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Resumo

Arthur Pilone Maia da Silva. DeeperMatcher: Usando LLMs para engenharia de
requisitos baseada na multidão. Monografia (Bacharelado). Instituto de Matemática

e Estatística, Universidade de São Paulo, São Paulo, 2024.

Times de desenvolvimento de aplicativos populares podem receber milhares de análises de usuários

diariamente. Ao mesmo tempo, esses desenvolvedores usam canais de comunicação totalmente diferentes

para conversarem entre si, tais como os issue trackers de seus repositórios de software. Embora acessíveis

e facilmente administradas pelos desenvolvedores, o conteúdo das issues de desenvolvimento difere forte-

mente do que a maioria dos usuários escreve em suas análises. As issues podem não ter alguns dos passos

necessários para reproduzir uma falha, ou alguma perspectiva que sustentaria a importância de uma nova

funcionalidade, algo que pode estar presente em algumas das análises de usuário. Mais ainda, uma falha

específica pode ter sido descrita em poucas análises de usuário e pode não chegar ao conhecimento dos

desenvolvedores, sendo abandonada por anos na loja de aplicativos. Nós propomos uma abordagem para

complementar issues de desenvolvimento com análises pertinentes, a fim de suprimir a disparidade entre

o que os usuários escrevem em suas análises e o que os desenvolvedores mantém em suas issues. Nossa

abordagem recupera automaticamente análises de usuário com alta similaridade textual semântica (STS)

em relação ao conteúdo de uma dada issue, conforme calculada usando um grande modelo de linguagem

(LLM), e sugere análises relevantes à compreensão da issue. Nós conduzimos uma avaliação preliminar

usando dados dos projetos de software livre BikeSP e Brave, com mais de nove mil issues e 180 mil análises

de usuários. Nossos resultados comprovam o potencial da abordagem. Além de elucidar o que os usuários

pedem como funcionalidade ou reportam como falha, a informação presente nas sugestões pertinentes

mostra o caminho para uma nova e promissora maneira de se aproveitar as análises de usuário para uma

evolução consciente de aplicativos móveis.

Palavras-chave: Similaridade Textual Semântica. Issues de Desenvolvimento. Mineração de Repositórios

de Software. Mineração de Retorno de Usuários. Processamento de Linguagem Natural.





Abstract

Arthur Pilone Maia da Silva. DeeperMatcher: Using LLMs for crowd based require-
ments engineering. Capstone Project Report (Bachelor). Institute of Mathematics and

Statistics, University of São Paulo, São Paulo, 2024.

Development teams of popular mobile apps can receive thousands of user reviews daily. At the same

time, these developers communicate with each other using completely different communication channels,

such as their software repository issue tracker. Although accessible and manageable for developers, the na-

ture of the content in development issues differs starkly from what most users write about in their reviews.

Issues may lack the steps to reproduce a bug or insights justifying the priority of a new feature request,

which might be latently present in user reviews. Moreover, a specific bug might be reported by only a hand-

ful of user reviews and might go completely unnoticed for years abandoned in the app store. We propose an

approach to augment software repository issues with pertinent user reviews to bridge the gap between what

users write about in their app reviews and the issues managed by developers. Our approach automatically

retrieves user reviews with high semantic textual similarity (STS) to the issue content, computed using

a state-of-the-art large language model (LLM), and suggests reviews relevant to the developers’ grasp on

the issue. We conducted a preliminary evaluation using data from the Free/Libre/Open Source Software

projects BikeSP and Brave browser, with over 9k issues and more than 180k user comments. Our early

results testify to the potential of the approach. Besides providing insights into what users ask as a feature

or report as a bug, the information found in the pertinent matches points toward a novel and promising

way of leveraging user reviews for a concerted evolution of apps.

Keywords: Semantic Textual Similarity. Development Issues. Software Repository Mining. User Feedback

Mining. Natural Language Processing.
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Introduction

As computers became more powerful and more numerous in the second half of the 20th
century, it became evident that the human effort necessary to comprehend and maintain
the increasingly more extensive software programs grew exponentially with the size of
the system. The ever-growing number of processes and systems that depended on large
software products brought along more and more examples of the challenges associated
with organizing the components of a complex program and the possible consequences
that emerge when flawed programs cross the path of people who barely know of the
program’s existence2.

Eventually, the experts realized that there would need to be established values, methods,
and practices to ensure (i) the usability, stability, and correct function of software systems;
(ii) that the vision development teams, stakeholders, and end users have for the product
being developed converge; (iii) the extensibility and maintainability of the software system,
while still preserving items (i) and (ii). Correspondingly, before the end of the 1960s,
and shortly after the creation of the first large-scale computational systems, the field of
Software Engineering began to grow (Valente, 2020). Its main intention would be to
secure these three points by employing processes and guidelines empirically consolidated
by years of practice in other engineering fields.

However, the fundamentally subjective nature of what makes a software product
adequate to its users poses challenges to approaches based on the principles of what
we understand as “traditional software engineering”. Hence, at the turn of the century,
agile software development methods emerged as a countermovement inside software
engineering, advocating for a more human and personal approach to formulating the
values and practices that guide the development of software systems. Time has shown
that the agile way of developing products is more consistent and reliable than using some
approaches advised by “traditional software engineering” practitioners.

At the same time that the widespread adoption of the World Wide Web and the advance
of smartphones and app stores increased dramatically the number of users a medium-scale
software project might achieve, the connection with the end users, as preached by the
agile methodology, became increasingly unfeasible.

Amidst millions of user reviews and comments on app stores and social media, pri-
oritizing which comments should be studied by the development team as starting points
for new requirements is challenging and demands an unreasonable amount of human

2 See https://en.wikipedia.org/wiki/Therac-25

https://en.wikipedia.org/wiki/Therac-25
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analysis. Previous works explore classifying, understanding, and using user feedback to
support app development, but the sheer scale at play continues to present itself to software
engineers as both a curse and a blessing. While the large volume of user input constitutes a
potential source of many valuable insights rarely elicited by the experience of one specific
user but recurring in a pool of millions of messages, the overwhelming amount of useless
information poses a formidable challenge (Pagano and Maalej, 2013).

The prospect of tapping into this considerable amount of data embedded in the millions
of user reviews and posts on social media has attracted significant attention from the
software engineering research community (Groen et al., 2017; Snijders et al., 2014). This
scheme has been studied before, especially using Machine Learning models and Natural
Language Processing (NLP) (Santos et al., 2019; Stanik et al., 2019; Mekala et al., 2021),
with varying levels of accuracy. Regardless, researchers have yet to find a solution that
accomplishes the task of using this data efficiently and reliably.

Haering et al., 2021 proposed a mechanism called DeepMatcher that automatically
matches problem reports in app reviews to bug reports under the developers’ knowledge
using large language models. The initial version was only a proof of concept that covered
issues and reviews written in English. Although interesting, the mechanism proposed by
the authors is far from usable and, by itself, brings little to no value to a development
team. Still, it pointed towards a promising application of recent technology to manage
an amount of user data that was previously untreatable.

Therefore, with the purpose of better understanding whether the technology used
by Haering et al., 2021 in DeepMatcher could assist developers in leveraging the vast
amounts of data produced daily by the users of large applications, we decided to design,
implement and test DeeperMatcher. Initially built on the tracks of what the original
authors of DeepMatcher had in mind, our project is a FLOSS working tool and aims to be
a decent match for teams responsible for managing large mobile applications.

The development process covered by this essay consists of two cycles, one focusing
on studying the potential the approach has at retrieving issues relevant to a given review
and another focusing on augmenting the information from a given issue with that of
automatically identified reviews. We discuss the motivations that guided each development
cycle and the modifications made to the workflow architecture. Additionally, we conduct
a preliminary evaluation on each cycle and register the results obtained alongside the
insights they brought to the design of the approach.

Using the data from the replication package of DeepMatcher and other publicly available
large software projects (i.e., Brave3), we analyze the behavior and reliability of Deep-
erMatcher using single-case mechanism experiments and observational case studies
(Wieringa, 2014). Additionally, the code used in our analyses is available in the following
replication package: https://doi.org/10.5281/zenodo.13773021, as well as in the following
GitLab repository: https://gitlab.com/ArthurPilone/deepermatcher.

