met-
rics are usually time-series dimensional data. The dimensions of each metric shown above
are ClientPodName, ClientNodeName, ServerPodName, and ServerNodeName. This way,
it is possible to generate charts that compare latencies from one node to another, for
instance, average latency from node X to node Y.

3.2 | K8S-NODE-LATENCY

3.2.1 Server

The server exposes a TCP server on port 3000 and an HTTP server on port 8080,
serving an API that has two endpoints: /ping and /metrics.

Whenever a request comes in, the server increments the number of requests it already
received and logs it. The logs exemplify its work as in Figure 3.5.

(base) joao@jj $ kubectl logs -f node-latency-server-787b4844bb-mm92f -n node-latency
2024/01/19 23:05: starting ping HTTP server

2024/01/19 23:05: starting ping TCP server

2024/01/19 23:05: received call to HTTP /ping

2024/01/19 23:05: received call to HTTP [fping

2024/01/19 23:05: received call to HTTP /ping

2024/01/19 23:05: received call to HTTP /ping
2024/01/19 23:05: received call to HTTP [fping
2024/01/19 23:06: received call to HTTP /ping
2024/01/19 23:06: received call to HTTP [fping
2024/01/19 23:06: received call to HTTP /ping
2024/01/19 23:06:13 received call to HTTP /ping
2024/01/19 23:06:15 received call to HTTP [fping

Figure 3.5: Sample of the server logs.

The /metrics endpoint exposes many boilerplate Prometheus metrics regarding CPU,
memory, heap, cache, and garbage collector usage. Figure 3.6 shows that.

3.2.2 Client

The client initializes by picking up the ClusterIP from the Kubernetes API Server, as
well as picking up its nodeName and podName from environment vars. This process is
shown in Figure 3.7. The client also has an HTTP /metrics endpoint in port 8081.

Another important tool used by the client code is Golang’s net/http/httptrace ?
library. This library allows one to put certain hooks in specific points during the HTTP
request, enabling the dial and first byte metrics detailed previously. The code in 3.8
evidences it.

A few times per second, the client sends a ping request to collect more samples. One
thing to notice is that the HT TP requests have the keep-alive set to false, otherwise, the
client would always send requests to the same server, not going through the ClusterIP
NAT being tested. A few logs in Figure 3.9 help to understand the client.

3.2.3 Monitoring

As mentioned before, k8s-node-latency generates metrics that can be tracked in real
time. Therefore, this project is meant to be used alongside Kube Prometheus Stack, i.e.,
Prometheus and Grafana. A template dashboard for this project is available in the GitHub
repository.

In figures 3.10 and 3.11, there are the template samples of real-time statistics and charts
plotted by k8s-node-latency. Note that, by using the metrics detailed in the subsections

2 httptrace is available at https://pkg.go.dev/net/http/httptrace

29

https://github.com/jaehnri/k8s-node-latency/blob/80481e8b72d17e027ab2b4b13464461493c5eb21/config/grafana/dashboard.json
https://github.com/jaehnri/k8s-node-latency/blob/80481e8b72d17e027ab2b4b13464461493c5eb21/config/grafana/dashboard.json

30

3 | SOLUTION

HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained from system.
TYPE go_memstats mcache sys bytes gauge

go_memstats mcache sys bytes 15600

HELP go_memstats_mspan_inuse_bytes Mumber of bytes in use by mspan structures.

TYPE go_memstats_mspan_inuse_bytes gauge

go_memstats mspan_inuse bytes 151200

HELP go_memstats mspan_sys bytes Number of bytes used for mspan structures obtained from system.
TYPE go_memstats _mspan_sys_ bytes gauge

go_memstats _mspan_sys_bytes 163200

HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will take place.
TYPE go_memstats _next gc_bytes gauge

go_memstats next gc_bytes 4.72444e+06

HELP go_memstats_other_sys bytes Number of bytes used for other system allocations.

TYPE go_memstats_other_sys bytes gauge

go_memstats other sys bytes 1.88922e+06

HELP go_memstats_stack_inuse_bytes Number of bytes in use by the stack allocator.

TYPE go_memstats_stack inuse bytes gauge

go_memstats stack inuse bytes 917504

HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack allocator.
TYPE go_memstats stack sys bytes gauge

go_memstats stack sys bytes 917504

HELP go_memstats_sys bytes Number of bytes obtained from system.

TYPE go_memstats _sys bytes gauge

go_memstats_sys bytes 2.2543376e+07

HELP go_threads Number of 05 threads created.

