Universidade de Sao Paulo
Instituto de Matemaéatica e Estatistica

Bachalerado em Ciéncia da Computagao

Barbara de Castro Fernandes

How to contribute to the Linux kernel project:
the case of the FLUSP group

Sao Paulo
December 2019

How to contribute to the Linux kernel project:
the case of the FLUSP group

MACO0499 — Supervised Capstone project.

Advisor: Paulo Meirelles

Co-advisor: Melissa Wen

Sao Paulo
December 2019

Resumo

Comunidades de software livre dependem de um fluxo continuo de novos contribuidores
para continuarem operando. Devido aos lagos fracos que unem os participantes a comunidade
escolhida, a taxa de evasao de seus membros é alta, e esses tendem a desistir do projeto em
face as primeiras adversidades. Como resultado, diversos projetos fracassaram em virtude da
participagao insuficiente de voluntarios. Este trabalho tem como objetivo analisar o papel
que grupos de estudo desempenham na subsisténcia dessas comunidades através do estudo de
caso do FLUSP, um grupo de extensao do Instituto de Matematica e Estatistica da Universi-
dade de Sao Paulo (IME-USP). Analisamos as contribui¢oes enviadas por seus membros para
um subsistema do kernel Linux, o Industrial Input/Output (I1O), através de coleta de dados

dos patches enviados e da aplicagao de um questionario a cinco de seus membros mais ativos.

Palavras-chave: Software Livre, Engenharia de Software Empirica, Mineragao de Repositorios

de Software.

Abstract

Free/Libre/Open Source Software (FLOSS) communities depend on a continuous stream
of contributors to keep ongoing. Due to the weak links connecting participants to the chosen
community, the rate of dropouts is high, and its members tend to give up in the face of the
first adversities. As a result, many projects have failed due to insufficient volunteer partic-
ipation. This work aims to analyze the role that study groups have in the subsistence of
those communities through the case study of FLUSP, an extension group from the Institute
of Mathematics and Statistics of the University of Sao Paulo (IME-USP). We analyzed the
contributions sent by its members to a kernel Linux subsystem, the Industrial Input/Output
(ITIO), through data gathering of the patches sent and through the application of a question-

naire to five of its most active members.

Keywords: FLOSS, Free Software, Open Source Software, Empirical Software Engineering,

Mining Software Repositories.

il

Contents

List of Abbreviations vii
List of Figures ix

1 Introduction
1.1 Research Design

1.2 Organization of the capstone project

2 Background 5
2.1 The Linux Kernel 5)
2.1.1 The Linux Development 6

2.1.2 The Contribution Workflow 7

2.2 FLOSS at USP Group 8

3 Discussion and Results 11
3.1 FLUSP organization and principles 11
3.1.1 The tools that support group activities 12

3.1.2 Newcomers Training Process 12

3.2 FLUSP participants on FLOSS universe 13
3.2.1 Contributions to the Linux Kernel Project 14

3.2.2 Becoming a Linux contributor00 14

3.2.3 The diversity of contributions 16

3.2.4 Different profiles of contributors 16

3.3 Breaking barriers with FLUSP 0oL 17

4 Final Remarks 19

A Questionnaire on FLUSP’s activities and contributions to FLOSS projects 21

Bibliography 23

List of Abbreviations

CCSL
FLOSS
FLUSP
GSoC
11O
IME
KDD
UFBA
USP

FLOSS Competence Center

Free/Libre Open-Source Software
FLOSS at USP

Google Summer of Code

Industrial Input/Output

Institute of Mathematics and Statistics
KernelDevDay

Federal University of Bahia

University of Sao Paulo

vil

List of Figures

2.1 Contribution workflow in a Linux subsystem

3.1 Final patches by type
3.2 Final patches by authorship 0oL

1X

Chapter 1

Introduction

Free/Libre/Open Source Software (FLOSS) is a term used to encompass all software
released under a license that allows its users the freedom to inspect, use, modify and redis-
tribute the source code (Crowston et al., 2012). Since its inception by the Free Software (in
the 1980s) and the Open-source (in the 1990s) movements, the FLOSS usage has grown both
in the industry and for personal use. Its popularization also increased the interest of under-
standing its practices of development and community organization. However, despite many
investigations about it, FLOSS remains a commonly misunderstood phenomenon, with sig-
nificant gaps between theory and practice over more than two decades (Osterlie and Jaccheri,
2007).

In the world of software engineering, one of the research opportunities which arise from
FLOSS studies is the motivations that drive individuals to participate in these projects
and what prompts them to continue contributing (Scacchi, 2010). Much of this is because
FLOSS projects are commonly community-based, and the community depends on a contin-
uous stream of contributors to keep going. Due to the weak links connecting participants to
the chosen group, the rate of dropouts is high, and its members tend to give up in the face of
the first adversities (Silva, 2019). As a result, many projects may fail due to the insufficient
number of contributors.

One way of helping newcomers in those communities is through their involvement in study
groups. The assistance offered by study groups can decrease the learning curve associated
with entering a FLOSS project and also keeping the individual involved. Notwithstand-
ing many advantages for academic teaching and professional training, FLOSS development
groups are not commonly found in Brazilian universities.

With this concern, this work looks into the role played by a university group for engaging
students in FLOSS development and improving the member’s retention of these communities.
We examined the case of FLUSP (FLOSS at USP)!, a group of graduate and undergraduate
students at the University of Sao Paulo (USP) that aims to contribute to FLOSS projects.
Its members have sent contributions to several projects, such as to the Linux kernel, Git,
and GCC, as well as having participated in the Google Summer of Code initiative and taking
part in FLOSS conferences.

To conduct this investigation, we applied qualitative research methods, engaging in par-
ticipant and non-participant observation of its members, two study methods often used in
social research. We paid closer attention to the contributions of its seven most active mem-
bers, in addition to administering them a questionnaire related to their participation in the
group. We studied the methods of engagement used by this group, such as pair program-
ming, internal reviewing, and blog posting, and analyzed their efficacy. We also examined

Thttps://flusp.ime.usp.br

https://flusp.ime.usp.br

2 INTRODUCTION 1.1

the patches sent to FLUSP’s internal mailing list, keeping track of which ones were sent to
the community’s official list and, among those, the ones who were accepted and merged into
the project’s source code. We categorized them according to the author, contribution type,
and whether they were co-developed or not.