The structure of this essay is as follows: In Chapter 1 we explore the concepts related
to software development and natural language processing necessary to comprehend the

3 See https://github.com/brave/brave-browser/

https://doi.org/10.5281/zenodo.13773021
https://gitlab.com/ArthurPilone/deepermatcher
https://github.com/brave/brave-browser/
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context it finds itself in, while in Chapter 2 we explain how we use text embeddings to
measure the similarity of issues and reviews. We dedicate Chapters 3 and 4 to detailing the
motivations, implementation decisions and evaluation of our first and second development
phases, respectively. We discuss our results, limitations, previous and future work in
Chapter 5 before closing our essay on Chapter 6.
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Chapter 1

Related Concepts

It is relevant to lay a common ground for the theoretical basis of this project to assist
the understanding of the following chapters of this essay. Thus, we dedicate this chapter
to introducing or reminding the reader of the origin or definition of some concepts related
to the technologies we use and software development in general.

1.1 Software Development
Historically, we can see two clearly distinct software development philosophies: tradi-

tional software engineering and the more modern agile software development. In the follow-
ing sections, we present some of the context, motivation, and values of both philosophies.

1.1.1 Traditional Software Engineering
One of the cornerstones of the context in which this work finds itself is the area

of Software Engineering (SE). As mentioned in the Introduction, the rapidly growing
relevance and importance of software projects showed that creating and maintaining large
systems was not a trivial task. As such, in the last four decades of the millennium, the field
of Software Engineering was born. The main reasoning behind it would be to manage
the production of software as that of any complex physical product of human design,
such as that for electrical appliances or buildings. Accordingly, the first preachers from
the newly born field of study advocated for the use of methods and processes employed
in production lines with high upfront costs, little to no space for errors, and eventual
changes to the product’s design.

Among the different areas in Software Engineering, Requirements Engineering
(RE) has its primary focus on identifying and analyzing requirements. As defined in
the IEEE, 1990 standard, a requirement is “a condition or capability that must be met or

possessed by a system or system component to satisfy a contract, standard, specification,

or other formally imposed documents”. While an engine might have the specification of
achieving at least 300 horsepower at max power, a computer system might have the
requirement of supporting at least 2000 simultaneous users. Hence, in the same way that a
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machine must be designed until the smallest of screws based on its desired specifications
before its assembly commences, many thought that software systems should have their
requirements collected and their complete architecture designed before the start of their
implementation.

Although the notion of requirements as a set of specifications fits nicely for an industrial
design, the fundamentally subjective nature of what makes a software product adequate
to its users challenges the definition of requirements for complex systems. Unlike that
of a concrete product, the resistance of a system can’t be measured as a physical value,
for instance. Furthermore, the experience that the users have while using a software
system can vary dramatically depending on factors such as the features of the physical
devices used to interface with the system, environmental variables such as brightness,
sound levels, or internet connection in the place and time they access the system, and
cognitive aspects, such as the users’ speed at understanding the information given by
the system, what previous knowledge they must have before using it, or the task they
aim to achieve while using it.

1.1.2 Modern Software Development
As the turn of the century approached, the software engineering community slowly

started to conceive that the original approach proposed in the previous decades needed
significant adaptations to challenge the change of pace brought by the advent of the World
Wide Web. The rapid surge of new applications for complex systems with increasing
numbers of users only made the gap between the realities of software engineering and
traditional industrial design more apparent.

Agile Software Development

Ultimately, Agile software development methods emerged as a countermovement
inside software engineering, advocating for a more human and personal approach to
formulating the values and practices that guided the development of software systems.

The newly-born philosophy sprung from an attempt to devise a lightweight set of
values and methodologies to guide software development better than the original practices
suggested by the traditional software engineering approach. Such philosophy culminated
in the creation of the Agile Manifesto1 in 2001. Quickly gaining thousands of signatories
worldwide, the manifesto preached twelve core principles, including:

Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

[...]
The best architectures, requirements, and designs emerge from self-

organizing teams.

1 See https://agilemanifesto.org/

https://agilemanifesto.org/


1.1 | SOFTWARE DEVELOPMENT

7

Following these and other core principles, Agile development comprises a set of
methods and practices for software design, implementation, and maintenance (Beck and
Andres, 2004; Julian et al., 2019).

Tasks and Issues

The most essential of the agile practices is separating the development period into
short cycles, called sprints, each with a set collection of atomic tasks the team should
accomplish before its end. The set of tasks to be done by a team is known as its backlog,
and their status can be tracked by their position in a kanban board. In physical contexts,
such as the one show in Figure 1.1, these tasks are often associated with artifacts such as
post-its organized in a whiteboard based on their completeness or statuses.

Figure 1.1: Example of a Kanban board used by a development team.
a

a Source: https://tinyurl.com/kaban-board

Another alternative to represent these tasks is through the use of issues stored in
specific tools known as issue trackers, which intend to mimic the physical workflow of
organizing tasks on a kanban board. As an agile team goes through the requirements of
their product, they dilute each requirement into a set of tasks (or issues) the developers
will tackle during the subsequent sprints. While the use of whiteboards brings a physical
dimension to the management of issues, most teams of large-scale projects depend on
specific issue trackers to manage their requirements. Besides efficiently storing thousands
of issues at a time, these tools usually support labeling issues, assigning them to a developer
or linking them to another artifact.

Arguably more important than storing and organizing the issues and tasks to be done
is actually persisting and centralizing the code the developers write. We name as code
repository the platform that centralizes all the code developed by a team and every one
of its incremental changes. In the late 2000s and early 2010s two companies, GitHub2 and

2 See https://github.com/

https://github.com/
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Figure 1.2: GitHub issue tracker used by the development team of the Brave browser.

GitLab3 appeared serving individuals and companies alike the possibility to host their
software repositories for free, opening a new age for collaborative, free and open-sourced
software development.

As the most immediate use of issues is to track the implementation of a given piece
of code which satisfies (at least partly) a requirement, there exists a natural dependency
between the issue trackers and the code developed by the team. As such, most issue trackers
are integrated with the project’s repository. With this integration a developer might, for
instance, submit a new change to the repository in such a way that the progress of an
issue is automatically updated in the issue tracker, considerably decreasing the overhead
of manually updating issue statuses. This smaller overhead, in turn, helps keep the issue
tracker updated accordingly to the project development and boosts the function of the
tracker as a hub for visualizing and organizing the project’s progress.

Moreover, some issue trackers even support the integration of service desks
4, platforms

in which users might open a ticket to contact the developers. This allows developers to
see and treat the user ticket as an issue, which eases its integration into as a new task
in their existing workflow.

3 See https://about.gitlab.com/company/
4 See https://docs.gitlab.com/ee/user/project/service_desk/

https://about.gitlab.com/company/
https://docs.gitlab.com/ee/user/project/service_desk/
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Integrating the Users

Another big pillar of the agile methodology is the search for constant and immediate
user feedback throughout the product’s development. If the team develops a software
product for a specific client, it would be ideal to have a meeting with the client at least once
at the end of every sprint to receive feedback on the tasks competed and requirements
implemented in that sprint, so to easily adjust the planning of the following steps if
changes are necessary.

Accordingly, among the practices that summarize the twelve core agile principles is
the habit of writing requirements in the form of user stories (Cohn, 2004). In summary,
each requirement is registered in the form of a small anecdote written from the point of
view of a hypothetical target user describing what is the expected behavior of the system,
how they would interact with it and to what end. This forces the developers to keep in
mind what aspects of the requirement are most important to the users and how it improves
their experience with the software product.

Although valuable for development teams and still considered effective for capturing
user requirements, writing user stories may not be feasible for every situation and every
type of requirement. Moreover, having a skilled customer or a product owner write good
user stories is often far from reality for many software projects. It is thus common to see
teams choosing not to adopt user stories and just keep track of their requirements as tasks
to be implemented and issues to be resolved (Montgomery et al., 2024).