TYPE go_threads gauge

go_threads 15

HELP http_ping_requests_total Total number of HTTP ping requests

TYPE http_ping_requests_total counter

http_ping requests total 480

HELP process_cpu_seconds_total Total user and system CPU time spent in seconds.

TYPE process_cpu_seconds_total counter

process_cpu_seconds_total 0.76

HELP process_max_fds Maximum number of open file descriptors.

TYPE process_max_fds gauge

process_max_fds 1.848576e+06

HELP process_open_fds Number of open file descriptors.

TYPE process_open_fds gauge

process_open_fds 9

HELP process_resident memory bytes Resident memory size in bytes.

TYPE process_resident_memory bytes gauge

process_resident _memory bytes 1.40288e+07

HELP process_start_time_seconds Start time of the process since unix epoch in seconds.
TYPE process_start_time seconds gauge

process_start_time seconds 1.78570555245e+09

HELP process _virtual memory bytes Virtual memory size in bytes.

TYPE process_virtual_memory_bytes gauge

process_virtual memory bytes 7.37099776e+088

HELP process_virtual memory max bytes Maximum amount of wvirtual memory available in bytes.
TYPE process virtual memory max bytes gauge

process_virtual _memory max_bytes 1.8446744073709552e+19

HELP promhttp_metric_handler_requests_in_flight Current number of scrapes being served.
TYPE promhttp metric_handler_requests_in_ flight gauge

promhttp metric_handler_requests_in flight 1

HELP promhttp metric_handler_requests total Total number of scrapes by HTTP status code.
TYPE promhttp_metric_handler_requests total counter
promhttp_metric_handler_requests_total{code="200"} 24

promhttp metric_handler requests total{code="580"} @
promhttp_metric_handler requests total{code="503"} @

HELP tcp_ping requests_total Total number of TCP ping requests

TYPE tcp_ping_requests_total counter

tcp_ping requests_total @

Figure 3.6: Sample of the server metrics.

3.2 | K8S-NODE-LATENCY

Figure 3.7: Client initialization code. It is interesting to see how it uses the Kubernetes client-go *
library to communicate with the API Server.

a

client-go library is available at https://github.com/kubernetes/client-go

Figure 3.8: The httptrace.ClientTrace object holds which hooks were chosen and what they
should execute. In this case, the hooks measure how long it takes for the connection to be established
and measure when the first response byte is available. This trace object then decorates the HTTP request
context. start is the object that holds the UNIX time of when the request is sent.

31

32

(base) joao@jj
00:
00:
00:
0a:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
0a:
00:
00:
00:
00:
00:
00:

2024/01/20 00:

3 | SOLUTION

$ kubectl logs -f node-latency-client-jm86b -n node-latency

41:57
41:57
41:57
41:57
41:57
41:57
41:57
41:57
41:58
41:58
41:58
41:58
41:58
41:58
41:59
41:59
41:59
41:59
41:59
41:59
42:00
42:00
42:00
42:00
42:00
42:00
42:01
42:01
42:01
42:01
42:01
42:01
42:02
42:02

ClusterIP of service node-latency-server-service in namespace node-latency is 10.96.137.11

starting client metrics server

Duration of request time: 339.738ps
Duration of one-way trip: 249.698ps

trip completed: node-latency-client-jm86b
Duration of request time: 1.424141ms
Duration of one-way trip: 1.081541ms

trip completed: node-latency-client-jm86b
Duration of request tim 1.433232ms
Duration of one-way tri 1.132575ms

trip completed: node-latency-client-jm86b
Duration of request time: 1.32173ms
Duration of one-way tri| 991.519ps

trip complet ncy-client- jm86b
Duration of request tim 377.887ps
Duration of one-way tr 256.315ps

trip completed: node-latency-client-jm86b
Duration of request tim 1.323604ms
Duration of one-way trip: 999.152ps

trip completed: node-latency-client-jm86b
Duration of request tim 1.451847ms
Duration of one-way trip: 1.100829ms

trip completed: node-latency-client-jm86b
Duration of request tim 466.189ps
Duration of one-way trip: 315.056ps

trip completed: node-latency-client-jm86b
Duration of request time: 393.907ps
Duration of one-way tri 313.87ys

trip completed: node-latency-client-jm86b
Duration of request tim 676.672|s
Duration of one-way trip: 523.855ps

trip completed: node-latency-client-jm86b
Duration of request time: 1.464301ms
Duration of one-way trip: 1.855713ms

node-latency-server-787b4844bb-4n6bb

node-latency-server-787b4844bb-9rfbs

node-latency-server-787b4844bb-sg4fr

node-latency-server-787b4844bb-dlscn

node-latency-server-787b4844bb-6fbl7

node-latency-server-787b4844bb-6fbl7

node-latency-server-787b4844bb-mm92f

node-latency-server-787b4844bb-1j45k

node-latency-server-787b4844bb-sg4fr

node-latency-server-787b4844bb-j2x4x

Figure 3.9: Sample of the client logs.

above, one can extend and create custom dashboards to use other types of charts or even
monitor specific nodes.

