
Scientific Iniciation Proposal

DeeperMatcher: using LLM for Crowd Based Requirements Engineering

Arthur Pilone

Prof. Paulo Meirelles (Advisor)

Prof. Fabio Kon (Co-Advisor)

Departamento de Ciência da Computação

Instituto de Matemática e Estat́ıstica

Universidade de São Paulo

arthurpilone@usp.br,{paulormm,kon}@ime.usp.br

Prof. Walid Maalej (International Supervisor)

University of Hamburg

walid.maalej@uni-hamburg.de

Abstract

One of the most complex challenges in ensuring software quality is assuring the

convergence of the developers’ and users’ views. Requirements Engineering studies

how this can be achieved by investigating how software requirements can be collected

and maintained. Nevertheless, it is still unclear how development teams can take ad-

vantage of the large amounts of user data found on various social media, app store

reviews, and support channels. In this study, we aim to develop and empirically in-

vestigate a Machine Learning-powered tool called DeeperMatcher, tailored for agile

software development teams to use crowd-based requirements engineering (Crow-

dRE) to aid the management of their issues and tasks. The research unfolds across

three objectives: (I) developing a reliable, maintainable, and organized ML-enabled

system; (II) leveraging advancements in natural language processing to provide an

approach for CrowdRE; and (III) applying empirical research methods for system val-

idation. Methodologically, we will incorporate a single-case mechanism experiment

with a real-world dataset from a specific project developed by our research group

and observational case studies from different projects. Our execution plan comprises

two phases, the first emphasizing the tool development and validation and the second

dedicated to extensive testing and in-depth analysis. Amidst our expected outcomes,

we list a well-structured AI-powered system, noteworthy contributions to software

and requirements engineering, and valuable insights into the evolving landscape of

machine learning in software development.

1



1. Justification

With the growing complexity of the computational systems developed since the

second half of the 20th century, it became clear that there would need to be estab-

lished values, methods, and practices to ensure (i) the usability, stability, and correct

function of software systems; (ii) that the vision development teams and end users

have for the product being developed converge; (iii) the extensibility and maintain-

ability of the software system, while still preserving items (i) and (ii). However, before

the end of the 1960s, and shortly after the creation of the first large-scale computa-

tional systems, the field of Software Engineering began to grow (Valente, 2020).

Its main intention would be to secure these three points by employing processes and

guidelines empirically consolidated by years of practice over other engineering fields.

Among the different software engineering areas, Requirements Engineering is

the one responsible for sustaining the abovementioned principles. The primary focus

is the identification and analysis of requirements. As defined in the IEEE (1990)

standard, a requirement is “a condition or capability that must be met or possessed by

a system or system component to satisfy a contract, standard, specification, or other

formally imposed documents”. On the other hand, the fundamentally subjective

nature of what makes a software product adequate to its users poses challenges to

approaches based on the principles of what we understand as “traditional software

engineering”.

Born at the turn of the century, agile software development methods emerged as

a countermovement inside software engineering, advocating for a more human and

personal approach to formulating the values and practices that guide the development

of software systems. Among the practices that summarize their principles are (i)

prioritizing constant and recurring feedback from the users and stakeholders, (ii)

separating the development period into short cycles, each with a set of tasks to be

done before its end, and (iii) the concept of writing requirements in the form of user

2



stories, which pushed developers to think about the users a given task addresses by

having each task registered as a story written by a hypothetical user describing how

and why they would use the relevant feature (Beck and Andres, 2004; Julian et al.,

2019).

Although undeniably valuable for the development team and still considered a

proper way of recording a requirement, writing user stories may not be feasible for

every software product specification over time. Moreover, the prospect of having a

customer participate and contribute to the team by writing them is often far from

what is possible in many software products. Hence, it is not rare to see teams using

other formats to keep track of the project requirements and tasks to be done. This

convenience over the process of recording and maintaining the team tasks comes with

the cost that a given requirement may not be helpful for the software users and the

risk that the tasks the development team writes and the actual needs of the product

users begin to drift apart.

