UNIVERSIDADE DE SAO PAULO
INSTITUTO DE MATEMATICA, ESTATISTICA E C1ENCIA DA COMPUTACAO
BACHARELADO EM CIENCIA DA COMPUTAGAO

Deteccao de Vulnerabilidades em Hosts
USB utilizando Técnicas de Fuzzing
Externo

Gabriel Geraldino de Souza

MONOGRAFIA FINAL

MAC 499 — TRABALHO DE
FORMATURA SUPERVISIONADO

Supervisor: Prof. Dr. Marcos Antonio Simplicio Junior

S30 Paulo
2025

O conteudo deste trabalho é publicado sob a licengca CC BY 4.0

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Agradecimentos

Agradeco ao Professor Doutor Marcos Antonio Simplicio Junior e ao Professor Dou-
tor Bruno de Carvalho Albertini, pela orientagéo, disponibilidade e pelas contribuicdes

fundamentais ao desenvolvimento deste trabalho.

Agradeco, também, ao mestrando Gustavo Cerqueira Bastos pelo apoio, pelas sugestdes

técnicas e pela atencdo durante as etapas de construcio deste projeto.

Resumo

Gabriel Geraldino de Souza. Detec¢ao de Vulnerabilidades em Hosts USB utilizando
Técnicas de Fuzzing Externo. Monografia (Bacharelado). Instituto de Matematica,

Estatistica e Ciéncia da Computagio, Universidade de Sdo Paulo, Sdo Paulo, 2025.

O protocolo Universal Serial Bus (USB) é uma das interfaces de comunica¢do mais onipresentes em
sistemas computacionais, conectando desde periféricos simples a componentes de sistemas criticos, como
caixas eletronicos e dispositivos industriais. Essa ampla adogéo, contudo, estabelece-o como uma significativa
superficie de ataque. Este trabalho tem como objetivo principal avaliar a seguranca de sistemas que utilizam
o protocolo USB por meio de fuzzing, uma técnica de teste automatizada que consiste no envio de dados
massivos, invalidos ou inesperados para a descoberta de vulnerabilidades. Este trabalho envolve uma revisio
da literatura sobre o protocolo USB e falhas conhecidas, seguida pelo desenvolvimento de uma ferramenta
de software capaz de interpretar, manipular e reproduzir capturas de trafego USB (.pcap) em baixo nivel,
utilizando o médulo raw-gadget do kernel Linux. Esta ferramenta foi integrada a fuzzers como syzkaller
e radamsa, para automatizar a geracdo de casos de teste e identificar falhas de segurancga, como negagio
de servico (DoS), corrupg¢io de memoria e outras anomalias no tratamento de pacotes. Os experimentos
comparam a eficacia dos diferentes métodos de mutagéo em relacio ao impacto pratico das vulnerabilidades

encontradas.

Palavras-chave: USB. Fuzzing. Analise de Vulnerabilidades. Teste de Software.

Abstract

Gabriel Geraldino de Souza. Detection of Vulnerabilities in USB Hosts Using Exter-
nal Fuzzing Techniques. Capstone Project Report (Bachelor). Institute of Mathematics

and Statistics, University of Sdo Paulo, Sdo Paulo, 2025.

The Universal Serial Bus (USB) protocol is one of the most ubiquitous communication interfaces in
computer systems, connecting everything from simple peripherals to critical system components, such as
ATMs and industrial devices. This widespread adoption, however, makes it a significant attack surface. The
main objective of this work is to evaluate the security of systems that utilize the USB protocol through
fuzzing, an automated testing technique that consists of sending massive, invalid, or unexpected data to
discover vulnerabilities. This work involves a review of the literature on the USB protocol and known flaws,
followed by the development of a software tool capable of interpreting, manipulating, and reproducing
low-level USB traffic captures (.pcap) using the raw-gadget kernel module. This tool was integrated with
fuzzers such as syzkaller and radamsa to automate the generation of test cases and identify security
flaws such as denial of service (DoS), memory corruption, and other anomalies in packet handling. The
experiments compare the effectiveness of different mutation methods in relation to the practical impact of

the vulnerabilities found.

Keywords: USB. Fuzzing. Vulnerability Analysis. Software Testing.

vii

Lista de Abreviaturas

CVE
CWE
URL
USB

BCD
HNP
SBC
FPGA
TT
LSB
IME
USP

Vulnerabilidades e Exposicdes Comuns (Common Vulnerabilities and Exposures)
Enumeracao de Fraquezas Comuns (Common Weakness Enumeration)
Localizador Uniforme de Recursos (Uniform Resource Locator)

Barramento Serial Universal (Universal Serial Bus)

Bloco de Requisicdo USB (USB Request Block)

Decimal Codificado em Binario (Binary-Coded Decimal)

Protocolo de Negociacdo de Host (Host Negotiation Protocol)

Computador de Placa Unica (Single Board Computer)

Matriz de Portas Programaveis em Campo (Field-Programmable Gate Array)
Tradutor de Transac¢oes (Transaction Translator)

Bit Menos Significativo (Least Significant Bit)

Instituto de Matematica, Estatistica e Ciéncia da Computacgio

Universidade de Sao Paulo

viii

Lista de Figuras

2.1
2.2

4.1
4.2

Topologia USB, com multiplas camadas e especificagdes

Hierarquia de descritores USB. Retirada de BEvonpLoGIC, 2025

Estratégias de fuzzing empregadas pela ferramenta

Interface web da ferramenta

Lista de Tabelas

2.1

4.1

5.1

Estrutura do Device Descriptor USB. Adaptada de USB IMPLEMENTERS
FOorUM, 2025b

Comparativo entre SBCs e microcontroladores populares em relacao ao

suporteaLinuxeUSB oL

Performance da ferramenta desenvolvida medida em niimero de enumera-

coesporsegundo.