Besides that, we also began participating in its activities from January 2019 to November
of the same year. We took part in FLUSP’s weekly occurrences during this period, which
included event planning, bureaucratic issues, and participation in two conferences. Immersion
on the development process of FLOSS software projects happened through the sending of
contributions as a community developer. As a consequence, we sent ten patches through the
course of those ten months to one of its most active projects, the subsystem of the Linux
kernel known as Industrial Input/Output (IIO)?. The IIO subsystem was created in 2009
by Jonathan Cameron and aggregates drivers to devices that perform analog to digital and
digital to analog conversions, such as pressure sensors, temperature sensors, accelerometers,
and magnetometers. We decided to select it as the focus of this study since it received the
most contributions from the FLUSP group.

We have also sent a questionnaire to five of the seven studied subjects related to their
experience at FLUSP and regarding the FLOSS projects to which they contribute. One of the
participants did not answer the questionnaire due to having participated in the elaboration
of the questions. Afterward, we analyzed the gathered data, inferring whether the group
is fulfilling its role of bringing newcomers to the FLOSS community and stimulating their
permanence there. We used the results to investigate whether this group is indeed fulfilling its
role of bringing contributors to those communities and increasing their rates of permanence.
The questions they had to answer can be found in Appendix A.

Our results indicated that FLUSP fulfilled its role of helping the introduction of its
members in the FLOSS community. Its philosophy of knowledge sharing, internal review,
and pair programming served to mitigate the initial difficulties new contributors often find
when they begin to navigate a FLOSS project.

1.1 Research Design

In this work, we used qualitative research strategies for data collection and interpretation:
the case study and participant and non-participant observation. Qualitative methods are
research techniques for collecting and analyzing data focused on the comprehension of the
reasons and motivations behind a certain occurrence (Seaman, 1999). To better understand
the dynamics involved in the kind of voluntary contribution that takes place in FLOSS
projects, we chose the FLUSP group to be the subject of our case study.

A case study is a qualitative research method that aims to provide the necessary tools for
a researcher to gain an understanding of complex events such as the roles and rules involved
in the dynamics of a specific community through investigating its particular instances. It is
with the help of the evidence obtained through a case study that models developed for a
theory can be tested to see if they correspond to reality.

We methodologically study the participation of six of FLUSP members to the 11O sub-
system, in addition to having also contributed to it ourselves through the sending of 10
patches. The importance of the participant observation can be seen in the gathered knowl-
edge the researcher experiences through immersion in the phenomenon at hand and is thus
able to gain further insight. In the same way, it is also valuable to engage in non-participant
observation to try to understand the parties’ actions without external interference.

Zhttps://01.org/linuxgraphics /gfx-docs /drm /driver-api/iio/index.html

https://01.org/linuxgraphics/gfx-docs/drm/driver-api/iio/index.html

1.2 ORGANIZATION OF THE CAPSTONE PROJECT 3

The FLUSP mailing list received a total of 221 patches between 4th October 2018 and
25th October 2019. The participants were chosen based on their frequency of contribution
and permanence in the group. To make the data analysis possible, we subscribed to the
FLUSP internal mailing list and inspected all the patches sent through it since its inception.
After that, we crossed the patches against those sent to the IO mailing list. We organized
the data gathered in a spreadsheet arranged by title; date sent; main author; whether it was
co-developed or not; co-authors (if any); patch type; if it was sent to I10; if it was accepted
in ITO; and links to the patch in FLUSP and IIO mailing lists.

When two or more developers write a patch, it receives in its description a tag known
as “co-developed by”. We separated the patches between those that were co-developed and
not to study the frequency they are done and what drives contributors to create patches
together.

We observed that between different versions of a patchset, the number of patches in
it could vary. To investigate the number of unique patches sent by each programmer, we
considered the number of patches of the final version. The final version of a patch set is the
one that was sent to the IIO mailing list, independently of it being accepted and merged to
the maintainer’s repository or not.

1.2 Organization of the capstone project

In Chapter 2, we present a conceptualization of the terms that are used throughout this
work, in addition to furnishing a background on FLOSS history and, especially, of the Linux
kernel. We also report the main events that happened in FLUSP’s short existence and a
brief account of USP’s involvement in the FLOSS world.

In Chapter 3, we probe more thoroughly into FLUSP’s internal structure, describing
the tools of which the group make use and how they are used in the training process of
its members. Besides that, we provide a brief description of the participants involved in
the study, along with exposing the results we observed in our research. This includes the
examination of the patches sent by the group’s members, as well as an analysis of the answers
given by the studied subjects to the questionnaire we created.

Finally, in Chapter 4, we detail the conclusions we were able to observe through our
research and give motivation to the production of further works on the subject.

Chapter 2

Background

In this chapter, we introduce a brief account of the Linux kernel history and its orga-
nization, and discuss the GNU Project and the concept of FLOSS, besides describing how
the Linux code is organized and how the contribution flow to its subsystems work. Also, we
present the history of GNU /Linux operating system in the University of Sao Paulo and the
creation of the FLOSS at USP group.

2.1 The Linux Kernel

Linux is an operating system kernel created by Linus Torvalds, a software engineer from
the University of Helsinki. Initially designed for i386 machines and as a hobby!, it found
inspiration in MINIX (Tanenbaum and Woodhull, 2011), an operational system created by
Andrew Tanenbaum for educational purposes in 1987.

There are two main kinds of kernels, the microkernel and the monolithic kernel. In
the microkernel, this part of the operating system has the minimum amount of software
necessary to make it runnable. Besides, the user services and kernel services are kept in
different address spaces. The MINIX is an example of such kind of kernel.