This scenario may be even more challenging for smartphone apps with larger user

bases. A requirement related to a specific group can probably involve other users, but

it may never get to the development team due to the absence of direct communication

between developers and users. It is not hard to see how the problem is exacerbated

when it comes to bug and incident reporting. The vast range of operating systems,

device models, execution environments, and user contexts make the feat of accurately

predicting how a given software product behaves in every possible condition nearly

unattainable.

Amidst thousands of user reviews and comments on app stores and social media,

prioritizing which comments should be studied by the development team as starting

points for new requirements is challenging and demands an unreasonable amount

of human analysis. The prospect of tapping into the considerable amount of data

embedded in these reviews and posts on social media has been named Crowd-Based

Requirements Engineering (CrowdRE) (Groen et al., 2017; Snijders et al., 2014).

3



This approach has been studied before, especially using Machine Learning models

and Natural Language Processing (NLP) (dos Santos et al., 2019; Mekala et al., 2021;

Stanik et al., 2019), with varying scales of databases and levels of accuracy.

After selecting which user requirements are to be implemented, the team is still

supposed to register them unambiguously, correctly conveying the users’ needs and

perception of the requirements. Managing such an extensive collection of require-

ments also comes with the challenge of avoiding the replication of issues on the team

backlog, as well as dealing with tasks that may intersect, which raises the complexity

of maintaining the issue tracker (Fernández et al., 2016; Uludag et al., 2018).

Haering et al. (2021) proposed a tool called Deep Matcher that automatically

matches problem reports in app reviews to bug reports in issue trackers using ma-

chine learning methods. The initial version was a proof of concept that covered four

databases with issues and reviews written in English, pointing towards a promising

application of NPL in requirements engineering. Table 1 represents an example of

how the matches found by DeepMatcher may be represented.

Problem Report Suggested Bug Report Summary
Date: 2019-04-13
Report: android navigation bar, shown after a click,
shifts and resizes full-screen video
Date: 2018-09-27
Report: Play/pause button icon is not shifting while
pausing the audio on notification area
Date: 2013-09-16

APP: VLC
Date: 2020-05-17
Report:
So many bugs... Plays in background, but
no controls in notifications. When you tap
the app to bring up the controls, the video
is a still screen. Navigating is a pain.
Resuming forgets my place constantly.
Basically unusable

Report: [Android] On video playing the navigation
bar is not hidden on some tablets

Table 1: Example matches associating issues with bug reports (Haering et al., 2021).

Prof. Walid Maalej, from the University of Hamburg, a co-supervisor of this

research project, is a co-author of the paper mentioned above. He is an award-

winning researcher and one of the most prominent figures of the new generation in

software and requirements engineering. He has given us access to the Deep Matcher

paper replication package, and with his collaboration, we will further enhance the

4



system his group proposed.

In addition to implementing Deep Matcher as a proper free/open-source tool, we

will extend it by using the latest NLP advances, and will call it DeeperMatcher.

Based on the original approach (Haering et al., 2021), we will use machine learning

to aid agile software development teams in recording and maintaining issues and

tasks based on large amounts of user feedback. Additionally, we will analyze the

effectiveness of using these technologies on the requirement engineering processes.

2. Objectives

Our main goal is to empirically explore the feasibility of designing and implement-

ing the Deeper Matcher tool for agile software development teams to better treat large

amounts of user feedback with a Machine Learning model as the core of its archi-

tecture. The increased use of ML elements in large systems brings new challenges

for software engineering, mainly centered around assuring a reasonable standard for

the system effectiveness, accuracy, and predictability while based on a fundamentally

non-deterministic and uncertain component (Serban and Visser, 2022).

Besides studying the problem from a software architecture standpoint, we will

evaluate and validate DeeperMatcher, guaranteeing product maintainability and the

interchangeability of the models used in the tool. As the field of artificial intelligence

focused on Natural Language Processing (NLP) has received and is still receiving

significant attention in recent years, one of our objectives is to enable different Large

Language Models (LLMs) to be integrated into DeeperMatcher for classifying users

feedback and embedding bug reports. We plan to analyze DeeperMatcher’s perfor-

mance over the datasets used in the original paper (Haering et al., 2021). We also

intend to investigate the flexibility and generalization potential of the most advanced

ML models released after the original work of Haering et al. (2021).