However, the convenience of focusing on recording development and maintenance
tasks comes with the risk that the development tasks and the actual needs of the users
may drift apart. This scenario may be even more challenging for smartphone apps with
large user bases (Pagano and Maalej, 2013). A certain requirement related to a specific
group may never get to the development team due to the absence of direct communication
between developers and users. It is not hard to see how the problem is exacerbated when
it comes to bug reporting. The vast range of operating systems, device models, execution
environments, and user contexts make the task of accurately understanding how a given
software product should behave in every possible condition nearly unattainable (Martens
and Maalej, 2019; Maalej, Biryuk, et al., 2024).

With millions of user reviews and comments on app stores and social media, prioritiz-
ing which comments should be analyzed by the development team to capture potential
requirements is challenging and demands an unreasonable amount of manual effort. It is
still unclear whether there could be a possible way to reliably use this large amount of data
instilled in reviews and posts on social media for supporting software and requirements
engineering tasks. This prospect is currently under attention of the SE and RE research
communities, and has received different names, such as Data Driven Requirements Engineer-

ing (Maalej, Nayebi, et al., 2016; S. Lim et al., 2021) and Crowd-Based Requirements
Engineering (CrowdRE) (Groen et al., 2017; Snijders et al., 2014).

The main reason why automatically treating large amounts of feedback has such
a high complexity is strictly linked to the fundamental context which it is based on —
processing natural language.
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1.2 Processing Natural Language
Natural language processing (NLP) deals with programmatically storing, ordering,

retrieving, and comparing fragments of text written in languages naturally used by humans,
such as English, Italian, Portuguese etc.. Perhaps the most recurring task involved in NLP
is retrieving documents related to a query string. Popular use cases include retrieving
web pages corresponding to a set of search terms, wiki pages covering a given concept, or
publications that satisfy a given query string. That is, search engines in general.

A common step for most (NLP) tasks is to split the input text into tokens. The length
of a token can vary significantly depending on the use case and technology used, but can
be thought to roughly correspond to a single word of the original text.

A similar task that intersects with document retrieval is semantic search. It deals
with retrieving words, sentences, or documents that not only include terms in a given
query string but also synonyms and other expressions that convey a similar meaning. By
focusing on the semantic value of the text fragments, that is, what they mean, semantic
search presents itself as a more delicate and complex task than simple term-based fragment
retrieval. While semantic search is still a task receiving constant attention on the lookout
for better approaches, the use of Term Frequency – Inverse Document Frequency (TF-IDF)
(Sammut and Webb, 2010) has dominated term-based retrieval tasks for decades.

One of the alternatives to perform semantic search is through the computation of a
semantic textual similarity (STS) value. This measure intends to capture how close
the meanings of two text fragments are.

Still to this day some NLP tasks, especially STS computation, have no definitive solution.
The unmanageable number of different combinations of terms that convey similar meanings
makes the field inheritably complex for a programmatical and discretely bound science.
Furthermore, the inherently subjective nature of communication and the varying clarity
of human-written text make tackling some NLP tasks with algorithmic approaches almost
impossible. However, recent advances in the field of artificial intelligence (i.e., the surge of
large language models) have started to bring these tasks to the realm of feasibility.

1.3 Artificial Intelligence and Large Language
Models

Initially created in the pursuit of replicating the inner workings of a brain, artificial
intelligence (AI) models differ starkly from traditional algorithms. The behavior of an
artificial intelligence model is not determined solely by a set of instructions, but by a
dataset used to train it — that is, pin down its many parameters. After a model is trained,
the output it delivers to a given input roughly boils down to a set of (mostly obscure)
mathematical computations dependant of the parameters found during training and, for
some architectures, a non-deterministic or stochastic component.

As some NLP tasks have recurringly presented themselves as challenging for traditional
algorithmic approaches, artificial intelligence has repeatedly been considered a possible
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alternative to solve them. However, the mathematically based and data-driven inner
workings of AI models force them to translate whatever text fragment they process into
a mathematical representation. As such, the input text is broken into tokens, and each
token is mathematically represented as a number or list of numbers. We can condense this
numeric representation to an embedding, a list of floating point numbers that a model
uses to store semantic information relative to a token.

Manually designing a mathematical abstraction capable of efficiently representing
the immense plethora of different meanings any given word or sentence might have is
far from feasible. Accordingly, only extensive and complex models come close to being
reliable for the most delicate NLP tasks. These models usually have hundreds of millions
or even billions of parameters and can only be trained by large organizations with plenty
of resources. Recently, they have been categorized under the name of large language
models (LLMs)

Typical LLMs are based on the Transformer architecture (Vaswani et al., 2017), which
promotes the exchange of information between embeddings of tokens from a single string.
This interaction is heavily connected to the concept of attention (Kim et al., 2017) and is the
basic idea behind most recent advances in NLP. As the models process text, the embedding
of a token is influenced by the embeddings of its neighboring tokens, similar to how the
meaning of a noun is influenced by the adjectives surrounding it. At the encoder output,
each embedding carries information that reflects the token context. These final embeddings
can be called contextualized embeddings. Every LLM has a maximum number of tokens
a single input can have, which we call its context size.
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Chapter 2

Using Text Embeddings

As the goal of the approach is to fuse the knowledge embedded in issue trackers
with that found in user reviews, its core mechanic trivially lies in finding pairs of issues
and reviews that concern the same bug, feature, or context in general. Development
teams that receive large amounts of user feedback should be able to use our approach to
automatically identify what issues in their issue tracker a user review may correspond to
and vice-versa. We can understand this mechanic as a search of pairs with high semantic
textual similarity (STS).1

As seen in Section 1.3, LLMs naturally produce embeddings as they process and encode
text. These embeddings have a key property that is fundamental to our goal, and imagining
them as vectors in an arbitrary vector space is of great help in perceiving it. As they
strongly correlate with the meanings of each token (Jiao and Zhang, 2021; Ethayarajh
et al., 2019; Mikolov et al., 2013), we can try to measure the semantic similarity of
two texts by the proximity between their embeddings in their high-dimensional
vector space. This insight bases the DeepMatcher proof of concept of Haering et al., 2021
and allows us to measure the STS of two text fragments by using the distance between
their contextualized embeddings. We illustrate the essential steps to computing the STS
value in Figure 2.1

Therefore, the system we propose uses the contextualized embeddings created by LLMs
to measure the similarity of user reviews and development issues and suggest matching
pairs that point to the same topic. Since the metric used for computing the distance between
embeddings is not a crucial factor of the approach, it is subject to change, and the system
should support different similarity thresholds. However, our implementation follows the
original DeepMatcher proof of concept and uses cosine similarity2.

Before presenting the matches with the highest similarity to each issue or review
(i.e., relevant matches), our approach uses an arbitrary similarity threshold (𝜎 ) to filter
only pertinent matches. Non-pertinent high-ranking matches contain reviews only partly
related to the issue and other false positives. The approach retrieves the most pertinent

1 See Section 1.2
2 See https://en.wikipedia.org/wiki/Cosine_similarity

https://en.wikipedia.org/wiki/Cosine_similarity
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Issue Review
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Figure 2.1: Mechanism used to measure the STS between issue and reviews.

matches for each issue or review and presents them to the developer.

It is noteworthy that not all pertinent matches contain enough new information
to enhance comprehension of the corresponding pair. Accordingly, we define as useful

matches those that are pertinent to the issue or review it corresponds to and augment it
by eliciting new insights or providing additional information.

A guiding principle of our approach is to support the requirements engineering process
while maintaining a human in the loop (Andersen and Maalej, 2024). While leveraging
LLMs, it is still important that a competent developer reviews the suggestions given by
our workflow to mitigate the risk of fully relying on the inherently imperfect nature of
artificial intelligence. Implementations and future extensions to our architecture should
be cautious to avoid introducing imprecise results that could jeopardize the development
of software products and their users.
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Chapter 3

Matching Multilingual Reviews

For the first development cycle of the workflow, we focused on implementing a mech-
anism to retrieve issues similar to a single review. The workflow could also repeat the
process for a collection of reviews saved in a specific format. We use this chapter to bring
up the motivations for this use-case of the tool, the decisions we made implementing it,
our preliminary evaluation, and its results.