10

27
31

11

22

35

Lista de Programas

3.1

4.1

4.2
4.3

linux/v6.17.1/source/drivers/usb/gadget/function/f_fs.c: validacao de des-
Critores. e 19
syzkaller/pkg/mgrconfig/configgo: trecho do cédigo-fonte do syzkaller que
mostra a possibilidade de configuracdo de syscalls especificas. 26
Log gerado pelo syzkaller para o bug “memory leak in __hci_cmd_sync_sk® 28

Parsing de pacotes USB, utilizando pyshark: extracao de device descriptors 29

ix

Sumario

1 Introducio

3

4

1.1 Contexto e
1.2 Problemae Motivacdo
1.3 Objetivo
14 Estruturadotrabalho
USB
2.1 Arquitetura Fisicae Logica
2.2 Estruturade Comunicacdo
221 Pacotes
2.2.2 Transagdes e
223 Transferéncias
2.3 Iniciacdo e Deteccdo de Velocidade
2.3.1 Enumeracao e Descritores
24 Capturadetrafego.
2.5 Abstracdes de Software para InteracadoUSB
Fuzzing
3.1 Trabalhos Relacionados
3.2 Emulacgdo de DispositivosUSB
3.3 Anaélise de Vulnerabilidades
3.4 Meétricas Externas

Desenvolvimento da ferramenta

4.1
4.2
4.3
4.4
4.5

Escolha e configuracdo do hardware

Crawler do syz-bot . .

Fuzzing com syzkaller .

Estratégias da ferramenta L.

Base inicial de capturas

W DN = =

_ 0 vV ®® o N N U1 O

— =
[\

15
16
18
19
20

21
21
23
25
26
27

xi

xii

4.6 Validagao e reproducao de bugsdo syzbot
47 Parsingdotrafego
4.8 Mutagdodepacotes
49 Reproducdodospacotes.
410 Interface

5 Experimentos e resultados

5.1 Negacdodeservico i
5.2 Vazamento de memoria do espacodo kernel
53 Format strings
54 Performance

6 Conclusao
6.1 Trabalho futuro

Referéncias

28
28
30
31
31

33
33
33
34
35

37
37

39

Capitulo 1

Introducao

1.1 Contexto

Hoje, a sociedade moderna tem a tecnologia presente de forma universal em seu
cotidiano. Essa presenca é intrinsicamente sustentada por uma série de protocolos e
interfaces de comunicagio que, muitas vezes, operam de forma invisivel ao usuario final.
Dentre estas, poucas sio tdo essenciais quanto o Universal Serial Bus (USB). Desde sua
concepgao, o USB evoluiu de uma simples interface para conectar periféricos de baixa
velocidade, como teclados e mouses, para um ecossistema complexo e de alta performance,
capaz de transmitir dados a gigabits por segundo, fornecer energia para carregamento
rapido de dispositivos e conectar sistemas das mais distintas naturezas.

Atualmente o protocolo USB esta integrado a quase todos os dispositivos computaci-
onais do dia-a-dia. Ele é o cerne da conexao de periféricos em computadores pessoais e
notebooks, mas sua aplicagao se estende muito além. E encontrado, também, em sistemas
embarcados, infraestruturas criticas como caixas eletrénicos (ATMs), sistemas de controle
industrial (ICS), equipamentos médicos, sistemas automotivos e dispositivos de Internet das
Coisas (IoT). Essa disseminagao massiva, embora tenha trazido conveniéncia e padronizacéo
sem precedentes, introduziu simultaneamente uma superficie de ataque vasta e muitas
vezes subestimada.

A complexidade inerente ao protocolo USB, com suas diversas especificacdes, classes
de dispositivos, multiplos modos de operacdo e inumeras implementacdes e interfaces cria
um terreno fértil para a existéncia de vulnerabilidades. Uma falha na implementacéo de
um drivers USB de um sistema operacional ou no firmware de um dispositivo periférico
pode ter consequéncias severas, que vao desde a negacdo de servico (DoS) até a execucdo
de coédigo espurio e completa tomada de controle do sistema hospedeiro.

1.2 Problema e Motivacao

A avaliagdo da seguranca de implementagdes USB é, portanto, uma tarefa de crucial
importancia. Contudo, ela apresenta desafios significativos: muitas implementacoes de
drivers e firmwares, por exemplo, sdo de coédigo fechado (closed-source), o que impede a

1 | INTRODUGCAO

analise estatica de codigo e a revisdo manual por parte de pesquisadores de seguranca.
Além disso, a interagdo com o hardware em baixo nivel exige conhecimento especializado
e ferramentas adequadas. Nesse cenario, abordagens de teste de seguranca de caixa-preta
(black-box), que nao requerem acesso ao codigo-fonte do alvo, tornam-se dificeis, mas
indispensaveis.

Uma das técnicas mais eficazes para a descoberta de vulnerabilidades em cenarios de
black-box é o fuzzing. O fuzzing é um processo de teste de software automatizado que
envolve o fornecimento de dados massivos, invalidos, inesperados ou aleatérios como
entrada para um programa. O objetivo é monitorar o comportamento do alvo em busca
de anomalias, como travamentos, assercdes de codigo ou vazamentos de memoria, que
possam indicar a presenca de falhas de seguranca exploraveis.

A motivacido para este trabalho surge da necessidade de se ter uma ferramenta mais
acessivel e eficaz para realizar o fuzzing do protocolo USB em baixo nivel. Embora existam
solucdes de hardware e software para tal, poucas se concentram na automacao da geragéo
de casos de teste mutacionais a partir de capturas de trafego reais, de uma maneira
que seja agnostica ao dispositivo e ao sistema operacional. A capacidade de capturar
uma comunicacdo USB legitima, aplicar mutagdes inteligentes e reproduzi-la contra um
alvo permite simular uma gama quase infinita de interacdes anémalas, potencializando
a descoberta de vulnerabilidades que seriam dificeis de encontrar por meio de analise
manual ou testes tradicionais.

1.3 Objetivo

O objetivo principal deste trabalho é desenvolver e avaliar uma abordagem black-
box para o fuzzing de sistemas que utilizam o protocolo USB, com foco na descoberta
de vulnerabilidades ndo somente em drivers de sistemas operacionais e firmwares de
dispositivos, mas também na camada de aplicagéo.