5



3. Methodology

We will develop the DeeperMatcher in the context of the InterSCity project1,

which studies solutions at the intersection of software engineering, data science, and

distributed systems in applications such as public health care, urban mobility, and

public policy-making for future smart cities. In this context, our research group is

leading the “Bike SP” pilot project2. “Bike SP” is a program enacted by the São

Paulo city council in 2016 that would financially reward citizens who registered daily

bicycle commutes3. However, the approved law is unclear regarding how cyclists

should record their trips and how much the city would pay them for each. Thus, to

help solve these gaps, our group was asked by the Municial Secretariat for Mobility

and transportation to develop a mobile app capable of recording users’ trips and

validating whether they made them by bicycle. The application would be used in

a pilot program with hundreds of selected volunteers to aid the Bike SP program’s

planning and other public policies to incentivize cycling in São Paulo (Lima, 2023).

As the mobile app for the Bike SP pilot program is entering its testing phase, the

development team is starting to receive substantial feedback from its beta testers.

Therefore, besides being a possible source of data for us to use during DeeperMatcher

implementation, the tool could also assist the Bike SP app developers in maintaining

their issues while they test the system.

The first phase of this project consists of rewriting the DeepMatcher initial code

base and building DeeperMatcher (Section 3.1). The second phase brings a scien-

tific approach to analyze and validate DeeperMatcher (Section 3.2). We will conduct

a single-case mechanism experiment (Wieringa, 2014b), testing and validating the

DeeperMatcher using the dataset of users’ feedback and development tracking issues

from the Bike SP pilot app. Afterward, we will test DeeperMatcher further and quan-

1https://interscity.org/
2https://interscity.org/bikesp/piloto/
3https://legislacao.prefeitura.sp.gov.br/leis/lei-16547-de-21-de-setembro-de-2016

6

https://interscity.org/
https://interscity.org/bikesp/piloto/
https://legislacao.prefeitura.sp.gov.br/leis/lei-16547-de-21-de-setembro-de-2016


tify its accuracy and usefulness by conducting observational case studies (Wieringa,

2014a) with multiple datasets from other apps.

3.1.Software Development Method

We will implement the DeeperMatcher following agile software development values

and practices. We will split the time allocated to the development into 2-week-long

sprints, each with a different set of tasks and improvements to be done to the system’

current state.

We will employ a subset of the dataset originating from users’ feedback on the

beta version of the Bike SP pilot app to elaborate automated tests built to guide and

validate the project implementation. Additionally, we will use part of the data for

applying test-driven development (TDD) over the system implementation.

All code from this research project will be distributed as free/open-source soft-

ware. This way, anything created in this research project is left as a contribution to

the research in software requirements engineering and to the software development

community in general.

3.2.Research Method

In the first research phase to validate DeeperMatcher, we will carry out a single-

case mechanism experiment based on users’ feedback and issues from the Bike SP

pilot project, which will be processed and fed into the system to validate its proposed

architecture and implementation. Focusing on a single dataset, we will investigate

how the application behaves when dealing with data from a real-world context. Be-

sides validating the implementation, this approach will provide system performance

estimates, instructing DeeperMatcher’s development and evolution.

In the second phase, following the conclusion of the DeeperMatcher implementa-

tion, we will perform a couple of observational case studies to examine and analyze

7



the matches4 it generates when applied to additional datasets. Among the cases to

be studied, we include the ones already employed in the original DeepMatcher paper

to measure if and how the enhancement affects the metrics initially obtained in the

previous study (Haering et al., 2021).

We will interpret the matches found by the DeeperMatcher from the data collected

in our observational case studies. Besides measuring the frequency in which our tool

accurately finds an existing issue for a given bug report, we will also examine how

it could be used when the system cannot find a corresponding issue for a given bug

report.

4. Execution Plan

This project involves developing the DeeperMatcher and applying empirical re-

search methods for system validation: a single-case mechanism experiment and ob-

servational case studies.

To start the development of DeeperMatcher, from the replication package code

of the original DeepMatcher paper (provided by Haering et al. (2021)), we will carry

out a major refactoring. We will separate the parts used for analyzing the results and

treating its data from the ones responsible for classifying the textual feedback and

embedding and matching issues and reports. This way, we envision the delimitation

of a “core logic” for the DeeperMatcher tool, independent from the data used and

treated by the system.