3.2 | K8S-NODE-LATENCY

v Nodeto-nodeLatency- | x

€ C @ localhost:

Total Average - All

Standard Deviation - All nodes Round-trip Standard Devia

0.464

tion Round-trip all nodes Number o

Figure 3.10: k8s-node-latency stats dashboards. By default, k8s-node-latency collects the average
latency and standard deviation of the last 15 minutes. However, these pieces of data are dimensional
and can be extended/customized to build charts more appropriate to the user.

v & Nodetonodelatency- x +

C O localhost

Moving Standard Deviation - All nodes latency

_time(http_total_latency_duratic

Moving standard deviation - Node-to-node latency

Figure 3.11: k8s-node-latency node-to-node dashboards. By default, k8s-node-latency creates line
charts that monitor the overall average latency and standard deviation. Moreover, it creates node-to-
node histograms and line charts that monitor the latency between two nodes.

33

Chapter 4

Results and Analysis

This chapter will focus on the test environment and show the results of the measure-
ments performed. Later, a comparison between the iptables and the eBPF backends is
done.

4.1 Test Environment

A Linux computer was used to test the backends. As these tests are mostly to measure
the latencies of the NAT mechanism, using a single physical computer and simulating
nodes with kind ' was more appropriate. kind is a tool for running local Kubernetes
clusters using Docker container nodes. kind was primarily designed for testing Kubernetes
itself but may be used for local development or CL

It is valid to point out that running these containerized nodes is somewhat expensive
in terms of memory and therefore, this work did not focus on doing load tests or scalability
tests. The main objective is to test the ClusterIP NAT translation under normal conditions.
Table 4.1 has information on the test environment and test parameters.

Operating System Ubuntu 22.04.3 LTS

Kernel Linux 6.2.0-37-generic

CPU Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz
Motherboard Z370M AORUS Gaming-CF

RAM 16 GiB DDR4 Synchronous Buffer

GPU GP106 [GeForce GTX 1060 6GB]

Number of nodes 2

Number of clients 3 (1 per node)

Number of servers 12 (4 per node)

Client pings per second | 2

Table 4.1: Hardware specifications and parameters used in the iptables and eBPF backend tests.

! kind is available at https://kind.sigs.k8s.io

35

36

4 | RESULTS AND ANALYSIS

4.2 iptables

Figures 4.1 to 4.8 present the results of the iptables backend performance test.

Standard Deviation - All nodes Round-trip

0.311

Figure 4.1: iptables: Average and standard deviation gathered from all data points for both Round-trip
and One-way-trip.

Number of observation Round-trip all nodes Number of obser rip all nodes

Figure 4.2: iptables: Total amount of data points for Round-trip and One-way-trip.

Moving Average - All nodes latency

Figure 4.3: iptables: Moving average of the Round trip over time.

4.3 eBPF

Figures 4.9 to 4.16 present the results of the eBPF backend performance test.

43 | EBPF

Moving Standard Deviation - All nodes latency

Figure 4.4: iptables: Moving standard deviation of the Round-trip over time.

Histogram - Node-to-node latency

99th percentile - One-way-trip n

99th percentile - Round-trip node-to-node latency

Figure 4.7: iptables: Node to node Round-trip data points over time.

37

38

4 | RESULTS AND ANALYSIS

Moving standard deviation - Node-to-node latency

Total Average - All nodes Round-trip Total Average - All nodes One-way-trip

Standard Deviation - All no

Figure 4.9: eBPF: Average and standard deviation gathered from all data points for both Round-trip
and One-way-trip.

Number of obs: Round-trip all nodes Number of observatior y-trip all nodes

Figure 4.10: eBPF: Total amount of data points for Round-trip and One-way-trip.

Moving Average - All nodes latency

Figure 4.11: eBPF: Moving average of the Round trip over time.

43 | EBPF

Moving Standard Deviation - All nodes latency

Histogram - M

99th percentile - On e latency

ntile - Round-trip node-to-node latency

Figure 4.15: eBPF: Node to node Round-trip data points over time.