Para alcangar este objetivo principal, foram definidos os seguintes objetivos especifi-
cos:

« revisar a literatura existente sobre o protocolo USB, suas arquiteturas, especificagoes
e as vulnerabilidades de seguranca historicamente conhecidas;

+ desenvolver uma ferramenta de software capaz de interpretar, manipular e reproduzir
capturas de trafego USB em baixo nivel, de forma que seja possivel emular um
dispositivo USB e enviar pacotes arbitrarios;

« adaptar essa ferramenta de forma que possa ser utilizada como um fuzzer de contexto
geral, automatizando a geracao de casos de teste por meio da mutacdo de pacotes
USB e, possivelmente, integrando com mutators existentes, como o radamsa;

« realizar experimentos praticos contra alvos selecionados para identificar falhas de
seguranga, como negacao de servico (DoS), corrupcio de memoria e outras anomalias
no tratamento de pacotes;

« analisar e comparar a eficacia dos diferentes métodos de mutacido empregados,
avaliando o impacto e a severidade das vulnerabilidades encontradas.

1.4 | ESTRUTURA DO TRABALHO

1.4 Estrutura do trabalho

O presente trabalho, além da introdugio, é composto por cinco capitulos. O capitulo 2
apresenta uma visao geral do protocolo USB, incluindo sua arquitetura, funcionamento e
principais caracteristicas. O capitulo 3 discute a técnica de fuzzing, detalhando diferentes
estratégias e aplicacoes. O capitulo 4 detalha o desenvolvimento da ferramenta de fuzzing
USB, abordando desde a escolha do hardware até a implementacdo do software. O capitulo
5 descreve os experimentos realizados e os resultados obtidos, analisando a eficacia da
ferramenta em diferentes cenarios. Finalmente, o capitulo 6 finaliza o trabalho, discutindo
suas contribui¢des e sugerindo direcdes para pesquisas futuras.

Capitulo 2

USB

O padréao Universal Serial Bus (USB) comecou a ser desenvolvido no inicio da década de
1990 por um consoércio de empresas de tecnologia liderado por Intel, Compaq, Microsoft,
IBM, DEC, NEC e Nortel. O objetivo era criar uma interface fundamentalmente nova para
superar as limitacdes de usabilidade e a fragmentacdo de conexdes legadas, como portas
seriais (RS-232), paralelas e conectores PS/2 . Oficializado com a publicagao da especificacédo
USB 1.0 em 1996, o padrdo ndo somente unificou a conexao de periféricos, mas introduziu
o conceito de Plug and Play, simplificando drasticamente a configuraciao de hardware para
o usuario final.

Embora a especificacdo original 1.0 tenha definido as bases, foi a revisao USB 1.1,
lancada em 1998, que comecgou a popularizar o padrao, com as velocidades low speed (1.5
Mbits/s) e full speed (12 Mbits/s). Contudo, a onipresenca do barramento consolidou-se
com a chegada do USB 2.0 em abril de 2000. Esta versao introduziu o modo high speed,
elevando a taxa de transferéncia para 480 Mbits/s — um aumento de 40 vezes sobre a
versdo anterior — permitindo que o USB substituisse interfaces de alta largura de banda e
se tornasse o padrdao dominante de mercado.

Versdes subsequentes continuam a expandir a tecnologia, como o USB 3.0 (2008), que
introduziu a SuperSpeed (5 Gbits/s). Além da performance de dados, houve uma evolucéo
critica na capacidade de fornecimento elétrico com o padrao USB Power Delivery (USB-PD).
E importante notar que, para manter a promessa de universalidade, o USB preserva uma
forte retrocompatibilidade. Essa decisdo de design, embora benéfica para o usuario, resulta
em uma pilha de protocolos complexa e extensa, que deve gerenciar multiplos estados,
velocidades e classes de dispositivos simultaneamente.

2.1 Arquitetura Fisica e Logica

O USB opera sob uma arquitetura de barramento host-driven, com uma topologia de
estrela em camadas. Um tnico dispositivo host (ou hospedeiro), como um computador,
coordena toda a comunicacdo com multiplos periféricos, também nomeados como devices
ou gadgets.

2| USB

O barramento USB suporta a conexao de até 127 dispositivos simultaneamente, inclu-
indo o host, hubs e dispositivos finais; este ¢ um limite estrutural da especificacdo USB,
dado que o campo de enderego contém 7 bits e o endereco 0 é um endereco reservado para
broadcast.

Hubs sao dispositivos intermediarios que expandem o niimero de portas disponiveis,
permitem a conexdo em cascata de multiplos dispositivos, garantem flexibilidade a topolo-
gia, onde dispositivos podem ser conectados e desconectados dinamicamente, facilitam a
gestdo de energia e segmentacao do trafego.

E ilustrado na figura 2.1 uma topologia tipica de barramento USB, com multiplas
camadas e especificacdes. Nesse exemplo, o hub raiz se comunica com o hub A em high
speed (USB 2.0) e 0o mouse conectado ao hub A é isolado pelo hub utilizando um Transaction
Translator (TT), permitindo que o mouse opere em full speed (USB 1.1) sem impactar a
performance dos demais dispositivos. O funcionamento do TT é descrito pela primeira vez
na secdo 11.14 da especificagdo USB 2.0, conforme USB IMPLEMENTERs FORUM, 2025b.

Do lado do host, a interagdo com o barramento é gerenciada por uma controladora de
hardware, que também contém o hub raiz (root hub). Historicamente, existiram diferentes
especifica¢des, como a Universal Host Controller Interface (UHCI) e a Open Host Controller
Interface (OHCI). A especificacdo USB 2.0 introduziu a Enhanced Host Controller Interface
(EHCI), que se tornou o padrio para a operacdo em high speed, simplificando o ecossistema
de drivers.