Following this, we will decouple the issue and feedback collectors, making the sys-

tem extensible for new data sources. We will use the same strategy for the parts that

encapsulate the machine-learning models for classifying user feedback and embedding

issues. It is essential to decouple these components to make the system adaptable to

the change in the model, favoring DeeperMatcher’s maintainability.

4Matches from user bug reports to issues in the issue tracker.

8



Figure 1: Fundamental elements of DeeperMatcher’s architecture.

Figure 1 illustrates the main characteristics of DeeperMatcher’s architecture as

described in the previous paragraphs. In yellow and blue, we depict the issue and

feedback collectors. The central part of our figure contains the module housing the

tool’s “core logic”, which receives the data treated by the issue and feedback proces-

sors. We also represent the machine learning models used in the architecture with

colored circles to indicate that they are components that DeeperMatcher’s maintain-

ers may replace in the future.

In the meantime, we will collect, compile, and label the feedback from the Bike SP

pilot app testers in preparation for the single-case mechanism experiment. We will

conduct this experiment along with the system implementation, identifying possible

9



faults and points of improvement as they arise; thus, as the initial development phase

ends, we may validate the integrations between the DeeperMatcher components (as

illustrated in Figure 1).

As the system is expanded to house new issues and user review collectors, we plan

to implement a non-relation (NoSQL) database system responsible for adequately

providing persistence to the multi-form data collected from different sources.

In the second phase of this project, we will conduct observational case studies in

which we will test DeeperMatcher using different datasets. Besides the ones used in

the original DeepMatcher paper, we plan to select new data sources from software

products with large amounts of publicly available issues and user feedback (including

in Portuguese). Finally, we will analyze and interpret the results from the case

studies, verifying whether the resulting mechanism could be helpful for software

development teams and how so.

Activity B1 B2 B3 B4 B5 B6
System Re-Implementation • •
Addition of new data collectors • •
Single-Case Mechanism Experiment • •
Conduction of the Observational Case Studies • • •
System Persistence Extension • •
Research internship @USI • • •
Analysis of the Case Studies • •
Paper / Article Writing •

Table 2: Proposed schedule (in bimesters)

In Table 2, we detailed the proposed execution schedule as divided into bimesters,

starting on February 1st, 2024. We plan on employing our first two bimesters to

evolve the code from DeepMatcher’s proof of concept into our vision for Deeper-

Matcher.

While the first of these two bimesters will be dedicated exclusively to the sys-

tem’s development, starting in the second bimester, we will perform our single-case

mechanism experiment and conclude it before the end of the third bimester (July

10



2024). At the same time, we will extend DeeperMatcher to work with user feedback

and issues written in Portuguese and collected from new issue crawlers.

Beginning in June 2024 (By bimester 3), we will use six months to conduct our

observational case studies, and, beginning in September 2024, we will dedicate 3

months to adapting DeeperMatcher’s issue and feedback persistence modules, namely

implementing a non-relational database for storing the collected data.

It is worth noting that, as we are writing this revision to the project, a 4-month

research internship at the USI (Università della Svizzera italiana) is being considered.

Starting in September, the visit aims to bring into the project the expertise of the

professors at one of the best Software Engineering research groups in Europe. Finally,

we allocate our last bimester (December 2024 - January 2025) to analyzing the results

of the observational studies conducted in the six previous months.

5. Expected Results

According to our objectives, we expect several results from our research project.

With DeeperMatcher, we will provide a system adequately organized to house an

artificial intelligence component. The source code will be available as free/open-

source software from its first code commit, accessible to anyone who wants to study,

modify, or evolve it. As a result, we expect to leave behind a pathfinder indicating

how developers may extract the benefits of Crowd-Based Requirements Engineering

to help their issue management.

Additionally, by creating an architecture that enables the interchangeability of the

ML models used and measuring a reasonable level of the DeeperMatcher’s accuracy

when we fit it with newer models, we will have attested the feasibility and practicality

of building and utilizing such a system.