Also known as “The Big Mess” (Tanenbaum and Woodhull, 2011), in the monolithic
kernel the entire operating system works in kernel space. And it is not uncommon to have
tasks like device drivers, file system and memory management being performed by it. We can
cite Linux as a kind of monolithic kernel. The duality of monolithic kernel and microkernel
gave rise to many feuds, including one between Tanenbaum and Torvalds. Details about this
discussion can be seen in the Usenet thread created by Tanenbaum in comp.os.minix on
January, 29th, 1992 (DiBona and Ockman, 1999).

Soon Torvalds’ project grew with the help of the GNU Project and was released under
the GNU General Public License as the GNU/Linux operating system. Richard Stallman
started the GNU Project in 1983 to replace all the most critical software in the computer
by a FLOSS alternative. In the vision of Stallman, every software should grant its users four
freedoms: the freedom to use, study, share and improve it?. Those freedoms form the basis
of the free software movement, and the GNU General Public License exists to guarantee all
software released under this license have them respected.

Since the source code of the Linux kernel was first released to the world in 1991,
GNU/Linux has grown to become one of the most famous operating systems that ever
existed. It is now considered the most successful example of a FLOSS project. Nowadays,

Thttps://groups.google.com /forum /#!topic/comp.os.minix /dINtH7RRrG A
Zhttps:/ /fsfe.org/freesoftware /basics /4freedoms.en.html

https://groups.google.com/forum/#!topic/comp.os.minix/dlNtH7RRrGA
https://fsfe.org/freesoftware/basics/4freedoms.en.html

6 BACKGROUND 2.1

all the supercomputers in the TOP500 list use it as their operational system?®.

The GNU /Linux operating system can be divided into four main layers: the hardware, the
kernel, the shell and the applications. The hardware consists of all the physical components
of the computer. The kernel is the core component of any operational system, providing
communication with the hardware and handling the system tasks. The shell operates as an
interface that takes commands directly from the user and executes kernel commands. The
applications are the programs that supply most of the functions of the computer. In this
work, we focus on the kernel layer.

2.1.1 The Linux Development

Some initiatives both from industry and academia have studied FLOSS development
characteristics (Fitzgerald, 2006; Raymond, 1999). One of the first essays to broach this
subject was Eric S. Raymond’s The Cathedral and the Bazaar. In this seminal work, Ray-
mond exposed the experience he gained by managing a project of this kind, the fetchmail.

Raymond exemplified the bazaar model by the style of development employed by the
Linux project. This model is characterized as bordering on the “promiscuous” side. It is
based on early and often releases and delegation of everything possible. This goes directly
against the Cathedral style of development, that perpetuates that the final user must see
the least amount of bugs as possible in the code. The bazaar style rationale is exemplified
by a claim the author called Linus’s Law: “given enough eyeballs; all bugs are shallow.”

The Linux kernel functions can be divided into the following five parts (Corbet et al.,
2005):

e Process management: a computer process is a program in execution. The process man-
agement of an operating system concerns process creation and termination, as well as
the scheduling algorithms employed to share the CPU usage;

e Memory management: most computers follow a memory hierarchy, having a small
amount of fast, expensive, volatile memory (Random Access Memory, or RAM), and a
larger quantity of slow, cheaper, non-volatile memory (Read-Only Memory, or ROM).
Memory management pertains the part of the operating system that deals with this
hierarchy, in addition to memory allocation and deallocation;

e Filesystems: the filesystem is involved in information storage and retrieval. Linux fol-
lows the Unix methodology that asserts that almost anything can be treated as a
file;

e Device control: a device driver is the part of an operating system code involved in
communication with the hardware. A driver provides device-specific code to perform
input and output operations;

e Networking: part of the operating system that controls the delivery and collection
of packets through a communication network. It also performs packet routing and
addresses translation.

Since the kernel has long stopped being a project able to be managed by a single person,
it now works with a chain of trust model. Most subsystems have a maintainer, who is the
person responsible for the patches that go through its repository. Linux subsystems are all

3https://www.top500.org/

https://www.top500.org/

2.1 THE LINUX KERNEL 7

managed by volunteers, who have the duty of ensuring the code quality. Each maintainer
has its version of the kernel source tree and uses version-control tools, such as Git, to trace
information about the patches contained on it.

All the subsystems have a staging directory, where the code for its drivers and filesystems
stay until they are well developed enough to become part of the kernel source tree. Greg
Kroah-Hartman currently maintains the staging tree.

Periodically, Torvalds’ source tree begins accepting pull requests. When that happens,
the maintainers ask Torvalds to pull the patches they have selected from their version of the
source tree, thus becoming part of the mainline branch.

One thing that facilitates the merging of their work is the kernel modularized structure.
Modules make it possible to extend the functionalities provided by the kernel in runtime.
They render more flexibility to the system, allowing the dynamic linking and unlinking of
pieces of code while the Linux is running.

Most of the code development done in Linux is made through mailing lists. In this work,
our focus is on the Industrial Input/Output (IIO) subsystem, which is part of the device
control portion of the kernel. The IIO aims to provide support for devices that perform
either an analog-to-digital conversion, digital-to-analog, or both. It is currently maintained
by Jonathan Cameron, from Huawei, and has been since its inception in 2009.

Cameron started working on an academic project called SESAME, in which athletes were
equipped with movement sensors on their bodies. There were not many platforms out there
to do this. He asked on the Linux kernel mailing list and concluded that he would have to
make something new. That is how he started planning the I1O subsystem.

2.1.2 The Contribution Workflow

To begin contributing, a contributor must subscribe to the subsystem mailing list, besides
making a copy of the subsystem source code. It is also necessary to set the development
environment and to create a virtual machine to test the changes made to the code without
crashing the whole operational system the user is using in the code development.

The entire contribution process begins by finding an issue in which to work. This process
can be done by accompanying the subsystem mailing list, looking for the issues page in the
project Wikipedia, or asking directly to a maintainer.