Fisicamente, as interface USB 1.1 e 2.0 consiste em um cabo de quatro vias: duas para
alimentacdo, VCC e GND, e duas para a transmissao de dados, D+ e D—. O padrao 3.0 conta
com um canal adicional, com linhas TX/RX adicionais para garantir maior velocidade. A
comunicacéo é serial e os dados sdo transmitidos de forma diferencial sobre o par D+ /D—,
o que confere alta imunidade a ruido eletromagnético. Para garantir transi¢des de sinal
suficientes para a sincronizacdo dos clocks entre o host e o device, o USB utiliza a codificacédo
Non-Return-to-Zero Inverted (NRZI) com a técnica de bit stuffing, que insere um bit 0 apds
seis bits 1 consecutivos no fluxo de dados.

2.2 Estrutura de Comunicaciao

2.2.1 Pacotes

Os pacotes sao as unidades atomicas de informacgao que trafegam no barramento. Os
dados sdo transmitidos com o bit menos significativo (LSB) primeiro. Quase todos os
pacotes USB sdo compostos por algum conjunto dos seguintes campos:

« SYNC: sequéncia de bits usada para sincronizar os clocks do transmissor e receptor.
Presente em todos os pacotes;

« PID (Packet ID): campo de 8 bits que identifica o tipo do pacote (token, dados,
handshake, SOF). Cada PID é composto por 4 bits de identificacido seguidos por seus
4 bits complementares, como uma simples forma de checksum, permitindo deteccédo
de erros. Presente em todos os pacotes;

2.2 | ESTRUTURA DE COMUNICACAO

Hub Raiz
UsSB 2.0
Teclado Hub A
LSB 2.0 LISB 3.0
Mouse Flash Drive
uss 1.1 USB 3.0

Figura 2.1: Topologia USB, com multiplas camadas e especificagoes

« endereco do dispositivo (ADDR): campo de 7 bits que especifica o enderego do
dispositivo de destino da transagéo;

« endpoint (ENDP): campo de 4 bits que identifica o endpoint especifico dentro do
dispositivo;

« dados: campo variavel que contém a carga util (payload), presente apenas em pacotes

de dados;

« CRC (Cyclic Redundancy Check): campo usado para deteccdo de erros, com 5 bits
para pacotes de token e 16 bits para pacotes de dados;

« EOP (End of Packet): sinaliza o fim do pacote. Presente em todos os pacotes.

O protocolo USB 2.0 define quatro categorias principais de pacotes, cada uma identifi-
cada por PIDs distintos:

« pacotes de token: enviados para iniciar uma transagio e podem ser do tipo IN, onde
o host deseja ler informagdes, OUT, onde o host envia dados ao dispositivo e SETUP,
para iniciar transac¢des de controle;

« pacotes de dados: transportam a carga util (payload). Existem diversos tipos de
pacotes de dados (DATA®, DATAL, DATA2, MDATA), definidos pelo PID;

« pacotes de handshake: indicam o status da transagao. Podem ser ACK (confirmac&o),

2| USB

NAK (indisponibilidade temporaria), STALL (erro) e NYET (ainda sem resposta);

« pacotes de Start of Frame (SOF): broadcast enviado pelo host em intervalos regula-
res para manter a sincronizacao do barramento. Essencial para agendar transferéncias
periddicas (iscronas e de interrupc¢io).

2.2.2 Transacoes

No nivel l6gico, a comunicagio é organizada em transacdes. Como o barramento é
centrado no host, é ele quem inicia as transacdes. Uma transagdo completa é uma sequéncia
de pacotes que realiza uma transferéncia de dados 1util e é tipicamente composta por trés
fases:

pacote de token: o cabecalho da transagio, enviado pelo host. Define a natureza da
transacao (IN, OUT, SETUP), o endereco do dispositivo e o endpoint de destino;

pacote de dados (opcional): contém a carga util (payload). E enviado pelo host (em
transacdes OUT) ou pelo device (em transacdes IN);

pacote de status (handshake): a fase final, onde o receptor acusa o recebimento
(ACK), reporta indisponibilidade temporaria (NAK) ou sinaliza um erro (STALL).

2.2.3 Transferéncias

Transferéncias sdo operacgdes logicas de alto nivel que podem envolver multiplas
transagdes para completar o envio ou recebimento de dados. Existem quatro tipos principais
de transferéncias USB, cada uma adequada a diferentes necessidades de comunicagio:

. transferéncias de controle: sio mandatorias e essenciais para a operacdo do
barramento. Elas sdo usadas pelo host para operagdes de comando e status, mais no-
tavelmente durante o processo de enumeracéo, para descobrir, configurar e enderecar
um dispositivo recém-conectado;

« transferéncias de interrupcio: ao contrario do que o nome indica, ndo sdo trans-
feréncias exatamente baseadas em interrupcdes. Sdo baseadas em uma sondagem
periddica (polling) feito pelo host e sdo usadas para dados pequenos e ndo periddicos
que exigem laténcia maxima, como cliques de um mouse;

« transferéncias em lote (bulk transfers): destinadas a grandes volumes de dados
sem requisitos de tempo real. H4 garantia de entrega baseada no CRC e handshake
ACK/NAK, com retransmissao em caso de erros. Sdo usadas para dispositivos como
impressoras e armazenamento em massa;

« transferéncias isocronas (isochronous transfers): utilizadas para fluxos de dados
que exigem entrega continua e em tempo real, como audio e video. Pacotes corrom-
pidos ou perdidos nao sdo retransmitidos, priorizando a laténcia sobre a integridade

dos dados.

As secoes 5.6.4 e 5.7.4 da especificacdo USB 2.0 detalham um aspecto importante em
relacdo as transferéncias periddicas (isocronas e de interrup¢éo): em full speed, ndo mais

2.3 | INICIACAO E DETECCAO DE VELOCIDADE

que 90% da banca pode ser alocada para transferéncias periddicas, o limiar é de de 80%
para high speed USB IMPLEMENTERS FORUM, 2025b.

2.3 Iniciacao e Deteccao de Velocidade

Apesar de toda a comunicagao ser essencialmente controlada pelo host, a conexao é
fisicamente iniciada pelo dispositivo. Quando um dispositivo é conectado a porta, ele deve
anunciar sua presenca ao host através de um resistor de pull-up de 1.5kQ. A posicao deste
resistor determina a velocidade inicial do dispositivo:

+ pull-up em D+: dispositivo de full speed ou high speed;
« pull-up em D—: dispositivo de low speed.