3.1 Motivation
In addition to the challenges brought by the overwhelming number of reviews, the

language disparity between user reviews and the technical writing of developers poses
a formidable hurdle for CrowdRE. Apart from the differences in the language used, it is
common to see critical information missing in the user reports, such as app version or
hardware model (Martens and Maalej, 2019; Zimmermann et al., 2010). An approach
that automatically matches reviews and issues could aid developers seeking to understand
better the problems and requests users describe in their reviews.

Being the first to propose using text embeddings to match user reviews with issues,
the work of Haering et al., 2021 undoubtedly serves as a cornerstone for possible new
applications of LLMs for requirements and software engineering. Besides its novelty and
relevance, their proof of concept achieved a noteworthy precision that merits the approach
with further study.

Although intriguing, the prospect of matching reviews to issues, by itself, brings little
value to the software development process. Only a complete workflow built on top of
the proof of concept of DeepMatcher could leverage its strengths to support software
evolution and maintenance. An extensive software system is necessary to involve the
artifact matching mechanism with the steps of data collection, treatment, storage, and
presentation.

When a complete and reliable workflow matches a user feedback item to a bug report
from the issue tracker, the developers should be confident that the user is reporting
something they already know exists. Moreover, the issues matched to a bug report should
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help the developers identify which might be the probable cause of the problem the user
is reporting.

Far from being a negative result, the absence of pertinent matches should be correctly
treated by the approach. Relevant reviews with no matching issue could point to a latent
bug in the case of a crash report, for instance, or a suggestion previously unheard of, in
the case of a request. When the approach finds no matching issue for a group of reviews,
it should present them to the developers. Then, they might decide whether a new bug
or feature request is latently present in the reviews.

3.2 Implementation
Figure 3.1 depicts the main components of our approach that matches issues to a given

review. A guiding principle in our design is to give developers the flexibility to switch
and modify components that are likely to change due to rapidly evolving NLP techniques
or specific team preferences.

Figure 3.1: Fundamental components of the approach for matching issues to a given review.

As we’re proposing a complete workflow surrounding the suggestion of pertinent
matches, our approach wouldn’t be complete if it didn’t involve collecting the required
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data. Therefore, the first components of the workflow are responsible for collecting the
issues and reviews related to the desired app. These components interact with external
APIs and crawlers to gather issue and review data. It is a high priority that they follow a
straightforward interface, ensuring that future maintainers can easily implement classes
to extract data from new sources.

For the first development cycle, we included an issue collector for public GitLab
repositories besides stubs for other crawlers and collectors inherited and adapted from the
DeepMatcher replication package. We initially chose GitLab due to its widespread adoption
for hosting FLOSS projects and because it hosts the sample project used for our preliminary
evaluation. We already anticipated implementing extensions for these components in the
near future, as would eventually happen for the second development phase.

In general, the classes used for manipulating issues and reviews should also be agnostic
to the specific project analyzed to ensure high generalizability. The choice of the repository
or issue-tracking system developers use should not directly affect the workflow behavior.
It is equally desirable that the app store used to publish the app is unimportant to the
remainder of the approach. We could also extrapolate the notion of an app review to work
with generic ‘user comments’ regardless of where the user feedback comes from.

As for this phase we were interested in supporting artifacts in languages other than
English, we implemented a simple text-translator component using the googletrans
API, which is built on Google Translate. This component can translate text between any
two languages supported by Google’s API and was used to translate issues and reviews
to English. The issues were translated during collection and user reviews after they are
entered in the command-line interface.

Before embedding user reviews, a team of developers may choose to filter those that
might be irrelevant (Stanik et al., 2019) or do not correspond to any of the issue types
maintained in the repository. For instance, the team might not be interested in reviews
requesting new features or simply praising the app. Accordingly, our first implementation
included a component for classifying user feedback (Maalej, Biryuk, et al., 2024). We
used the classifier from Stanik et al. (2019) to allow classifying user reviews into three
classes: “Irrelevant”, “Feature Request”, or “Bug Report”. Using their replication package,
we trained a simple classifier built on the DistilBERT (Sanh et al., 2019) model from the
Transformers Python library.

The text embedder is the part of the system responsible for receiving a text fragment
(i.e, a review or an issue) and returning a single embedding used to compare it to other
text fragments. Following the approach described in Chapter 2, we provide the text to an
LLM and use the contextualized embeddings it computes to generate a single embedding
for the given string. The system creates an embedding for each review and developer issue.
During this first development phase, we follow the findings from Haering et al., 2021
and use only the issue titles for textual embedding, as they have been shown to adequately
summarize the issue content. As this component relies heavily on the specific LLM used,
our architecture also allows for changing it according to the project’s needs.

During this cycle, we implemented two text embedding approaches, the first mirroring
that of DeepMatcher and illustrated in Figure 3.2. We feed the input text to a DistilBERT
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model, which tokenizes it and generates a numeric embedding for each token. The model
adjusts each token’s embedding based on the embeddings of neighboring tokens, so that
every embedding also carries information about the context in which the token appears.
Next, we use the SpaCy (Honnibal et al., 2020) part-of-speech (POS) tagger to identify
tokens related to nouns and use the pytokenizations module to align the tokens from
the SpaCy and DistilBERT models. Finally, we collect the contextualized embeddings
generated by DistilBERT for the tokens that the SpaCy model identified as nouns. To
create a single embedding for the entire text, we compute the average of all embeddings
after the noun filtering.

Figure 3.2: Overview of the embedding process of DeepMatcher. Adapted from (Haering et al.,

2021).

The second embedding approach uses the SentenceTransformers (Reimers and
Gurevych, 2019) Python library. The model, “all-MiniLM-L6-v2,” and the library are
both designed to compute a single meaningful embedding for a given text string, thus
providing an equivalent approach to the text embedding process used in DeepMatcher .

After the embeddings have been computed, we use the cosine similarity to quantify the
similarity between issue and review embeddings. The system presents the user with the
issues with the titles most similar to the given review. The user may specify a similarity
threshold, and the number of matches DeeperMatcher should suggest for each user
review.

3.3 Evaluation
Our evaluation for the first development cycle investigated how well the implementa-

tion worked and identified potential areas for improvement. We focused on answering
the following question:

• How reliable are the matches suggested by DeeperMatcher for English and other
languages?

DeeperMatcher builds upon the DeepMatcher proof of concept. Therefore, it is ex-
pected that DeeperMatcher functions properly with the issues and reviews used to vali-
date the original proof. A fundamental principle in the development of DeeperMatcher
was to ensure its applicability to data compatible with DeepMatcher .

Using the command-line interface of DeeperMatcher, it was easy to verify that our
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architecture produces matches equivalent to those from the DeepMatcher proof of concept.
Figure 3.3 illustrates an example where DeeperMatcher results coincide with those from
DeepMatcher . We anticipate that the text embedding generation in DeeperMatcher will
improve and be easily adjustable. Therefore, our evaluation did not focus on the direct
characteristics of the numeric values created for the text embeddings. Instead, we focused
on assessing the reliability of DeeperMatcher as a tool.

Figure 3.3: Screenshot of matches identified by DeeperMatcher when prompted with a review from

Table III of DeepMatcher

3.3.1 Data Acquisition
To compare the performance of DeeperMatcher with its predecessor, we used the

same data that was used to evaluate DeepMatcher . This allows us to observe changes in the
matches suggested by both systems. We utilized data from Haering et al. (2021), which
includes English-written issues and reviews from two large-scale FLOSS projects: the
VLC media player and the Signal messaging app. We selected data from these projects
for our comparison.

Additionally, to evaluate the reliability of DeeperMatcher with data in languages
other than English, we collected 574 issues and 69 user reviews in Brazilian Portuguese
from the medium-scale project BikeSP (Pilone et al., 2024). The BikeSP app developers
manually associated each review with the corresponding issue when the user comment
referred to something identifiable solely by its text. Out of the 69 reviews, only 23 had a
corresponding development issue. The replication package referred to in the introduction1

also includes the reviews and issues from this project.