Once an issue has been selected, the contributor must locate the sections of the code
that must be modified or where a new code must be added to fix the problem at hand. Each
patch must be composed of small pieces of code and must address one issue at a time. It is
common practice to break a series of modifications in what is called a patch set. A patch set
is nothing more than a grouping of modifications, all related to the same problem.

After the code has been modified, the changes must be tested. The testing part consists
of compiling the source code to see if it breaks the code and running the existing test files
related to the sections of code modified in the patch.

Through the help of a contribution group, the created patch can be sent to an internal
mailing list. In this mailing list, the modifications are again tested by other contributors to
find issues the patch developer might have potentially missed. After those issues are dealt
with by the developer, the patch is again sent to the internal mailing list until no other
issues are found. When this happens, the patch can be sent to the official mailing list.

<subsystem >: <what changed>
<blank line>

<why this change was made>
<blank line>

<footer >

8 BACKGROUND 2.2

Listing 2.1: The format a commit message should have

The sending of patches is managed with the help of another of Torvalds’ creation, the
version-control tool named Git. In Git, each patch roughly corresponds to one commit. Every
commit must have a message describing what the patch does. The first line of the message
is the title, which briefly describes what the proposed modifications do, and the last lines
contain the footer. It is in the footer that information about the people directly involved in
its development is placed. The format a commit message can be seen in Listing 2.1%.

Implement the necessary|
P ' e necessary Test the code
modifications
A [A l

Code works?

Find an issue to address

A

No |No o [No

Code is included in the
next kernel version

A

i
Reviewer merges the fes Submit patch to the | iYes Submit patch to the
code official mailing list ! - y internal mailing list

Internal reviewing process

Figure 2.1: Contribution workflow in a Linux subsystem

After the code is sent to the official mailing list, one of the maintainers is in charge of
testing the code. If any issue is found on the code, the developer must apply the suggested
modifications to have their patch accepted. If no issue is found, the maintainer accepts the
patch and have its code merged to the kernel source tree version of their subsystem. In this
way, the patch is added to the next version of the kernel released. We illustrate the whole
contribution process in Figure 2.1.

2.2 FLOSS at USP Group

The Institute of Mathematics and Statistics of the University of Sao Paulo (IME-USP)
has a history with FLOSS since the installation of the GNU /Linux operational system by
Prof. Marco Dimas Gubitoso, in 1993. Today students at the institute can benefit from the
usage of the “Rede Linux ”, created in 1998 to provide them with the necessary computational
resources. The university involvement with FLOSS does not end there, though. In 2006,
FAPESP and the rectory released money for the construction of the FLOSS Competence
Center (CCSL). Two years afterwards, its statute was written, and this legally marked the
creation of the CCSL.

In this scenario, FLUSP acted as an empowerment tool that USP students could use
to contribute to complex FLOSS projects, such as the Linux kernel. The idea of creating
FLUSP raised during the subject of Extreme Programming Lab. Also known as LabXP, this
discipline aims to provide students with an opportunity to engage in a software project and
make use of the Agile development methodology. Four of the LabXP students went on to
establish FLUSP.

4https://docs.flatcar-linux.org/container-linux-config-transpiler /contributing /

https://docs.flatcar-linux.org/container-linux-config-transpiler/contributing/

2.2 FLOSS AT USP GROUP 9

During the subject, a Computer Science master student from IME-USP, strived to trans-
mit all the knowledge he had about FLOSS, the Agile methodology and the Linux kernel.
It only took a month for the students to send their first patches, and by the second month,
they did not need his help anymore. Prompted by him, they started writing blog posts, since
this was a huge differential for the ones who wanted to apply to GSoC.

In December of 2018 began the race for the members who applied to this program. As
a result, three FLUSP members had their proposals accepted and went on to contribute
to GCC, the IIO subsystem and Git. It was also in this month, on the 10th, that FLUSP
officialization as an extension group took place.

FLUSP currently has around six active members. It has also study groups dedicated to
Debian, GCC, Git and the Linux kernel. It holds weekly meetings in which its members
gather to work on these projects.

Each of the group projects is conducted as independent entities. The participants have
the prerogative concerning how the subgroup is managed. They also define how and when
its meetings are take place.

FLUSP has three main communication channels: a mailing list, an IRC channel and a
Telegram group. There is also a bot that performs integration between its IRC channel and
Telegram group, allowing the messages sent in one of them to be available in the other.

FLUSP has an internal revision system in which members of the group review each other
patches before sending them to a FLOSS project (i.e., IIO mailing list). This approach helps
avoiding the sending of patches with minor mistakes and it also teaches its members to
review patches and become more acquainted with the subsystem code.

Moreover, in its short story, FLUSP has already organized several FLOSS events: the
install fest 2019 at IME-USP, a Git workshop, and a marathon of collaborations to the kernel
ITO subsystem (KernelDevDay). FLUSP also supports part of linuxdev-br 2019 edition. In
particular, the KernelDevDay (KDD) gathered 21 people and 16 patches were sent to the
ITO mailing list.

Chapter 3

Discussion and Results

In this chapter, we present a compreensive description of the group structure: the tools
used by its members to support their activities; how the newcomer training happens; and the
general profile of FLUSP members. We paid special attention to the participants observed
in this work, making comparisons between their profiles as contributors. We also extend the
comparison to includes reflections of our profile as a FLUSP member and as FLOSS con-
tributor. At last, an extensive study about their contributions will be performed, including
an analysis of the patches sent and of the answers provided by the members selected to
answer our questionnaire. We use those results to evidence that study groups can be used
to achieve a greater member permanence in FLOSS communities and, thus, contribute to
their subsistence.

3.1 FLUSP organization and principles

FLUSP organization follows a horizontal hierarchy, where all its members have the same
voting powers, and there is no sense of seniority. Although each project developed under the
group umbrella has at least one mentor, all decisions are taken democratically.

FLUSP is based on a set of four values':

e Freedom of code and knowledge;
e Flatness;

e The belief sharing is paramount to the group and valuing the mutual exchange of
learning among members (“passing the baton”);

e Code reviewing as just as important as adding code.