39

40

4 | RESULTS AND ANALYSIS

Moving standard deviation - Node-to-node latency

Figure 4.16: eBPF: Node to node standard deviation over time.

4.4 Analysis

By analyzing the graphs, both similarities and differences in the behavior of the
backends can be observed. First, examining the similarities, it can be noted that both imple-
mentations achieved similar averages. The average total trip latency at a 99% confidence
level for iptables is 1.28 + 0.00463 ms, and for eBPF, it is 1.23 + 0.00223 ms, indicating a
modest 2.4% reduction in total latency with the eBPF solution, which is relatively small.
The moving averages for both implementations exhibit similar patterns, with frequent ups
and downs throughout the test duration.

The most notable difference between the two graphs is the higher dispersion of the
iptables’s graphs compared to the eBPF’ graphs. The iptables total standard deviation
was 0.311 for Round-trip and 0.315 for One-way-tip, while the corresponding values for
the eBPF implementation were 0.155 and 0.172. These metrics align with the patterns
observed in other graphs, revealing a larger gap between maximums and minimums
and the average for iptables. This suggests that the eBPF solution might be more stable.
However, it is important to point out that iptables has fewer data points than eBPF, which
could potentially interfere with this metric.

Chapter 5

Conclusions and Future Work

The eBPF proof-of-concept is already able to match the battle-hardened iptables back-
end performance. However, it has a lot of room for improvement. For instance, the current
implementation is hooked on cgroup/connect4. In theory, lower-level hooks such as
XDP or TC would allow the system to make the routing decision much earlier in the
network stack, potentially decreasing overall latency even further. Another argument is
that XDP enables a technique called offloading, where XDP programs are loaded directly
into the network interface card (NIC), executing without CPU.

The initial proposal of this project was to effectively implement XDP support into the
KPNG eBPF backend. This preliminary and unfinished work can even be checked in a few
branches listed below:

1. https://github.com/jaehnri/kpng/tree/xdp-clusterip: Exploring substitution of the
cgroup/connect4 hook with XDP in the ClusterIP implementation.

2. https://github.com/jaehnri/kpng/tree/xdp-nodeport: Initial implementation of the
NodePort Service type in XDP.

However, this work was blocked due to a crucial XDP limitation: the missing support
for outgoing packets. Given how the ClusterIP NAT is done by kube-proxy and KPNG,
circumventing it was impossible. According to David Ahern, in the XDP Newbies Linux
mailing list AHERN, 2020b, there is an ongoing effort to add TX path support into XDP,
which would ultimately enable XDP to modify packets in the egress flow and further enable
this work. However, to the date of writing of this project, this work was not available
in official Kernel releases. This work can be tracked in the archives of the Linux Kernel
Netdev community AHERN, 2020a.

Another alternative to the KPNG eBPF development would be to explore TC hooks. This
has been somewhat studied, as seen on this TC NodePort proof-of-concept done primarily
by Sanjeev Rampal in Rampar, 2022. It is important to note that this POC simulates
Kubernetes and is not integrated into kube-proxy or KPNG, for instance. Implementing
this in KPNG was thought out in this work, however, KPNG relies on Cilium’s eBPF !

! Cilium’s Golang eBPF library is available at https://github.com/cilium/ebpf

41

https://github.com/jaehnri/kpng/tree/xdp-clusterip
https://github.com/jaehnri/kpng/tree/xdp-nodeport

42

5 | CONCLUSIONS AND FUTURE WORK

library to read, modify, and load eBPF programs and attach them to various hooks in the
Linux kernel and, cilium/ebpf does not support and does not intend to support TC hooks
as they are significantly more complex in both its design and its implementation L1, 2022.
The effort to switch libraries would be out of the scope of the project and probably too
complex.

A final opportunity for future work would be to do more exhaustive and load tests
to the current eBPF implementation. This project was not funded by any organization,
and thus, the authors have no resources to perform more scalability and/or load tests. It
might be the case that eBPF outperforms iptables in scenarios with heavier loads, more
NAT rules, or even more Pods behind a ClusterIP entry.

References

[AHERN 2020a] David AHERN. [PATCH RFC v4 bpf-next 00/11] Add support for XDP in
egress path. 2020. URL: https://Ikml.kernel.org/netdev/20200227032013.12385-1-
dsahern@kernel.org/ (visited on 10/23/2023) (cit. on p. 41).

[AHERN 2020b] David AHERN. Re: Using AF_XDP To Modify Outgoing Packets. 2020. URL:
https://www.spinics.net/lists/xdp-newbies/msg01629.html (visited on 10/23/2023)
(cit. on p. 41).