3.3.2 Evaluation Methodology
First, we tested whether the text embedder implementation derived from DeepMatcher

produced results equivalent to those of the original prototype. We provided 100 randomly

1 See https://doi.org/10.5281/zenodo.13773021

https://doi.org/10.5281/zenodo.13773021
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selected user reviews from the Signal Messenger app data to DeeperMatcher and verified
if the three issues suggested by the tool matched those listed by DeepMatcher for the
same input.

Next, we focused on the main part of our evaluation. We conducted a single-case
mechanism experiment (Wieringa, 2014) to study how DeeperMatcher performed on
data from the BikeSP and VLC projects and how variations in input affected the results.
Using the command-line interface (CLI) of DeeperMatcher, we set the source of issues
to the repository for the desired project and instructed the tool to translate user feedback
from Brazilian Portuguese to English. We also disabled the minimum similarity threshold
and configured the system to provide five candidates for matching issues for each review.

We entered the reviews one by one and analyzed the results individually. For reviews
where the Brazilian developers identified a matching issue, we counted how frequently
DeeperMatcher listed the issue the developers had in mind. This procedure was repeated
twice for each user review from the Brazilian project: first using the text embedding
method from DeepMatcher and then using our newer text embedding method based on
SentenceTransformers.

Finally, we conducted a qualitative analysis by selecting issues from the VLC and BikeSP
projects and comparing the results using newly created reviews. We observed how the
matches suggested by DeeperMatcher varied with different text embedding methods.

3.4 Results
As mentioned in Section 3.3, the evaluation for the first development cycle was split

into two experiments: one quantitative and another qualitative.

3.4.1 Quantitative Results
Our test suite confirmed that our implementation was consistent with the original

proof of concept from which it was derived. For all 100 reviews sampled from the Signal
app data, DeeperMatcher consistently suggested the same three issues as DeepMatcher .

However, when testing the text embedding method derived from DeepMatcher with the
BikeSP dataset, DeeperMatcher struggled with most reviews. Out of 23 reviews where
the Brazilian developers had identified a matching issue, only three (13.0%) were included
by DeeperMatcher in its list of the five most similar issues. In these cases, the mean
similarity value for the correct issue was 81%, with two issues listed as the 5th most similar
and one as the 2nd most relevant.

In contrast, results improved significantly with the newer embedding method, as seen
in Figure 3.4. Using the LLM from the SentenceTransformers library, DeeperMatcher
correctly suggested the issue for 13 out of 23 (56.5%) reviews. Notably, most of these matches
had a similarity value of less than 80%, indicating effective but modest alignment.

These results demonstrate that the accuracy of matches was highly dependent on the
text embedding method used. They also suggest that further improvements to Deeper-
Matcher were needed to achieve higher prediction reliability.
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Figure 3.4: Number of ground-truth matches found by the two embedding methods.

3.4.2 Qualitative Results
We noted and investigated some interesting patterns as we experimented with the em-

bedding method inspired by DeepMatcher . Although many suggestions did not correspond
exactly to the issue representing the implementation of a new feature, they often included
issues describing fixes or extensions related to the feature. For instance, as illustrated in
Figure 3.5, DeeperMatcher did not identify the issue describing the creation of a new
screen for the app. However, it suggested another issue with high similarity (86%) that
described a problem with the screen.

Figure 3.5: Suggested issues for a review requesting a new app screen: Although the issue related to

the creation of the new screen is not listed, the first suggested match is a fix for a problem with the

existing screen.

Furthermore, we observed that the original text embedding method performed poorly
when user reviews were considerably longer than the corresponding issue summary. The ad-
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ditional text created noise that interfered with its contextualized embedding and increased
the distance to the embedding of the related issue.

To analyze the relationship between feedback length and accuracy of the match, we
experimented with forging user reviews of different lengths describing requests and reports
for problems present in the issue database. For the issue “Impedir início de viagem se
economia de bateria estiver ligada” [“Stop users from starting a trip if the battery saver
is on”], the review “Não existe uma maneira de impedir que eu inicie uma viagem se eu
estiver com economia de bateria?” [“Isn’t there a way to stop me from starting a trip
if I have the battery saver on?”] led to match a with an 83.1% similarity score, but “Por
que não me impedem de iniciar uma viagem se sabem que eu estou com economia de
bateria?” [“Why don’t they stop me from starting a trip if they know I have the battery
saver on?”] did not lead to a satisfying match.

Surprisingly, this problem was not exclusive to translated issues. In the VLC dataset,
we observed that the issue “Audio cuts off on Android” was the third suggestion Deeper-
Matcher provided when prompted with the review “The audio keeps cutting off,” with
an 80% similarity rating. However, altering the review text to “I don’t understand why
the audio keeps getting cut off” caused DeeperMatcher not to list the corresponding
issue among the first ten matches.

Repeating these two tests with the newer embedding method, we observed signs of
improvement. Although the examples in Portuguese yielded the same results for the Sen-
tenceTransformers embedder, we were unable to create a user review containing both
“audio” and “cuts off” without DeeperMatcher suggesting “Audio cuts off on Android”
as a matching issue.

Our evaluation showed that DeeperMatcher was still unreliable at the end of the
first development cycle. Further improvements were necessary before the tool could
be applied in practice. It appears that the older text embedding approach performed
poorly with the Brazilian Portuguese data, failing to identify the relevant issues manually
identified by the developers. Additionally, we identified a new potential point of failure
in how DeeperMatcher handles longer user reviews.

3.5 Preliminary Discussion
From the preliminary evaluation of our first development cycle we realized that several

possible improvements to DeeperMatcher should be explored before it could deliver
reliable matches for any project in any language. Our results were somewhat less favorable
than those reported by Haering et al. (2021). However, this does not contradict the
findings from previous work, nor does it necessarily indicate degraded performance with
the new system architecture. Nevertheless, we reflected on our evaluation results to identify
potential improvement points for DeeperMatcher and its architecture.

First, our methodology differed from that used to evaluate the DeepMatcher proof of
concept. While its authors focused primarily on identifying matches with bug reports, we
expanded the scope to include reviews and issues related to new features. Additionally,
our evaluation method diverged critically from DeepMatcher’s approach. By having access



3.5 | PRELIMINARY DISCUSSION

23

to the development team, we collected precise information on which issues were created
in response to each user review. This valuable data allowed us to conduct a more rigor-
ous evaluation. Instead of merely counting matches considered relevant by coders, we
quantified exact matches identified by individuals actively involved in the project.

Additionally, we reflected on the differences between the new data we used and the
datasets used for the DeepMatcher evaluation. Setting aside the language aspect, the project
analyzed in our study was critically distinct from those in the DeepMatcher evaluation.
Although the number of issues from the Bike SP project was comparable to that of the
VLC project, the issues from the Brazilian team included not only feature requests and bug
reports but also management tasks. Moreover, these issues were frequently interrelated,
as features implemented by the team were often expanded or require new fixes. This high
interconnectivity increased the similarity among different issues in the repository, making
it challenging for the review embeddings to be distinctly closer to a single issue.

Therefore, we argue that DeeperMatcher can exhibit variable performance depending
on the issue repository. Implementing additional pre-processing or pre-selection steps
between issue collection and its use for suggestions may be crucial for achieving more
accurate matches.

Improvement 1

It might be necessary to cluster issues based on the common features they refer
to or to exclude issues that might be excessively technical or irrelevant to
what users can review. This step could be achieved through manual filtering by the
development team (e.g., by adding an additional issue field) or by integrating a new
dedicated component into the architecture of DeeperMatcher.

When checking the influence of review length on the resulting text embedding, we
observe a limitation inherent to contextualized embeddings and LLMs in general. As
newer and more powerful LLMs are developed, their high-dimensional textual embeddings
tend to improve the matching metrics significantly. The improvement in results after we
changed the text embedding highlights how more recent embedders can mitigate this
problem. Therefore, we conclude that constantly updating the models used for the text
embedding process should enhance the matching performance.

Improvement 2

Switching DistilBERT for the original BERT or a larger model like Meta’s Llama3
should be a straightforward upgrade due to our proposed architecture. Additionally,
leveraging our system’s adaptability to include LLMs specifically built for cluster-
ing similar texts, such as those from SentenceTransformers, can further improve
the text embedding process.