The concept of member is still unclear in FLUSP. Despite the fact that the group held
many meetings with the intention of creating a manifesto, no such thing has ever materialized
up to this moment. Informally, though, anyone who has participated in a couple of meetings is
considered a member and, consequently, has voting powers. Any member has the prerogative
to propose the creation of a new project.

Although being a university extension group, it is not necessary to be affiliated to USP
or any other institution of higher education to be a part of FLUSP. FLUSP is a group of
students with no affiliation to any professor, although bureaucratically it has a professor
responsible for the group activities, Alfredo Goldman.

Thttps://flusp.ime.usp.br /about

11

https://flusp.ime.usp.br/about

12 DISCUSSION AND RESULTS 3.1

3.1.1 The tools that support group activities

Most information about the group is available in its official web page?, such as tutorials,
its meeting schedule and news about events. This website is developed using Jekyll, a static
site generation tool written in Ruby. Jekyll provides an easier experience by allowing its users
to write content in Markdown and then converting the raw text files into a static website.
As FLUSP is comprised of volunteers, its resources are mostly limited to the knowledge its
members possess. Since none of its members had much front-end web development when
the site was created, Jekyll was chosen to facilitate its generation. In this way, the tool was
able to decrease the learning curve associated with web page development and enabled the
creation of the group website.

The files related to its web page are versioned as one of the group projects in Gitlab, a
platform that provides a Git repository manager, along with a wiki page and a issue-tracking
tool. Gitlab is one of the many pages on the web that offer control versioning through Git,
and was chosen by the group for being FLOSS and for the cluster of features it provides in
its free version. Besides its website, it is also in Gitlab that all the files under the FLUSP
umbrella are stored, including the GCC mirror used by the participants who contribute
to this project. Grounded on rules that value freedom of code and knowledge, all of the
group projects on Gitlab are openly available to the public, with the exception of its website
infrastructure project. The reason for that is because it contains critical data about the web
page that the group still has not found out how to conceal.

Regarding writing permission to their projects, any member that manifests interest in
getting involved can obtain it. One problem that troubles the group repositories, though, is
the lack of organization pertaining on how contributions are performed. Most of the time,
pull requests concerning the changed code are not created, and so the code is directly pushed
into the master branch. Pull requests allow a contributor to suggest changes from one branch
to be merged to another branch and are considered a good development practice, since they
make it possible for users to discuss the proposed changes and potentially spot any existing
issues on the code.

3.1.2 Newcomers Training Process

The group website provides a number of blog posts and tutorials with the aim of helping
newcomers navigate more easily through the communities’ cycle of contribution. Besides the
production of materials and the group meetings, FLUSP also promotes events to attract
contributors and provide FLOSS experiences for its members.

On March 26th, 2019, FLUSP promoted its first event, the GNU /Linux install fest. The
FLOSS culture has a lot of force in IME, with Computer Science students being encouraged
since their first year to use the aforementioned operating system. Many freshmen attended
the install fest to have a GNU/Linux distribution installed in their notebooks. The event
was considered a success, with about twenty installations being made that day.

In the following month FLUSP presented an introductory Git workshop. The workshop
had the goal of teaching its participants the most basic Git commands, including how to use
branches. It had around sixteen participants and was attended mostly by freshmen.

On May 18th, 2019, ocurred FLUSP major event to date, the KernelDevDay. KernelDev-
Day main goal was to help people who had never contributed to a FLOSS project make their
first contribution. The chosen project was the Linux kernel, more specifically the Industrial
Input/Output subsystem. The 21 participants were divided in nine teams and began work-

Zhttps://flusp.ime.usp.br/

https://flusp.ime.usp.br/

3.2 FLUSP PARTICIPANTS ON FLOSS UNIVERSE 13

ing in the pre-selected issues. By the end of the day, fifteen patches were submitted to 11O
mailing list, with one more having been sent afterwards. The feedback was overwhelmingly
positive, with both participants and IIO maintainers praising the event outcome.

It was also possible to interact with many people involved in the Linux community during
two events in which FLUSP members participated: DebConf 2019 and the linuxdev-br of
the same year.

We can see the meaningful impact FLUSP was able to have in the Linux ITO subsystem.
From the period of October 3rd, 2018 to November 17th, 2018, FLUSP contributions to this
subsystem represented 20% of all the contributions sent to its mailing list. From January
4th, 2019 to April, 4th, 2019, this scenario happened again, since 19.4% of the patches sent
to I1IO were sent by FLUSP members.

3.2 FLUSP participants on FLOSS universe

Considering the FLUSP engagement on 110, we observed the six participants of FLUSP
with more contributions sent to this subsystem, in addition to contributions provided by
the main author of this work. The seven participants observed in this study were named as
follows:

e Participant 1 (P1): undergraduate student;

e Participant 2 (P2): master student;
e Participant 3 (P3): undergraduate;
[]

e Participant 5 (P5): master student;

Participant 6 (P6): master stundent and co-advisor of this work;

main author of this work.

(P1):
(P2):
(P3):
Participant 4 (P4): undergraduate student;
(P3):
(P6):
(P7):

Participant 7 (P7

P1, P3, P4 and P7 are undergraduate students in the final year of a Bachelor degree
in Computer Science. P2, P5, and P6 are students getting their Master degree in the same
course. Besides participating with patches sent through FLUSP, one member of the group -
P1 - also contributed to the kernel project through GSoC.

To complement the analysis of each profile, we sent a questionnaire to the observed
participants. P6 and P7 were the only participants that did not answer the questionnaire,
since P6 and P7 were involved in the elaboration of this study. According to the answers
given in the questionnaire, the mean age of the interviewees is of 24.2 years-old.

Through the questionnaire it was also possible to get acquainted with the development
practices of each participant. P1, P2, and P5 showed to be people who prefer to develop con-
tributions by programming individually. P3 and P4, on the other hand, stated a preference
for programming in pairs. P7 is also a person that has an inclination to prefer to engage in
pair programming.