O host detecta a mudanga de tensdo causada por este resistor e inicia o processo
de enumeracao. Dispositivos com capacidade high speed devem, obrigatoriamente, se
conectar inicialmente como full speed. Durante a enumeracao, ocorre um especifico onde o
dispositivo demonstra sua capacidade de operar em 480 Mbits/s, e s6 entdo o host comuta
o barramento para o modo de alta velocidade.

Uma extensao a especificacdo USB 2.0 é o USB On-The-Go (OTG), que permite que
dispositivos atuem tanto como host quanto como periférico, dependendo do contexto
da conexao, mas nunca simultaneamente. Nesse caso, o estado inicial de quem é device
e quem ¢é host é determinado pela orientacdo do cabo e a troca de papéis é negociada
através do Host Negotiation Protocol (HNP), conforme descrito na se¢io 5.2 da extensao
USB IMPLEMENTERS FORUM, 2025a da especificagao USB 2.0.

2.3.1 Enumeracao e Descritores

Apds a iniciagdo da conexdo, o host inicia o processo de enumeracio, que é a sequéncia
de passos necessarios para reconhecer, configurar e preparar o dispositivo para comu-
nicacdo. Durante este processo, o host se comunica com o endpoint 0 do dispositivo (o
endpoint de controle padrédo) para ler uma hierarquia de estruturas de dados chamadas
descritores (descriptors). Estes descritores informam ao host tudo o que ele precisa saber
sobre o dispositivo.

A hierarquia de descritores é a seguinte, ilustrada na figura 2.2:

« device descriptor: existe apenas um por dispositivo. Contém informacdes globais,
como a versao da especificacdo USB suportada, os identificadores de fornecedor e
produto (Vendor ID e Product ID), e o numero de configuracdes possiveis;

« configuration descriptor: um dispositivo pode ter multiplas configuragdes, mas ape-
nas uma pode estar ativa por vez. Este descritor especifica caracteristicas de uma
configuracdo, como o consumo de energia e o nimero de interfaces que ela agrupa.
A selecdo é feita pelo host com o comando SetConfiguration;

« interface descriptor: agrupa um conjunto de endpoints que implementam uma funcio-
nalidade especifica (e.g.: uma webcam pode ter uma interface para video e outra para
audio). As interfaces permitem configuracdes alternativas (bAlternateSetting),

10

2| USB

que podem ser trocadas em tempo de execugido com o comando SetInterface para,
por exemplo, alterar a largura de banda alocada;

endpoint descriptor: descreve um Unico endpoint, que é um buffer de dados unidire-
cional (IN ou OUT). Define atributos cruciais como o tipo de transferéncia (control,
isochronous, bulk, ou interrupt), o tamanho maximo do pacote de dados e, para
endpoints isdcronos e de interrupcao, o intervalo de polling;

string descriptors: opcionais, fornecem informagoes legiveis por humanos, como o
nome do fabricante, o nome do produto e o nimero de série. Os outros descritores

referenciam essas strings através de um indice.

Crevicelezcriptor

bMumCanfigurations

:

Configuration
Crascriptor

|bNumInterfaces

¥ '

Interface Interface
Descriptar Crascriptor

bHumEndpoints

bMumEndpoints

'

Configuration
Crescriptor

|I:-Num|nterfaces

¥ v

Interface Interface
Crascriptor Crascriptor

bHumEndpoints bHumEndpoints

Endpoint
Cescriptor

Endpoint Endpoint Endpoint
Crescriptor Crescriptor Crescriptor

Endpoint Endpoint Endpoint Endpoint
Crescriptor Crescriptor Crescriptor L escriptor

Figura 2.2: Hierarquia de descritores USB. Retirada de BEvoNDLOGIC, 2025

Todos tipos de descritores tem um formato binario rigido, com campos de tamanho
fixo e posicoes predefinidas, conforme detalhado na secdo 9.6 da especificacao USB 2.0
USB IMPLEMENTERS FOrRUM, 2025b. Um padrao entre todos descritores é o primeiro byte,
que indica o tamanho total do descritor em bytes, e o segundo byte, que identifica o tipo
do descritor (e.g.: 0x01 para device descriptor, 0x02 para configuration descriptor, etc.). Os
demais campos variam conforme o tipo do descritor, mas seguem uma estrutura consistente
que facilita a analise e interpretagdo pelo host. A tabela 2.1 exemplifica a estrutura do
device descriptor.

2.4 | CAPTURA DE TRAFEGO

Offset Campo Tamanho Valor Descriciao

0 bLength 1 18 Tamanho do descritor em bytes

1 bDescriptorType 1 1 Tipo do descritor (device)

2 bcdusB 2 BCD Especificacdo com a qual o dispositivo
é compativel, em Binary-Coded Deci-
mal (BCD)

4 bDeviceClass 1 Class Codigo de classe definido pela USB-IF.
Exemplos de classe sdo mass storage ou
audio. Valores 0x00 e 0xFF sao casos
especiais: definido pela interface e pelo
fornecedor, respectivamente

5 bDeviceSubClass |1 SubClass | Cddigo de subclasse definido pela USB-
IF. Deve ser 0x00 caso bDeviceClass
também seja nulo, e 0xFF caso a sub-
classe seja indefinida

6 bDeviceProtocol |1 Protocol Especifica o protocolo de comunicagao
usado pelo dispositivo. Os valores 0x00
e 0xFF indicam que ndo ha protocolo
especifico de classe, e protocolo espe-
cifico do fornecedor, respectivamente

7 bMaxPacketSized |1 Numero Tamanho maximo do pacote suportado
pelo endpoint 0

8 idVendor 2 ID Vendor ID atribuido pela USB-IF

10 idProduct 2 ID Product ID atribuido pelo fornecedor

12 bcdDevice 2 BCD Numero de versao definido pelo desen-
volvedor do dispositivo, em BCD

14 iManufacturer 1 Indice Indice do string descriptor que descreve
o fabricante

15 iProduct 1 Indice Indice do string descriptor que descreve
o produto

16 iSerialNumber 1 Indice Indice do string descriptor que descreve
o numero serial

17 bNumConfigurations1 Numero Numero de possiveis configuracdes do

dispositivo

Tabela 2.1: Estrutura do Device Descriptor USB. Adaptada de USB IMPLEMENTERS FORUM, 2025b

Ap6s a leitura dos descritores, o host seleciona uma configuragio, carrega o driver
apropriado com base nas informacoes de Vendor/Product ID (VID/PID) e classe do

dispositivo, e o dispositivo esta pronto para ser utilizado.