Our single-case mechanism experiment aims to methodically characterize how

DeeperMatcher generates a list of matches when provided different inputs from a

11



real-world dataset. We will understand what to expect from each system component

as we change the characteristics of the input data. Most importantly, we will verify

that DeeperMatcher works for issues and textual feedback written in Portuguese.

Finally, through our observational case studies, we expect to reproduce the results

achieved by Haering et al. (2021) with quantitative metrics comparable to or slightly

better than those observed in the original publication. Besides measuring these

differences in the Mean Average Precision and Hit Ratio of DeeperMatcher’s outputs

for DeepMatcher’s replication data, we expect similar results for other datasets, such

as the one from the Bike SP pilot app.

References

Beck, K. and Andres, C. (2004). Extreme programming explained: embrace change.

Addison-Wesley Professional.

dos Santos, R. I., Groen, E. C., and Villela, K. (2019). An overview of user feedback

classification approaches. In REFSQ Workshops.

Fernández, D. M., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetrò, A.,

Conte, T., Christiansson, M., Greer, D., Lassenius, C., Männistö, T., Nayabi, M.,

Oivo, M., Penzenstadler, B., Pfahl, D., Prikladnicki, R., Ruhe, G., Schekelmann,

A., Sen, S., Sṕınola, R. O., Tuzcu, A., de la Vara, J. L., and Wieringa, R. J.

(2016). Naming the pain in requirements engineering: Contemporary problems,

causes, and effects in practice. CoRR, abs/1611.10288.

Groen, E. C., Seyff, N., Ali, R., Dalpiaz, F., Doerr, J., Guzman, E., Hosseini, M.,

Marco, J., Oriol, M., Perini, A., and Stade, M. (2017). The crowd in requirements

engineering: The landscape and challenges. IEEE Software, 34(2):44–52.

Haering, M., Stanik, C., and Maalej, W. (2021). Automatically matching bug reports

with related app reviews. In 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE), pages 970–981.

12



IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. IEEE

Std 610.12-1990, page 62.

Julian, B., Noble, J., and Anslow, C. (2019). Agile practices in practice: Towards

a theory of agile adoption and process evolution. In Agile Processes in Software

Engineering and Extreme Programming, pages 3–18. Springer International Pub-

lishing.

Lima, A. (2023). Cycling promotion using financial incentives: A pilot design to

inform public policy in são paulo, brazil.

https://linux.ime.usp.br/~analima/mac0499/assets/pdfs/report.pdf.

Mekala, R. R., Irfan, A., Groen, E. C., Porter, A., and Lindvall, M. (2021). Classi-

fying user requirements from online feedback in small dataset environments using

deep learning. In 2021 IEEE 29th International Requirements Engineering Con-

ference (RE), pages 139–149.

Serban, A. and Visser, J. (2022). Adapting software architectures to machine learning

challenges. In 2022 IEEE International Conference on Software Analysis, Evolu-

tion and Reengineering (SANER), pages 152–163.

Snijders, R., Dalpiaz, F., Hosseini, M., Shahri, A., and Ali, R. (2014). Crowd-centric

requirements engineering. In 2014 IEEE/ACM 7th International Conference on

Utility and Cloud Computing, pages 614–615.

Stanik, C., Haering, M., and Maalej, W. (2019). Classifying multilingual user feed-

back using traditional machine learning and deep learning. In 2019 IEEE 27th In-

ternational Requirements Engineering Conference Workshops (REW), pages 220–

226.

Uludag, O., Kleehaus, M., Caprano, C., and Matthes, F. (2018). Identifying and

structuring challenges in large-scale agile development based on a structured lit-

erature review. In 2018 IEEE 22nd International Enterprise Distributed Object

Computing Conference (EDOC), pages 191–197.

Valente, M. T. (2020). Engenharia de Software Moderna.

13

https://linux.ime.usp.br/~analima/mac0499/assets/pdfs/report.pdf


Wieringa, R. J. (2014a). Observational Case Studies, pages 225–245. Springer Berlin

Heidelberg, Berlin, Heidelberg.

Wieringa, R. J. (2014b). Single-Case Mechanism Experiments, pages 247–267.

Springer Berlin Heidelberg, Berlin, Heidelberg.

14


	Justification
	Objectives
	Methodology
	Software Development Method
	Research Method

	Execution Plan
	Expected Results