Another way to mitigate the problem with imprecise embeddings in longer texts is to
add a pre-processing step before the embedding process. The goal would be to select only
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the most relevant parts of the review or issue text, thereby preemptively de-noising the text.

Improvement 3

Using another review processing component (Maalej, Biryuk, et al., 2024), one might
delineate the most essential parts of each review. Alternatively, a review process-
ing component could cluster reviews or issues before DeeperMatcher searches
for matches.

Unsurprisingly, translating the input text before creating the embedding negatively
impacts the matching performance. The translation process can introduce slight changes
in meaning, as different nuances may be ignored or lost. Feeding longer text entries to the
translator increases the likelihood of these linguistic losses affecting the embedding. The
added noise from translations also contributed to why DeeperMatcher struggled with
the Brazilian Portuguese dataset. In addition to being in a different language, our reviews
were, on average, longer than those in the DeepMatcher evaluation dataset, averaging 38
words per review compared to 33 in the original dataset (Haering et al., 2021).

Improvement 4

By incorporating text embedding methods that work directly with the lan-
guages used by developers and their users, such as Brazilian Portuguese in our
sample project, the need for a text translator component could be eliminated. Reducing
this complexity might enhance the performance of DeeperMatcher.

When studying the results with our approach, clear evidence supports one of our
core design choices: many identified improvements could be implemented without major
restructuring of DeeperMatcher, thanks to the easy interoperability of its fundamental
components, particularly the text translator and the text embedder.
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Although the evaluation results for the first development phase were less than ideal,
they still showed that the approach was improving on top of the proof of concept of
Haering et al., 2021. By including issues and reviews in multiple languages in the Deeper-
Matcher’s domain, we dramatically increased the scope in which we tested the mechanism.
However, the results of the rest of the evaluation revealed that there was plenty of room
for improvement in the monolingual application of the approach.

Taking a step back, we realized there was a completely different use case for the mech-
anism we were developing, yet not so technically distant from what the implementation
was doing — retrieving reviews relevant to a given issue instead of searching for issues
similar to a given review. Even restricting ourselves to only using issues and reviews in
English, our new use for the workflow would be a significant contribution on top of the
original DeepMatcher proof of concept.

4.1 Motivation
Although accessible and manageable for developers, the nature of the content in their

issue trackers differs starkly from what most users write about in their reviews. Issues
may lack the steps to reproduce a bug or insights justifying the priority of a new feature
request, which might be barely recurring in user reviews. Moreover, a specific bug might
be reported by only a handful of user reviews and might go completely unnoticed for
years abandoned in the app store.

To enhance the information available to developers with the users’ perspective, some
teams openly expose users to their backlogs by integrating service desks into their work-
flows. Other teams encourage users to file inquiries directly on their issue trackers, often
with a high technical entry barrier. The biggest disadvantage of these solutions is that they
ignore the immense amount of reviews that users are often willing to collectively provide
for a popular app in the form of tweets or reviews, which are commonly left to be forsaken.

Once pertinent reviews are promptly available to developers, they might augment
the issue they are working on with details it might lack. For example, for a bug-fixing
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task, reviews might provide additional information for a specific software and hardware
configuration (Zimmermann et al., 2010). Similarly, a feature request (Herzig et al., 2013)
could benefit from insights directly from the intended audience.

When the approach matches highly pertinent reviews to a given issue, they should be
presented to the developer appropriately to support their comprehension of the studied
issue. When analyzing an issue related to a bug, the developer should be able to use
the information given by the system as a basis to identify for how long the bug has
been occurring, as well as more details on the context in which it appears, including
causes, steps to reproduce and software and hardware configurations common to the
users affected by the problem.

Alternatively, the date and number of pertinent reviews the system matches to an issue
describing a new feature should help the developer quantify the persistency and strength
of the community’s desire for that feature. The system should also help the developers
identify possible suggestions and preferences in the content of the pertinent reviews,
guiding the choices they make while implementing it.

4.2 Updates to the Implementation
Most of the system architecture was left unchanged from the first implementation

cycle. We dedicate this section to discussing the modifications made for the second de-
velopment phase.

In Figure 4.1 we show an overview of the fundamental steps our revised approach uses
to achieve the goal of augmenting the information in issues with reviews.

Issues

Issue
Cleaning 

Reviews

Compute 
Embeddings

Compute 

Matches

Pertinent

Reviews

Augmented
Issues

Figure 4.1: Fundamental components of the revised approach.

One of the crucial changes made is the inclusion of the issue bodies in the embedding
process. While the findings of Haering et al., 2021 showed that the issue titles were
efficient at summarizing their contents, it is undeniable that by ignoring the information
in the issue bodies, some details on the context are eventually lost. Considering that we
chose to use a newer LLM with a larger context size in the second development phase,
we decided to include the issue bodies in the embedding.

As discussed after our intermediary evaluation, switching the LLM used for computing
the text embeddings could have a meaningful impact on the pertinence of the matches
suggested. Besides, a model with a larger context size could also strengthen the approach.
We assumed that such a newer model could encode longer text fragments without the
introduction of unwanted noise while still producing an embedding that satisfactorily
captured all aspects of the issue context.
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Therefore, we decided to improve the approach by leveraging the jina-embeddings-v3
(Sturua et al., 2024) model, a multi-lingual model based on XLM-RoBERTa (Conneau
et al., 2020), currently ranking as the second best model in the STS task on the MTEB
benchmark (Muennighoff et al., 2023). We chose jina-embeddings-v3 instead of the
highest ranked model (bilingual-embedding-large1) because of its longer context
length, capable of embedding issue bodies or even whole discussions with up to 8,194
tokens, and due to its multi-lingual capabilities, not being restricted to English or French,
to explore potential benefits for the different languages used by users and developers. Just
like the SentenceTransformers model used in the first cycle, jina-embeddings-v3
also produces a single embedding for the whole input text.

Following the results from the first evaluation, it was clear that it might be necessary
to filter issues before matching. Accordingly, the new approach allows issues pre-filtering
based on specific parameters such as issue labels and tags. We gather their titles and bodies
and perform a textual cleaning step. We remove markdown syntax elements, including
attachments and typesetting marks (e.g., bold, italics). Besides shortening the content for
the embedding context, this step reduces spurious semantic similarities due to recurring
patterns in the markdown syntax.

On the other hand, we set aside the review classification and text translation com-
ponents for the second development cycle. We decided to focus only on English-written
issues and reviews to evaluate the approach later without possible interferences caused by
the translation processes. Still to reduce the complexity of the approach to focus on the
STS-based retrieval, we decided not to filter reviews for the second phase of the project.

From a technical point of view, an essential improvement to the previous implementa-
tion was the introduction of checkpoints for persisting embeddings and matches between
program executions. As the time taken to compute all embeddings grows significantly
with the project popularity (number of reviews) and development history (issues), storing
them considerably decreases the approach’s computational cost. Furthermore, the cost
of computing the similarity between each possible pair of issue and review is even more
sensitive to changes in the project size. For a project with 𝑚 issues and 𝑛 reviews, the
computational cost for measuring the STS for all pairs is 𝑂(𝑚𝑛); that is, for a project with
2 million reviews, every new issue in the project reflects on 2 million new comparisons
between embeddings. Then, it is only natural that the implementation stores the similarity
values computed and matches identified.

However, the most significant change to the approach is the way in which it retrieves
matches. As our focus shifted to augmenting issues with pertinent reviews, we inverted
the search direction for matching pairs. Instead of looking for issues matching a given
review, the system would now retrieve the reviews most similar to a given issue.

4.3 Preparing the Case Study
For the end of the second development cycle, we decided to focus on evaluating the

‘quality’ of the suggestions brought up by the approach — that is, how frequently they

1 See https://tinyurl.com/bilingual-embs

https://tinyurl.com/bilingual-embs
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are relevant and how often the reviews suggested have new information absent on the
issue content. To that end, we conduct a case study with the Brave browser Android app
2, a popular FLOSS application with more than 100 million downloads on the Google
Play store.3 We extracted the most pertinent matches our revised approach suggests and
conducted a preliminary qualitative analysis to evaluate how useful the suggestions are
in augmenting the matched issues.