2.4 Captura de trafego

A captura de trafego USB em um sistema pode ser realizada em diferentes niveis —
hardware, kernel, espaco de usuario — dependendo dos objetivos e do acesso disponivel.

11

12

2| USB

No nivel de hardware existem existem analisadores de protocolo (protocol analyzers) e
analisadores logicos (logic analyzers) que interceptam e encaminham sinais elétricos,
permitindo a reconstrucao de trafego com alta fidelidade temporal; é a tnica forma de
observar falhas que decorrem de condigdes fisicas.

Também ¢é possivel fazer essa captura no nivel de software, em duas camadas principais:
no espago do kernel ou no espago do usuario. A abordagem no espago do usuéario é muito
limitada, dado que essa técnica geralmente se baseia em "interceptar"(hooking) chamadas
de API de alto nivel. Um exemplo no espago do usuario é capturar chamadas ao método
libusb_bulk_transfer da libusb, todavia isso é restrito a programas aos quais se tem
controle.

A abordagem em nivel de kernel é muito mais comum e robusta, tipicamente utilizando
o modulo usbmon. Ele opera como um sniffer de protocolo, interceptando os USB Request
Blocks (URBs) — estruturas de dados do kernel que encapsulam todas as informacdes
necessarias das transagdes USB CORBET et al., 2005. O usbmon se posiciona entre os drivers
de dispositivo e os drivers da controladora host, fornecendo uma visdo completa e de baixo
nivel de toda a comunicacido USB do sistema. Ferramentas do espaco de usuario, como o
Wireshark consomem os dados do usbmon para decodificar esse trafego em um formato
legivel. Uma solu¢ao analoga em sistemas Windows é o driver de filtro chamado USBPcap,
que cumpre a mesma funcdo que o usbmon.

2.5 Abstracoes de Software para Interacao USB

Embora a comunicacdo em baixo nivel seja gerenciada pelo kernel e seus drivers de
controladora (host controllers), a interacdo de aplicacoes de espaco de usuario (userspace)
com dispositivos USB é, na maioria dos casos, mediada por bibliotecas de abstracdo. Essas
bibliotecas facilitam a criagdo de drivers customizados, ferramentas de analise e interagao
direta com dispositivos USB sem a necessidade de desenvolver codigo de baixo nivel.

A biblioteca mais fundamental neste ecossistema é a 1ibusb (LIBUSB DEVELOPERS,
2025). Trata-se de uma API em C, de c6digo aberto e multiplataforma (Linux, macOS,
Windows), que fornece acesso de baixo nivel a dispositivos USB a partir do espago de
usuario. Sua principal fungao é permitir que uma aplicacdo assuma o controle direto de uma
interface USB, sem passar pelos drivers de classe do kernel (como usb-storage ou usbhid).
Quando o sistema operacional ja possui um driver associado a interface, a aplicacdo
pode solicitar que a 1ibusb desvincule esse driver (Libusb_detach_kernel_driver), e
entdo reivindicar a interface (1ibusb_claim_interface). Uma vez que a interface esta
sob controle da aplicacdo, a libusb expde func¢des para comunicacao direta com seus
endpoints, permitindo o envio e recebimento de transferéncias de controle, lote, interrupcao
e isdcronas.

Sobre esta base, outras bibliotecas de nivel superior foram criadas. O PyUSB e o
usb4java, por exemplo, sdo wrappers em Python e Java, respectivamente, para a 1ibusb,
que oferece a mesma funcionalidade de baixo nivel, mas com a conveniéncia e agilidade de
prototipagem das linguagens de mais alto nivel. Também em um nivel de abstra¢ao mais
alto, existe a HIDAPI. Esta biblioteca foca exclusivamente em dispositivos da classe Human
Interface Device (HID) e abstrai completamente os detalhes do protocolo USB. A HIDAPI

2.5 | ABSTRACOES DE SOFTWARE PARA INTERACAO USB

permite que uma aplicacio leia e escreva relatérios HID sem precisar lidar com endpoints,
descritores ou tipos de transferéncia, fornecendo uma API mais simples e orientada ao uso
tipico de teclados, mouses, controles e sensores HID.

13

Capitulo 3

Fuzzing

fuzzing é uma técnica de teste automatizado em softwares por meio do fornecimento
massivo de entradas invalidas, inesperadas ou aleatorias. A ideia central é avaliar como
o programa se comporta diante dessas entradas, identificando anomalias que indiquem
falhas de robustez ou de seguranca. Tais anomalias podem se manifestar na forma de
travamentos (crashes), execugdes nao terminantes (loops infinitos), uso excessivo de recur-
sos computacionais, ou vulnerabilidades classicas de memoria, como buffer overflows e
use-after-free (UAF). Embora seja uma ténica antiga, inicialmente descrita em MILLER et al.,
1990, que cunhou o termo fuzzing apds o programa chamado fuzz, a técnica evoluiu para
métodos mais inteligentes e guiados por métricas internas do programa.

Os tipos de fuzzing podem ser classificados segundo o nivel de conhecimento do alvo
e o modo de geracdo de entradas. No que diz respeito a literatura, fuzzing apresenta uma
taxonomia consolidada, na qual os principais trabalhos utilizam terminologias e categorias
bastante uniformes para descrever estratégias, arquiteturas e técnicas adotadas pelos
fuzzers. Um dos estudos mais abrangentes nesse sentido é MANEs et al., 2018, no qual a
classificagdo dada a seguir segue em conformidade.