[GOLDBERG 1974] Robert P. GOLDBERG. “Survey of virtual machine research”. Computer
7.6 (1974), pp. 34—-45. por: 10.1109/MC.1974.6323581 (cit. on p. 4).

[HaNnsEN 1972] P. B. HANSEN. “Structured multiprogramming”. Commun. ACM 15
(1972), pp. 574-578. po1: 10.1145/361454.361473 (cit. on p. 4).

[HoILAND-JORGENSEN et al. 2018] Toke H@ILAND-JORGENSEN et al. “The express data
path: fast programmable packet processing in the operating system kernel”. In: Pro-
ceedings of the 14th International Conference on Emerging Networking EXperiments
and Technologies. CONEXT ’18. Heraklion, Greece: Association for Computing
Machinery, 2018, pp. 54—-66. 1SBN: 9781450360807. pDo1: 10.1145/3281411.3281443.
URL: https://doi.org/10.1145/3281411.3281443 (cit. on pp. 17, 18).

[LATTNER and ADVE 2004] Chris LATTNER and Vikram ADVE. “Llvm: a compilation
framework for lifelong program analysis transformation.” In: International sym-
posium on Code generation and optimization. IEEE Computer Society, 2004 (cit. on

pp- 1, 15).

[L12022] Vincent L1. How can ebpf programs be attached to TC classes/qdiscs? 2022. URL:
https://github.com/cilium/ebpf/discussions/769 (visited on 10/23/2023) (cit. on

p- 42).

[McCANNE and JACOBSON 1993] Steven McCANNE and Van JacoBsoN. “The bsd packet
filter: a new architecture for user-level packet capture”. In: USENIX Winter, Vol.
93. 1993 (cit. on pp. 1, 15).

43

https://lkml.kernel.org/netdev/20200227032013.12385-1-dsahern@kernel.org/
https://lkml.kernel.org/netdev/20200227032013.12385-1-dsahern@kernel.org/
https://www.spinics.net/lists/xdp-newbies/msg01629.html
https://doi.org/10.1109/MC.1974.6323581
https://doi.org/10.1145/361454.361473
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://github.com/cilium/ebpf/discussions/769

44

REFERENCES

[RAHARJO et al. 2022] A. B. RAHARJO et al. “Reliability evaluation of microservices and
monolithic architectures”. 2022 International Conference on Computer Engineer-
ing, Network, and Intelligent Multimedia (CENIM) (2022), pp. 1-7. po1: 10.1109/
CENIM56801.2022.10037281 (cit. on p. 3).

[RamPAL 2022] Sanjeev RampaL. POC of K8s Nodeport service using BPF. 2022. URL:
https://github.com/ebpf-networking/tc-nodeport (visited on 05/30/2023) (cit. on

p. 41).

[TrE LiNUux KERNEL DOCUMENTATION 2023] THE LiINUX KERNEL DOCUMENTATION.
eBPF Verifier. 2023. URL: https://www.kernel.org/doc/html/v6.1/bpf/verifier.html
(visited on 10/20/2023) (cit. on p. 17).

[The State of Enterprise Open Source: A Red Hat report 2022] The State of Enterprise
Open Source: A Red Hat report. Online. Red Hat, 2022. urL: https://www.redhat.
com/en/resources/state-of-enterprise-open-source-report-2022 (cit. on p. 8).

[ZHANG et al. 2018] Qi ZHANG et al. “A comparative study of containers and virtual
machines in big data environment”. In: 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD). IEEE. 2018, pp. 178-185 (cit. on p. 4).

https://doi.org/10.1109/CENIM56801.2022.10037281
https://doi.org/10.1109/CENIM56801.2022.10037281
https://github.com/ebpf-networking/tc-nodeport
https://www.kernel.org/doc/html/v6.1/bpf/verifier.html
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022
https://www.redhat.com/en/resources/state-of-enterprise-open-source-report-2022

	Introduction
	Basic Concepts
	Microservices Software Architecture
	Containers
	Kubernetes
	Kubernetes Services
	Kubernetes Workloads

	Kube-Proxy New Generation
	eBPF
	The eBPF Virtual Machine
	eBPF Maps
	eBPF Verifier
	XDP: the eXpress Data Path
	cgroup/connect4

	Observability Tooling
	Prometheus
	Grafana

	Solution
	KPNG Implementation
	k8s-node-latency
	Server
	Client
	Monitoring

	Results and Analysis
	Test Environment
	iptables
	eBPF
	Analysis

	Conclusions and Future Work
	References