We collected 9.8k issues and 184k reviews written in English in the United States
region. Brave’s maintainers use the same GitHub repository for different target operating
systems (Android, iOS, Linux, macOS, Windows), so we collected only issues with the
OS:Android label. After removing the tag [Android] from issue titles, we applied the
pre-processing steps explained in Section 4.2. We looked for an appropriate value for 𝜎
as we analyzed the distribution of issues augmented with at least one match for different
similarity thresholds (see Figure 4.2).

Figure 4.2: Number of issues augmented for 𝜎 ≥ 0.6.

Starting with a 𝜎 similarity threshold of 0.6, our approach would suggest 35 million rel-
evant matches, with at least one match for 9,637 issues (98.2% of all issues). Manual analysis
of a subset of suggested reviews shows low pertinence with such a conservative threshold.

We further restricted matches based on the threshold to focus on pertinent matches
for at least a handful of issues. After experimentation, we settled with 𝜎 = 0.8. That
left us with 7,969 matches that augment 1,359 issues (13.8% of the initial sample) with
at least one pertinent match.

To validate whether the reviews with pertinent matches can be useful for augmenting
the information present in an issue, we performed a qualitative analysis on the 100 issues
with the highest top-1 relevance. Sorting matches by decreasing relevance, we include the
first 100 unique issues matched alongside their 5 most relevant matches.

4.4 Case Study Results
Out of the 100 issues analyzed, only 10 were matched to irrelevant or non-pertinent

reviews, mostly occurring for unhelpful or shallow issue contents. All the other 90 issues

2 See https://github.com/brave/brave-browser
3 See https://play.google.com/store/apps/details?id=com.brave.browser&hl=en-US

https://github.com/brave/brave-browser
https://play.google.com/store/apps/details?id=com.brave.browser&hl=en-US
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had at least one suggestion pertinent to their contexts, of which 43 had 4 or 5 relevant
suggestions.

We present two examples with their top-3 scoring matching reviews to show that
they are not only pertinent but also useful as they add meaningful information for the
developers.

4.4.1 A Prematurely Closed Bug Report
In Figure 4.3 we show the matches for issue #29130.4

Continous crashing while using search bar ... [#29130]

  - Use google as default search engine in settings
  - perform any search on brave
  - try clicking search bar of google.com search engine to change the query
  - immefiately [Ed.: original typo] brave will crash

[...] I'm searching things 
and images, but 
sometimes (almost 
everytime) I click on 
some search bars etc 
and my Brave shuts 
down [...]

I'm facing a big issue, the 
app crashs 4 times out of 
10 whenever i click on a 
search bar in any 
website, it's a very 
terrible experience for 
me. [...] 

[...] I uninstalled and 
reinstalled the browser 
and the problem still 
persists. Whenever I hit 
the text box on search or 
anything, the browser 
force closes. [...]

01/240.837 03/240.873 08/240.835

Created on 03/23 Closed on 05/24

03/23 09/23 03/24 09/24

Issue Lifetime

Figure 4.3: Issue #29130 (Bug Report). Lifetime and Top-3 Relevant Reviews.

This bug report describes the repeating occurrences of crashes after the users tap
a search bar. The top three matches are pertinent to the issue, as they all mention the
browser crashing after interacting with search bars. The author of the oldest matching
review mentions that the problem also happens for other text input fields, not only search
bars. This information is missing from the issue text and discussion, hinting at a potentially
latent related bug. Considering that the issue was closed 14 months after it was opened,
for being stale, the temporal distribution of the matching reviews is interesting.

The first review appears 10 months after the issue was opened, yet the occurrence
of crashes for other text input fields is missing in the issue contents and discussion. The
second review in order of time, and highest ranking, reports the problem 3 weeks before
the issue was closed. The third match found by our approach reports the occurrence
of crashes related to search bars 4 months after the issue was closed, also mentioning
searching images as causing crashes.

4 See https://github.com/brave/brave-browser/issues/29130

https://github.com/brave/brave-browser/issues/29130
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The user tried uninstalling and reinstalling the app, thus implying having the most
up-to-date version, letting the developers infer that the bug is still present in that newer
version, at least for some hardware, software, and OS configurations.

4.4.2 A Frequently Requested Feature
In Figure 4.4 we see the issue #25863.5

[...] Enable "Allow app 
links to open in apps 
outside of Brave" They 
should enable that 
option by default, it also 
confused me [...]

[...] there's no option to 
change what app to open 
links with. Changing it 
from the phone's settings 
does not override brave's 
in built, forced settings.

Could you please add a 
toggle on/off feature like 
in Firefox to prevent 
websites from opening 
apps (Open Links in App)?
[...]

01/220.803 02/220.809 08/230.874

01/22 07/22 01/23 07/23

Add setting for blocking Android app links  [#25863]

iOS already has a setting to allow block universal links from opening in 
external apps. We should bring over this feature to Android. universal 
links are called app links on Android. [...] 

Created on 10/22 Closed on 06/23

Issue Lifetime

Figure 4.4: Issue #25863 (Feature Request). Lifetime and Top-3 Relevant Reviews.

This contains a feature implementation proposal for the option to toggle on or off
the behavior of opening links with external apps (actually, a feature already present in
Brave for the iOS operating system).

All top-scoring relevant reviews revolve around the expected behavior for opening
links in external apps, the core topic of the issue. Each review brings a new insight into
how or why the developers should implement the feature. The oldest matching review
proves that the feature has been desired for more than 10 months before the issue was
opened. The second one brings a concern about the configurability of the default external
apps and a misconfiguration, overriding global phone settings. Finally, the most recent
review asks for a possible change in the behavior of the feature after the developers have
already implemented it, questioning the default value chosen for the feature. The matched
reviews come from different moments in time, all outside the lifetime of the issue, each one
providing useful information to inform and affect the development process and decisions.

5 See https://github.com/brave/brave-browser/issues/25863

https://github.com/brave/brave-browser/issues/25863
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Chapter 5

Discussion

Even though we did not manage to test and evaluate DeeperMatcher alongside devel-
opers of big mobile apps, both our preliminary evaluations validate and guide our design
choices. Our results indicate the potential that a complete workflow of programmatical STS-
based artifact matching retrieval could support crowd-based requirements engineering.

Although the results from the first evaluation cycle were not as quantitatively attractive
as those of the second, they are still of great value. Far from suggesting that the approach
can not be applied to match issues to a review, the results were essential for providing
insights into how we could keep developing and testing the workflow we proposed.

Insight 1

The experimentation we did on the first development cycle elicited improvements to
the workflow, some of which could be implemented and tested on the second cycle.
The results revealed multiple directions for future improvements, from clustering
reviews and issues to prioritizing sections of the artifacts and using multilingual
models.

Insight 2

The significant difference between our results and that of the original DeepMatcher

evaluation suggests that the generalizability of the proof of concept should be tested
more thoroughly, considering different projects with different user base profiles and
issue-tracking cultures. Only then might one have a solid basis to validate extending
the scope of the workflow to other languages and critically distinct data sources.

We can take this discussion further by reflecting on the importance of continuous
research in areas as rapidly evolving as LLMs and their applications in software engineering.
Our results demonstrate how higher expectations and more advanced models can render
recently presented solutions nearly obsolete. Therefore, continuous adaptability should
be a guiding principle in designing systems based on LLMs.
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For the second evaluation cycle, we expected that a significant part of the issues
would be too technical to have pertinent matches with user reviews. While users are
more concerned with perceivable behavior and configuration, they are less interested in
technicalities. Still, we find that augmenting 14% of the issues with pertinent reviews is
an encouraging result that motivates refining and extending our approach, bringing the
perspective of real users to the development of popular apps.

The matches found for the 100 issues analyzed stand as undeniable proof that the
approach is capable of detecting highly pertinent matches. Moreover, a set of issues
augmented by the workflow attests to its potential to enhance issue comprehension. Our
qualitative analysis shows that the highest-ranking matches can bring new insights to
support the developers’ comprehension of the context of an issue.