Em um fuzzing black-box, o sistema sob teste é tratado como uma caixa-preta: o fuzzer
tem acesso somente a entradas e saidas, limitando-se a observar o que lhe é fornecido, por
canais diretos ou laterais. Essa limitacdo muitas vezes resulta em uma exploracdo menos
eficiente, ja que o fuzzer ndo tem informacdes sobre a estrutura interna do programa,
dificultando a correlacéo entre a entrada fornecida e o estado interno atingido pelo sistema.
Uma estratégia de fuzzing white-box foi inicialmente apresentada pela Microsoft em
GODEFROID et al., 2012, utilizando instrumentacao, execucdo simbolica e informacgdes
internas do sistema, permitindo uma exploracdo mais direcionada, com melhor cobertura
de codigo e melhor deteccédo de falhas.

Entre esses extremos, ha ainda uma abordagem grey-box, que combina a eficiéncia dos
simples testes aleatorios com a inteligéncia da instrumentacgao parcial do programa. Tanto
as estratégias black-box quanto grey-box possibilitam um fuzzing guiado por cobertura de
codigo (coverage-guided), onde a geragio de entradas é orientada por métricas de cobertura:
entradas que exercitam novos trechos de cédigo recebem "energia"para serem mutadas
e exploradas ainda mais. Esse conceito de energia é explorado em BOHME et al., 2016,

15

16

3 | FUZZING

que mostra como a exercitacdo de novos caminhos de cédigo pode ser priorizada com
base em um modelo cadeia de Markov, distinguindo trechos de c6digo menos comumente
alcanc¢ados.

Preliminarmente, outro componente essencial do processo de fuzzing é o corpus, o con-
junto de entradas que serve de ponto de partida para as mutacdes. Um corpus bem projetado
cobre a maior variedade possivel de caminhos de execugio, aumentando a eficiéncia do
teste. O fuzzer gera novas entradas aplicando mutacdes sobre o corpus: insercao, remogao,
substituicdo de bytes, recombinacéo de partes de diferentes amostras ou até transformacoes
estruturais especificas do formato de dados em teste. Essas mutacdes buscam produzir
pequenas variacdes que levem o programa a novos estados de execugao.

Em termos de geracdo de dados, existem duas familias principais e conceitualmente
distintas: mutational e generational. fuzzers mutacionais partem de um corpus existente
e aplicam mutagdes sintaticas ou semanticas para produzir variantes, enquanto fuzzers
generacionais criam entradas do zero, baseando-se em modelos ou gramaticas que descre-
vem a estrutura esperada dos dados. Cada abordagem tem suas vantagens e desvantagens:
fuzzers mutacionais sdo mais simples de implementar e podem ser eficazes quando o corpus
inicial é representativo, mas enfrentam dificuldade em explorar profundamente formatos
complexos. fuzzers generacionais, por outro lado, podem alcangar uma cobertura mais
ampla de formatos especificos, mas exigem um conhecimento prévio detalhado sobre a
estrutura dos dados e mutacdes estruturais podem ser mais complexas. Na pratica, ambos
métodos podem ser aplicados de forma complementar, inicialmente complementando o
corpus com entradas geracionais e adicdes implementadas durante a execucdo por meio
de mutacoes.

Finalmente, ap6s encontrados resultados considerados interessantes com a execucdo do
fuzzer, ha o processo de minimizacao, também conhecido como delta debugging, para redu-
zir entradas interessantes até a menor forma que ainda reproduz o comportamento alvo — a
entrada utilizada pelo fuzzer tende a ndo ser "minimal’, dificultando uma possivel posterior
depuragido. Com os resultados, e quando possivel, inicia-se o fluxo de pds-processamento:
agrupar e deduplicar bugs equivalentes (por stack trace, cobertura, instrumentacido como
KASAN ou KMSAN) para obter um diagndstico e gerar um relatorio "maximal"reproduzivel;
esses passos transformam ruido bruto de crashes em bugs acionaveis e tuteis para corre-
¢do.

3.1 Trabalhos Relacionados

Ao longo dos anos, diversos trabalhos apresentaram implementacdes e novas estra-
tégias para ferramentas de fuzzing, cada uma com suas caracteristicas, pontos fortes e
limitacdes.

O American Fuzzy Lop (AFL), lancado em 2013 e continuado através do projeto AFL++
(FrorALDI et al., 2020), é indiscutivelmente o fuzzer que popularizou o fuzzing guiado por
cobertura (coverage-guided). Sua principal inovagao foi o uso de uma instrumentacéao leve
para monitorar quais caminhos de c6digo uma entrada exercita. Com essa informagéao, o
AFL emprega um algoritmo genético para priorizar e mutar as entradas do corpus que
descobrem novos caminhos, permitindo-lhe explorar eficientemente a légica interna de

3.1 | TRABALHOS RELACIONADOS

programas complexos sem a necessidade de analise de codigo-fonte. Dada sua eficacia e
simplicidade de uso, o AFL foi responsavel pela descoberta de multiplas vulnerabilidades
em softwares importantes (ZALEWSKI, 2025) e seu design se tornou a base para inumeras
ferramentas subsequentes e pesquisas académicas na area (MANEs et al,, 2018). As mutacdes
empregadas pelo AFL incluem duas categorias principais: deterministica e havoc. Dentre
as mutacoes deterministicas, destacam-se bit flips e substitui¢cdes por valores interessantes,
como edge cases de inteiros (0, 1,—1, 2% — 1,...). Mutag¢des havoc sdo utilizadas apds esgotar
o modo deterministico, com mutacdes aleatérias empilhadas (stacked mutations).

Radamsa (HELIN, 2025) é um projeto que se auto descreve como um gerador de casos
de teste para testes de robustez. Ele é projetado para ser simples, rapido e eficaz na geracéo
de entradas mutadas a partir de um corpus inicial, e operar completamente as cegas. Como
suporta e aplica mutacdes a qualquer tipo de entrada, é frequentemente utilizado em
conjunto com outras ferramentas de fuzzing, como o previamente mencionado AFL++,
para aumentar a diversidade das entradas testadas e melhorar a cobertura do cédigo. A
auséncia de qualquer tipo de integracdo com instrumentacdes inviabiliza uma analise
mais profunda do desempenho do mesmo, como ja explorado em PRAMANIK e TAYADE,
2019.