14 DISCUSSION AND RESULTS 3.2

3.2.1 Contributions to the Linux Kernel Project

There were sent to FLUSP mailing list a total of 277 patches. If we were to count only the
final version of the patches, this number drops to 115 - meaning that 41.5% of the patches
sent to this list were composed of final versions.

To analyze the contributions of FLUSP participants, we collected and classified the
patches set to 110 in six different types: bug fix, code style, cover letter, documentation,
enhancement and feature.

e Bug fix is a type of patch that intends to provide a solution for an existing bug in the
code.

e (ode style patch is one that aims to correct the writing guidelines used during the
composition of a program source-code.

o (Cover letter is created when a patch series is generated and usually has a description of
the series’” purpose and a short explanation of what each one of the patches does. Cover
letters are not sent as a distinct e-mail when sent to the IIO mailing list. We decided
not to take them into account when counting the percentages of each participants’
patch types.

e Documentation patches are the ones pertaining the creation of material with infor-
mation regarding the functioning of a driver or hardware. We also categorized as a
documentation patch the ones with the objective of writing comments in the code to
explain what it does.

e FEnhancement patches offer minor improvements to a driver source code, but are not
significant enough to be considered a new feature. At last, a feature patch is one that
provides a meaningful modification to the code in a way that they can be considered
a new attribute per se.

We were able to categorize the patches sent by people affiliated to FLUSP as following:
43 (37.4%) were enhancements, 37 (32.2%) were code style, 24 (20.9%) were documentation,
6 (5.2%) were features and 5 (4.3%) were bug fixes. The percentage of patches done together
was of 32.2%, totalizing 37 patches.

All the seven people studied had a code style patch as their first one. This is according to
the expected, because patches of this kind are considered the most simple ones and, as such,
are a good way of familiarizing new contributors with the dynamics and contribution rules
existing in the community. We also notice that the more experienced contributors possessed
less patches made together. Creating patches along with other programmers can be seen as
a way of transmiting part of one experience to the other. Therefore, it is to be expected that
the less experienced contributors had more patches done in groups.

Additionally, it is expected that more experienced programmers have a larger amount of
accepted patches among the ones sent to the IIO mailing list, and this scenario is exactly
what happened within the collected data. Inexperience usually entails making more mistakes,
so it is natural that the programmers that are in the community for a shorter amount of
time have less patches sent to the IIO than their counterparties.

3.2.2 Becoming a Linux contributor

It is possible to notice that most of the final patches sent to FLUSP mailing list were
also sent to ITO mailing list, since 96 (83.5%) of the final patches were sent there. Of all the
final patches sent to the 110, 71 (74%) were accepted by the list.

3.2 FLUSP PARTICIPANTS ON FLOSS UNIVERSE 15

documentation
20,9%

code style
32,2%

feature
5,2%

bug fix
4,3%

enhancement
37,4%

Figure 3.1: Final patches by type

There were 18 final patches sent the day KernelDevDay (KDD) took place, which repre-
sents 15.7% of all the final patches ever sent to FLUSP mailing list. Together these people
contributed with 11 final patches, which amounts to 9.6% of all the final patches sent to the
list. As those numbers can attest, KDD represented a significant success to the group mission
of stimulating contributions to FLOSS projects. However, ten people that participated in
this event have not made any other contribution neither before nor after through FLUSP
mailing list. Therefore, KDD was not able to successfully insert those participants in the
Free Software community.

Main author Secondary author

P2

(a) Final patches by main author (b) Final patches by secondary author

Figure 3.2: Final patches by authorship

Of the people studied, P1 was the one who sent most patches, with 19 patches as the
main author and none as the secondary author, totalizing 16.5% of the patches sent as main
author. The second person with most patches was P2, with 18 patches sent as the main
author and none sent as the secondary author. This corresponds to 15.7% of all the patches
sent as the main author. The third person with most patches is P3, with 12 patches sent as
the main author and 2 sent as the secondary author, which is equal to 10.4% of the patches
sent as the main author and 5.4% of the patches sent as the secondary author. The fourth
and fifth people with most patches were P4 and us, the former with 5 patches sent as the
main author and 5 patches sent as the secondary author (corresponding, respectively, to
4.3% of the patches sent as the main author and 13.5% of the patches sent as the secondary

16 DISCUSSION AND RESULTS 3.2

author) and the latter with 10 patches sent as the main author and none as the secondary
author (corresponding to 8.7% of all the patches sent as the main author). The sixth person
with most patches was P6, who sent 6 patches as the main author and 2 as the secondary
author, which corresponds, respectively, to 5.2% and 5.4% of the patches sent as main and
as secondary author. The seventh person with most patches was P5, who sent 4 patches as
the main author and 2 patches as the secondary author. This corresponds, respectively, to
3.5% and 5.4% of the patches sent as the main author and secondary author. The other
participants sent in total 41 patches as the primary author (corresponding to 35.7% of the
total) and 26 patches as the secondary author (corresponding to 70.3% of the total). Those
numbers can be seen in Figure 3.2.

3.2.3 The diversity of contributions

Studying the final patches sent by P1, it is possible to categorize them as being 9 (47.4%)
of enhancements, 6 (31.6%) of code style and 4 (21.1%) of documentation. In total, he sent
40 patches to FLUSP mailing list. Of all the final patches sent by P2, 5 (27.8%) were of
documentation, 4 (22.2%) were of enhancements, 3 (16.7%) were of code style, 3 (16.7%)
were bug fixes and 3 (16.7%) were features. In total, P2 sent 50 patches to FLUSP mailing
list.

P3 sent, 8 (57.1%) were of enhancements, 3 (21.4%) were of documentation, 1 (7.1%) were
of code style, 1 (7.1%) of feature and 1 (7.1%) were of bug fix. The member P4 developed
4 (40%) patches of code style, 3 (30%) of enhancements and 2 (20%) of documentation. He
sent in a total of 22 patches to FLUSP mailing list.