Insight 3

The most pertinent matches to a bug report often include additional information on
the context in which the bug manifests itself. The publication date of a bug-related
review traces out its lifespan and serves as an early warning or sign of recurring
problems.

Insight 4

For new feature requests, the most pertinent matches contain insights on what might
better suit the users interests and needs. Time plays a role in helping developers to trace
trends or (re-)evaluate past choices based on emerging pertinent and automatically
extracted feedback.

Fully automating our approach allows retrospective comparisons of changes in
the software product through its development lifecycle and changes in users percep-
tion of such changes. We also hypothesize that the multilingual capabilities of the
jina-embeddings-v3 model played a role in overcoming the language differences be-
tween the technical writing of developers in issues and how users write their reviews.
Nonetheless, our results show that STS and text embeddings can indeed suggest matching
reviews that are useful for augmenting the comprehension of software develop-
ment issues.

5.1 Related Work

This work finds itself in the intersection of two different areas of interest: mining and
analyzing large amounts of user feedback, and understanding issues, how developers use
them and how they affect software development. As such, it is relevant to trace out the
state of the art in both fields before moving to the intersection of both.
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5.1.1 Analyzing User Feedback
Previous works have focused on studying the prospect of mining app reviews to

pinpoint helpful comments or identify trends and recurring topics (Pagano and Maalej,
2013). Some authors focused on classifying reviews or clustering them by topic (Khlifi
et al., 2024; Guzman et al., 2015; Panichella et al., 2015; Gao et al., 2018; Chen et al., 2014;
Fu et al., 2013; Scalabrino et al., 2019; Stanik et al., 2019), simplifying the identification
of trends among large sets of reviews.

In particular, Chen et al., 2014 propose AR-Miner, which not only clusters reviews on
the same topic but also filters and ranks reviews by how “informative” they are. Scalabrino
et al., 2019 proposed CLAP, a tool that suggests possible emergent user insights through
fine-grained review clustering. Panichella et al., 2016 presented AR-Doc, which achieved
a precision of 88% for classifying app reviews using feature extraction, structural and
sentiment analysis.

5.1.2 Analyzing Development Issues
The broader goal of analyzing and augmenting issue comprehension (Herzig et al.,

2013; Fiechter et al., 2021; Grammel et al., 2010) has also received attention. Some au-
thors investigated the characteristics that assist the comprehension and resolution of bug
reports (Hooimeijer and Weimer, 2007; Zimmermann et al., 2010), and others studied
how artifacts such as issue links (L. Li et al., 2018) and tags (Seiler and Paech, 2017) reflect
themselves on how a project is developed. Z. Li et al., 2023 analyzed the impact of issue
templates, and Kuramoto et al., 2022 studied whether visual elements (images, videos)
influence how long developers take to close an issue.

5.1.3 Comprehending User Feedback Alongside Issues
Some authors have experimented with studying the link between app reviews and

issues. Palomba et al., 2015 proposed CRISTAL, an approach that looks for matching
issues or commits on reviews already pre-filtered as informative based on traditional
information retrieval techniques and the dates of the reviews and issues. However, using
dates to filter out relevant issues restricts valuable insights on recurring bugs and requests,
which our approach can capture.

Haering et al., 2021 proposed the DeepMatcher approach that, although the first to
bring the use of LLMs to the task, restricts itself to using only issue titles and pre-filtered
bug reports. DeepMatcher serves as a tool to identify issues possibly related to a given
review describing a problem but also limits itself to only using the embeddings of the
nouns found in the review. Thus, the approach we proposed in this work advances the
state of the art going one step further.

Instead of exploring app reviews to augment issues, Martens and Maalej, 2019 pro-
posed an approach to automatically create tickets based on context information from tweets
containing bug reports. By using an automated chatbot, companies could automatically
interact with user tweets and retrieve data such as the user’s platform, device, app version,
and system version. Then, this data can serve as the basis for newly created entries in
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the company’s issue tracker.

Also in a similar, yet different context, Tizard et al., 2023 proposed an approach that
uses the embeddings generated by the Universal Sentence Encoder (USE) model to perform
a semantic search on matches between forum posts and issue tracker entries. Delving
further into the study of forum posts, the authors also study the approach while looking
for matches with FAQs and other documentation sources.

5.2 Limitations

One of the main limitations of our approach is the fundamental subjectivity of “use-
fulness”. Only stakeholders (e.g., developers, project managers) active in the project can
decide if the issues matched to a review belong to the same context, or which reviews
suggested effectively help resolve an issue.

Our two single case studies fail to account for variables such as “company” culture and
organization of a development team. For example, our approach might not be generalizable
to projects using strict issue templates or ones with different stakeholders as authors
of issues, as these variables could affect the semantic nature of the issue contents. This
also points to a necessary piece of future work: performing an evaluation with actual
developers, who are in the best position to judge whether a match is useful or not.

Furthermore, previous work has shown that users from different countries behave
differently on their corresponding app stores (S. L. Lim et al., 2015). Hence, a complete
evaluation of our workflow should account for this variability and involve apps written
by users in various countries. Then, we may validate that the pertinence of the matches
suggested overpass possible behavioral and linguistic biases in users from different cultures.

5.3 Future Directions
Firstly, and as previously discussed, the immediate next step after the work we devel-

oped is to conduct a more thorough evaluation with the direct involvement of developers
and stakeholders responsible for maintaining a mobile application with high enough
numbers of issues and user reviews. Besides validating the workflow implemented, future
work should consider, implement, and test the points of improvement brought up in the
evaluation discussion of our first development cycle.

Moreover, the insights presented by the workflow, extrapolated by collating the separate
pieces of information, confirm our understanding that a carefully crafted visual report
could magnify the issue augmentation potential. For example, the similarity values and
dates involved play a significant role in decoding and utilizing the information presented
in the matches suggested.

While using the issue body in addition to its title brings new information to the semantic
embedding, in the future, we plan to investigate how the boilerplate used for some types
of issues (e.g., bug report templates) could be used to extract the most important sections
of each issue body.



5.3 | FUTURE DIRECTIONS

35

To add new information in a recommender fashion, we will evaluate the inclusion of the
issue’s discussion (i.e., events like linking, commenting, and reacting) into its embedding or
include different variables (e.g., review date, software version) into the relevance metric.

As we have chosen a multi-lingual model, future work should also evaluate whether the
approach can match reviews in languages different than the one developers use for their
issues. Finally, an evaluation with the direct involvement of developers from a popular
app is necessary to confirm the generalizability of our approach.
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Chapter 6

Conclusion

This capstone project covered the design, implementation, and preliminary evaluation
of DeeperMatcher, an innovative system leveraging the growing capabilities of LLMs for
crowd-based requirements engineering. The system utilizes semantic text similarity and
text embeddings created by LLMs to achieve a previously unfeasible task: matching relevant
feedback from large volumes of user data to corresponding issues in the issue tracker.

Its extensible architecture supports various models and the varying preferences of
development teams. DeeperMatcher is being developed as a FLOSS command-line utility.
It enables developers to identify issues covering the topics of a given user review and
augment the comprehension of issues by complementing them with information from
automatically identified pertinent reviews.

Having split its development into two distinct phases, we conducted two preliminary
evaluations, one using the medium-scale BikeSP project and another using the extremely
popular Brave browser app. The results of the first development phase culminated in
a publication on the early results track of the 38th Brazilian Symposium on Software
Engineering with Prof. Walid Maalej. Similarly, the second development phase counted
with the collaboration of Prof. Michele Lanza and resulted in the submission of another
short paper to a prestigious international target.

We presented compelling examples of not only pertinent but also useful matches that
can inform the development process. Our preliminary results show the potential of the
approach and indicate further modifications that might be needed to provide reliable
assistance to development teams globally.

Our work underscores the importance of ongoing research into the effective use of LLMs
for software and requirements engineering scenarios. Researchers should continuously
revisit and reevaluate recent work involving LLMs as newer models and techniques emerge.
On the other hand, the Brave browser case study exemplifies how developers seeking to
understand an issue context can finally employ a workflow to automatically leverage the
wisdom of millions of reviews otherwise left to be forgotten.
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