
UNIVERSITY OF SÃO PAULO - INSTITUTE OF MATHEMATICS AND STATISTICS
MAC 499 - Capstone Project

From Modular Monolith to Microservices: A Guide to
Facilitating Scalable Software Development

Gabriel Arrais

Abstract

This topic has gained increasing relevance due to the prevalence of mono-
lithic systems in the industry and the growing need for independent deploy-
ment and scalability of system components. The primary objective of this
study is to provide valuable strategies and practical guidance for developers
and software architects who intend to either design modular monoliths or mi-
grate them to microservices. The methodology will involve the design and
implementation of a fictional system following modular monolith principles,
followed by its decomposition into microservices. Each phase of the process
highlights the main architectural concepts, the challenges encountered, and
strategies to overcome them. The expected outcome is the development of a
reference framework that supports both the modular monolith design and the
migration process, offering useful insights for each stage.

Keywords: DDD; Monolith; Microservice



1 INTRODUCTION 2

1. INTRODUCTION

Modern software development increasingly demands scalable, maintainable, and
evolvable systems. However, many organizations still operate legacy monolithic
applications that were not designed with modularity or distributed architectures in
mind. Migrating these systems to a microservice architecture presents numerous
technical challenges, particularly due to tightly coupled components and a lack of
clear service boundaries. This scenario creates a significant barrier for companies
seeking to adopt modern architectural paradigms.

To overcome this barrier, adopting well-established literature at the early stages
of system design can greatly contribute to the development of complex, yet main-
tainable systems. Important concepts such as Domain-Driven Design by Eric Evans
offer strategic approaches for modeling business domains aligned with real-world
processes, fostering a shared understanding between developers and domain experts.
Complementary to this, architectural paradigms like Clean Architecture advocate
for clear separation of concerns and independence of frameworks, which are essential
when aiming for scalable and adaptable systems. Furthermore, the use of patterns
such as Event Sourcing can enhance system resilience and traceability by persisting
changes as a sequence of immutable events. These practices, when applied cohe-
sively, not only facilitate long-term maintainability but also lay a solid foundation
for a smoother transition to distributed architectures like microservices.

Given this context, the modular monolith emerges as a promising alternative.
It enables teams to incrementally evolve monolithic systems while enforcing mod-
ular boundaries, serving as a strategic stepping stone toward microservices. This
project is motivated by the need to explore and demonstrate how modular monolith
principles can support maintainability and future scalability without requiring a full
system redevelopment.

2. LITERATURE REVIEW

This section presents the fundamental concepts and topics required to understand
the research project. After reviewing this section, the reader will be better prepared
to follow the rest of the proposal and comprehend its underlying ideas.

2.1. Domain-Driven Design

The Domain-Driven Design(DDD) is a software development approach that em-
phasizes a deep connection between the software model and the business domain
it represents. The main goal is to build systems that reflect real-world complex-
ity through well-defined models, improving both communication and code clarity.
DDD is especially useful for complex systems where business rules are central to the
application, so it’s highly recommended to design the domain in close collaboration
with domain experts[1].

2.2. Monolith

A monolithic architecture refers to a traditional model where the entire appli-
cation is designed as a single, unified unit. In this approach, all components are



2.3 Microservice 3

tightly coupled into a single codebase. This results in a single executable file, which
can be easier to develop initially but presents challenges as the system grows. One
of the primary downsides of monolithic architectures is their lack of flexibility. As a
system becomes larger, it becomes harder to maintain and scale because any change
or enhancement often requires modifications to the entire application.

2.3. Microservice

The microservices architecture involves developing a single application as a col-
lection of small, independent services. Each service runs in its own process and
communicates with others through various mechanisms, often using HTTP-based
resource APIs[2]. These services can maintain their own databases and may be
implemented in different programming languages. This separation enables services
to be deployed and scaled independently. Additionally, each service maintains its
own codebase, allowing different development teams to work on individual services
autonomously.

2.4. Modular Monolith

The Modular Monolith emerged to improve adaptability, facilitate system evo-
lution, and even allow separate deployment of modules within a single monolithic
system. It is crucial that it is built with clearly defined module responsibilities
and communication strategies between them. This architectural style resembles a
"middle ground" between monoliths and microservices and can address challenges
of both models[3].