Concerning P7’s participation, it is possible to see that 6 (60%) of her final patches were
of code style and 4 (40%) were of enhancements. As for P6, 4 (50%) of her final patches
were of enhancements, 3 (37.5%) were of code style and 1 (12.5%) were of documentation.
P5 sent 3 (50%) final patches of enhancements, 2 (33.3%) of features and 1 (16.7%) of bug
fixes. In total, he sent 23 patches to FLUSP mailing list.

3.2.4 Different profiles of contributors

Despite being a development group, four of the seven participants observed seem to be
a person that prefer to codify their contributions alone. Of the 19 patches sent by P1, 16
(84.2%) were developed without help from any other person and only 3 (15.8%) were devel-
oped with the help of another participant. In the questionnaire, P1 justified his preference
for contributing individually by arguing that in this way he can do everything in his own
time. He is one of the members with the largest proportion of patches sent to the I10: all of
his 19 patches were sent to that mailing list. He is a contributor with a high percentage of
accepted patches, since of all the patches he sent, 15 (78.9%) received positive feedback and
were included in the kernel code.

This characteristic also appears in the development of P2’s patches, 16 (88.9%) of them
were written without anyone else help and 2 (11.1%) were written with the help of one other
person. In this case, with P5’s. In the questionnaire, P2 justified his preference for individual
contributions due to feeling he can be more productive this way. It is also possible to see
that P2 has a large proportion of patches sent to the I1IO. Of the 18 patches he sent, all of
them (100%) were sent to this subsystem mailing list. This can be seen as a reflex of his
experience in the group and of his abilities as a programmer. P2 also has the highest rate of
accepted patches among the ones sent to the I1O. He has 17 patches accepted and 1 rejected,
which represents an acceptance rate of 94.4%.

3.3 BREAKING BARRIERS WITH FLUSP 17

Two other participants who demonstrated to be more comfortable coding individually are
P6 and P5. P6 developed 6 of her final 8 patches by herself, which represents a proportion
of 75% of them being developed without any other person helps. Of the final patches sent
by this participant, 6 (75%) were sent to the I1O mailing list and 2 (25%) were not. Of those
6, all of them were accepted by the IIO. She has the largest proportion of accepted patches
among the studied participants. Few of P5 final patches - 2 (33.3%) - were developed together
with another person. In this case, with P2. P5 expressed in the questionnaire a preference
for individual contributions. He also possess the largest proportion of patches sent to the I1O
mailing list, since all of his 6 patches were sent to it. His percentage of final patches accepted
among the ones sent to the IIO mailing list showed to be similar to the other participants,
being of 66.7%.

Another two observed participants and P7 seem to worry about pair-programming and
co-development. P4 is an example of someone who prefers to develop patches with other
people, since all his 10 final patches were developed with the help of another participant.
He explained this preference in the questionnaire, saying he believed pair programming
decreased the possibility of errors taking place. Their description of the group matches the
definition given in this work, being of an extension group that aims to help students give
their first contribution to a FLOSS project. He also has a high proportion of patches sent
to the I1IO. Of the 10 final patches he sent to FLUSP mailing list, 8 (80%) were sent to the
former mailing list. The percentage of patches that were accepted among the ones that were
sent is similar to the majority of the studied participants, being of 75%.

P3 is also more opened for co-development. Although he wrote 10 (71.4%) patches with-
out co-authors, 4 (28.6%) of them were with someone else. All of his final patches were sent
to the IIO and almost all the patches sent to this mailing list (13 of 14, or 92.9%) were
accepted and had the code merged to the official repository.

P7 also demonstrates to be a person that prefers to develop patches with other people,
since 6 of her 10 final patches (60%) were developed this way. Another thing that is possible
to observe through the analysis of her patches is that most of them were different versions
of the same patch. This reveals her inexperience in development, since if only the final patch
versions were considered, P7’s number of patches would drop from 40 to 10. It is also the
reflex of her inexperience the proportion of her patches sent to the 11O, since only 11 (27.5%)
of the total were sent to this list. Nevertheless, the acceptance rate of P7’s patches did not
show to be much different from the other studied participants. Of the 10 final patches sent
to the 11O, 6 (75%) of them were accepted.

3.3 Breaking barriers with FLUSP

As for the reasons given for beginning participation in the group, the participants have
mentioned: giving and receiving help to contribute to free software, developing research that
benefits society and learning how to deal with a large codebase.

Three of the respondents stated they always put FLUSP mailing list in copy when sending
contributions. They justified it by saying this strengthens FLUSP as a group and increases
its visibility in the FLOSS community. The only person who said he did not put the list
in copy is not actively contributing to the kernel and is currently the mentor in another
project. As such, he is the one who reviews the patches related to this project.

The main difficulties pointed by the interviewees related to their engagement in a FLOSS
project are: not knowing where to begin or what to do, difficulty finding documentation, and
trouble understanding the source code and how it was organized. The way those problems
were mitigated varied, with two members saying they first recurred to internet searches to

18 DISCUSSION AND RESULTS 3.3

try to find the solution, one member saying his first option was the project IRC channel and
another one saying he first recurred to FLUSP. Reading documentation and the community
mailing list, and asking questions to the project maintainers were other ways those difficulties
were solved.

All of the respondents agreed that FLUSP had helped them become FLOSS contributors.
They credited the group as having rendered possible their insertion in those communities
and for teaching them how to interact with its members.

Three of them assessed their level of experience in the main project they contribute to
as “little experienced”. This is a surprising result, as those three contributors have amassed
a total of 110 patches sent to FLUSP mailing list. The respondent who assessed his level
of experience in his main project as “very experienced” is not currently contributing to the
kernel.

Lastly, there is a disagreement regarding the group structure. Although formally FLUSP
has a horizontal structure, it has been pointed out by one participant that there is an implicit
hierarchy with respect to the most experienced members of each project. There is, according
to another participant, an absence of formalized responsibilities. This organization, or lack
thereof, has been blamed for a certain lack of autonomy of its members.