3. PROPOSAL

3.1. Goals

This research aims to offer valuable insights for developers and system architects
seeking to design applications with modular monolith approach, while anticipating
future scalability requirements and a potential transition to a microservices archi-
tecture. Furthermore, the research intends to contribute with a framework to assist
practitioners when migrating from a modular monolith to microservices. This study
will be guided by the following set of Research Questions (RQ):

RQ1: What are the trade-offs involving the key characteristics when building
a modular monolith?

RQ2: What are the critical points in the migration process from a modular
monolith to a microservices architecture?

RQ3: What architectural indicators can developers use to compare the mod-
ular monolith and the microservices models?



3.2 Methodology 4

RQ4: What can alleviate the difficulties when migrating from a modular
monolith to microservices?

3.2. Methodology

The methodological approach adopted for the development of this work is de-
picted in Figure 1, which outlines the main stages.

Figure 1. Work plan flow diagram

Initially, a review of the literature on Domain-Driven Design, Clean Architecture,
Modular Monoliths, and Microservices will be conducted, serving as the theoretical
foundation for the development of this research. This step is essential to understand
established approaches and identify opportunities for further investigation.

Concurrently, the design phase of the system’s domain and architecture will be
carried out, using the concepts learned in the first step’s literature. This stage
is crucial, as a well-defined model with low coupling, clear interfaces, and well-
established boundaries is essential to achieving the proposed objectives.

Once the domain has been defined, the implementation phase based on the mod-
ular monolith approach will begin. During development, the characteristics of the
programming languages and frameworks used will be examined, with particular at-
tention to their support for domain modeling, bounded contexts, and event handling.
At the end of this stage, the implementation will be evaluated to identify the ad-
vantages, limitations, and challenges encountered. Together with the results of the
previous step, this stage will provide the basis for answering RQ1.

After that, the system will undergo a migration to a microservices-based archi-
tecture. This phase will involve extracting the bounded contexts from the modular



4 WORK PLAN 5

monolith and adapting them into independently deployable microservices. Through-
out this process, the critical points and challenges observed will be documented, with
the goal of answering RQ2.

With both systems implemented, a comparative evaluation will be conducted
using software architecture metrics such as coupling, cohesion, scalability, maintain-
ability, and complexity. This analysis will contribute to answering RQ3 and provide
a solid foundation to select appropriate architectural approaches in future projects.

Finally, a support tool will be developed to serve as a practical reference for
developers seeking to migrate modular monolith systems to a microservices archi-
tecture. This tool will encapsulate the best practices, common challenges, and archi-
tectural decisions identified throughout the research, providing actionable guidance,
contributing to the resolution of RQ4.

4. WORK PLAN

4.1. Timeline

1. Review of the literature on domain-driven design and modular monoliths.

2. Propose a system and design its domain and architecture.

3. Implement the system based on the modular monolith approach.

4. Evaluate the implementation.

5. Migrate the system to microservices.

6. Evaluate the migration process.

7. Analyze the two approaches based on relevant architectural indicators in the
context of modern software.

8. Propose a tool to serve as an intuitive reference source for developers who
want to migrate from modular monoliths to microservices.

Activities Apr May Jun Jul Aug Sep Oct
1 • •
2 •
3 •
4 •
5 • •
6 •
7 •
8 •

Table 1. Work plan’s schedule



4.2 Expected Results 6

4.2. Expected Results

We expect to provide clear and well-founded answers to the questions raised in
the proposal. The expected results of this study include:

• The discussion of the principal philosophical and architectural challenges en-
countered during the design of a modular monolith system, along with strate-
gies to address them effectively.

• A documented approach to migrate from a modular monolith to a microser-
vices architecture, emphasizing the advantages of a well-structured design.

• A comparative evaluation of modular monolith and microservice architectures,
using relevant architectural metrics to assess qualities such as modularity, cou-
pling, scalability, and maintainability.

• The development of a supportive tool aimed at assisting developers in migrat-
ing from modular monoliths to microservices.



REFERENCES 7

References

[1] E. Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, Boston, 2003.

[2] M. Fowler and J. Lewis. Microservices, 2014. URL https://martinfowler.
com/articles/microservices.html. Accessed: 2025-04-19.

[3] R. SU and X. LI. Modular monolith: Is this the trend in software architecture?
In Proceedings of the 2024 IEEE/ACM International Workshop on New Trends
in Software Architecture (SATrends). IEEE, 2024.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

	INTRODUCTION
	LITERATURE REVIEW
	Domain-Driven Design
	Monolith
	Microservice
	Modular Monolith

	PROPOSAL
	Goals
	Methodology

	WORK PLAN
	Timeline
	Expected Results