Chapter 4

Final Remarks

By providing a support group to its members, FLUSP decreased the learning curve
related to the ingress in a new project and the learning of the contribution process in the free
software community. Since the group was already established, its participants can exercise
a collaborative practice during its weekly activities and reunions. FLUSP was also able
to provide its most experienced members with an engaging environment where knowledge
sharing was possible. This factor can be associated with a lower dropout rate and higher
permanence in the community.

Such student groups serve as an example to show how undergraduate initiatives can have
a meaningful impact on a FLOSS project, therefore contributing to the maintenance and
expansion of the FLOSS community. We also expect this work can motivate the creation of
similar initiatives in other colleges.

By taking advantage of the lessons learned from the FLUSP experience, upcoming groups
may improve their structure and efficacy even further. Pair programming can be seen as a tool
to simplify the knowledge sharing among the group members. Internal reviewing decreases
the number of faulty patches sent to a project’s official repository, besides working to make
the reviewer more acquainted with its source code. Blog posting is advantageous as a way for
a participant to put into practice the skills they have acquired and is also useful for spreading
knowledge beyond the group’s scope. By exposing the writer’s abilities, they are also helpful
in case their author wants to apply for a job or a program, such as GSoC. Besides, the
holding of events related to FLOSS projects can stimulate the interest of external people in
the subject and potentially bring more members to the group.

Finally, this work can provide ground to the premise that FLOSS communities can use
study groups as tools to promote the FLOSS initiative and improve the retention of its
members. Further studies about this subject are encouraged as a way to better ground these
findings. It would also be interesting to analyze why some of the group’s initiatives - such
as KDD - did not have the desired outcome of engaging new contributors in the long term
in the FLOSS community, and what could be done instead to produce the desired outcome
of sustained engagement in a FLOSS project.

19

Appendix A

Questionnaire on FLUSP’s activities and
contributions to FLOSS projects

1. Profile

What is your name?
What is your age?

What is your academic training?

2. About FLUSP

How would you define FLUSP?

In your opinion, what is the importance of FLUSP?
What motivated you to participate in FLUSP?

How would you describe FLUSP’s organization /structure?
What activities does FLUSP perform?

What activities do you perform for FLUSP?

3. Your contribution profile

What FLOSS project(s) do you contribute in the context of FLUSP?

Do you contribute to any other FLOSS project in other contexts (without involv-
ing the group)? Which ones?

Did you contribute to any FLOSS project before participating in FLUSP? If so,
which ones?

From your already made contributions, how do you rate your experience level in
development in the main project you contribute to?

() Very experienced

() Moderately experienced

() Little experienced

() Inexperienced

() I don’t know/I don’t want to take a guess

What dificulties have you already experienced to develop to a FLOSS project?
How did you mitigate those difficulties?

21

22 APPENDIX A

e When you have any doubts, you usually first resort:
To FLUSP

To internet searches

To tutorials/documentation

To the project’s community

w do you feel more at ease to develop a contribution?
Individually

In a pair

In a group

() Other:

e Why?
4. Contributing through FLUSP

e Did FLUSP help you to become a FLOSS contributor? If it did, how so?
e Do you always put FLUSP’s mailing list in copy in your contributions? Why?

e Do you help your friends during the development of a contribution? If so, in what
way”?

e What is the difference to you between contributing individually and contributing
with FLUSP’s support?

e Do you usually share the FLOSS development knowledge acquired through the
group? If so, in what way?

5. Comments

e In case you want to make a comment about something that wasn’t covered by
the questions above, please share it here.

Bibliography

Corbet et al.(2005) J. Corbet, A. Rubini and G. Kroah-Hartman. Linuz Device Drivers:
Where the Kernel Meets the Hardware. O’Reilly Media. ISBN 9780596555382. Cited on p. 6

Crowston et al.(2012) Kevin Crowston, Kangning Wei, James Howison and Andrea Wig-
gins. Free/libre open-source software development. ACM Computing Surveys, 44(2):1-35.
Cited on p. 1

DiBona and Ockman(1999) C. DiBona and S. Ockman. Open Sources: Voices from the
Open Source Revolution. O’Reilly Media. ISBN 9780596553906. Cited on p. 5

Fitzgerald(2006) Brian Fitzgerald. The transformation of open source software. MIS
quarterly, paginas 587—598. Cited on p. 6

Osterlie and Jaccheri(2007) Thomas Osterlie and Letizia Jaccheri. A critical review
of software engineering research on open source software development. In Proceeding of
the 2nd AIS SIGSAND FEuropean Symposium on Systems Analysis and Design, Gdansk,
Poland. cited on p- 1

Raymond(1999) Eric Raymond. The cathedral and the bazaar. Knowledge, Technology €
Policy, 12(3)23*49 Cited on p. 6

Scacchi(2010) Walt Scacchi. The future of research in free/open source software devel-
opment. In Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research, FOSER 10, paginas 315-320, New York, NY, USA. ACM. Cited on p. 1

Seaman(1999) Carolyn B. Seaman. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering, 25(4):557-572. Cited on p. 2

Silva(2019) Jefferson de Oliveira Silva. Engagement in Open Source Software Projects via
Summer of Code Programs. PhD Thesis, University of Sao Paulo. Cited on p. 1

Tanenbaum and Woodhull(2011) A.S. Tanenbaum and A.S. Woodhull. Operating Sys-
tems Design and Implementation. Pearson Education. ISBN 9780133002058. cCited on p.
5

23

	List of Abbreviations
	List of Figures
	Introduction
	Research Design
	Organization of the capstone project

	Background
	The Linux Kernel
	The Linux Development
	The Contribution Workflow

	FLOSS at USP Group

	Discussion and Results
	FLUSP organization and principles
	The tools that support group activities
	Newcomers Training Process

	FLUSP participants on FLOSS universe
	Contributions to the Linux Kernel Project
	Becoming a Linux contributor
	The diversity of contributions
	Different profiles of contributors

	Breaking barriers with FLUSP

	Final Remarks
	Questionnaire on FLUSP's activities and contributions to FLOSS projects
	Bibliography