Outro importante fuzzer com muitos bugs encontrados é o syzkaller, software de
fuzzing desenvolvido pelo Google, focado em encontrar vulnerabilidades no kernel Linux.
O syzkaller é um fuzzer guiado por cobertura sem supervisao, instrumentado principal-
mente pelo kcov para analise de cobertura de codigo e sanitizers do kernel como KASAN e
KMSAN para detecgdo de erros. O suporte ao subsistema USB se da através do médulo do
kernel raw-gadget, apresentado em KonovaLrov, 2019. Um dos pontos interessantes do
syzkaller é seu repositorio publico com milhares de bugs encontrados no kernel Linux,
centralizados através do syzbot (SOURCE, 2025). Zou et al., 2022 mostra que muitos dos
bugs de baixa severidade encontrados podem ser escalados para um impacto de risco
maior.

O trabalho ramsauer2019black-box propde uma abordagem de fuzzing black-box
utilizada para avaliar a seguranca do protocolo de rede MQTT. O processo de geragao
de entradas empregado é simples e utiliza apenas o radamsa para mutacdo de entradas.
Uma abordagem interessante, por outro lado, é uma medida de contorno para o cenario
black-box: na auséncia de instrumentacéo direta do sistema alvo, o trabalho utiliza métri-
cas externas para determinar se o sistema conectado esta ativo, permitindo a identificacdo
de entradas andmalas que causam falhas.

Dentre as muitas implementacgdes de fuzzers existentes, CHEN et al., 2018 busca otimizar
o processo de fuzzing ao introduzir uma abordagem de "fuzzing conjunto”, onde multiplos
fuzzers sdo utilizados com sincronizacdo do corpus entre eles. A ideia é aproveitar as forcas
individuais de cada fuzzer para explorar diferentes partes do espago de entrada, aumentando
a probabilidade de encontrar bugs. Essa abordagem ¢ particularmente eficaz quando os
fuzzers envolvidos possuem estratégias de mutacdo e cobertura distintas, permitindo
uma exploracdo mais abrangente do programa alvo. O problema, todavia, é quando a
instrumentacgio no objeto de teste é limitada, dado que isso inviabiliza uma avaliacdo do
desempenho de cada fuzzer para selecio e priorizacao.

Visando o escopo do presente trabalho, ScHuMILO et al., 2014 apresenta, pela primeira

17

18

3 | FUZZING

vez, uma abordagem de fuzzing de alta performance para drivers USB, chamada de vUSBf.
O vUSBf define um conjunto de casos de teste e os pacotes sdo manipulados utilizando
scapy. A execugdo dos testes ocorre com a virtualizagdo paralela de multiplos hosts
utilizando KVM e QEMU, e os erros sdo detectados por meio de monitoramento de logs do
kernel, que deve estar configurado para maxima verbosidade. Trabalhos antecessores,
como TONDER e ENGELBRECHT, 2014 continham a necessidade de um dispositivo fisico
(usualmente Facedancer) para emular o dispositivo USB, ao mesmo tempo em que alguma
instrumentacio do sistema alvo era necessaria.

3.2 Emulacio de Dispositivos USB

Uma das tarefas que antecede a construcdo de um fuzzer é a escolha de como o
dispositivo USB sera emulado, de forma que pacotes possam ser enviados para dispositivos
externos ao fuzzer. No caso de fuzzers usando sistemas embarcados baseados em FPGA,
por exemplo, esse controle fica a cargo da implementacéo do hardware. Por conveniéncia
e flexibilidade, a maior parte dos fuzzers USB utiliza o kernel Linux em dispositivos com
suporte a USB OTG - que permite o uso do modo gadget.

Fungdes cruciais para o fuzzer, como um controle mais direto do hardware, sdo limitadas
ao kernelspace. Embora seja tecnicamente possivel codificar o fuzzer inteiro no espaco do
kernel, isso certamente nao é uma boa ideia devido ao risco de bugs que podem causar kernel
panic, por exemplo. Entdo surge a necessidade de utilizar um médulo do kernel, que serve
como uma ponte entre o userspace e kernelspace para utilizar funcdes restritas ao kernel. Ha
diversas opcoes de modulos do kernel Linux que podem ser utilizados para assumir o modo
gadget e enviar pacotes manipulados. Dentre as principais opg¢des existentes, destacam-se
FunctionFS, GadgetFS e raw-gadget.

Cada uma dessas opcoes apresenta caracteristicas distintas que influenciam diretamente
na implementacéo e eficacia do fuzzer. A escolha entre essas opcoes deve considerar fatores
como facilidade de uso, flexibilidade e desempenho.

O moddulo escolhido para o desenvolvimento do fuzzer é o raw-gadget, que funciona
com bind direto a controladores UDC e fornece uma interface de nivel muito baixo que
encaminha as requisicdes USB para o userspace com verificagdes minimas, o que permite
um controle mais fino dos dados. E um médulo que foi desenvolvido visando fuzzing,
mas mesmo assim apresenta algumas sanitiza¢des que limitam a reproducao de alguns
bugs.

Uma das poucas limitacdes do raw-gadget, por exemplo, é a checagem de comprimento
maximo de transferéncias. Bugs que levam a vazamento de memoria, por exemplo, podem
causar uma transferéncia de dados com tamanho inesperado. Limitar o tamanho maximo
de transferéncias pode impedir a reproducéo de tais bugs. Esse cenario ja apareceu em uma
lista de discussao do kernel e um patch foi enviado pelo mantenedor, ap6s a vulnerabilidade
CVE-2025-38494 ser reportada e nio ser efetivamente reproduzivel com o raw-gadget.
KonovaLov, 2025b

Em contraste, FunctionFsS foi pensado para montar fungdes padroes e validas dentro
de um gadget. Justamente por isso, oferece mais seguranga, coeréncia e previsibilidade

3.3 | ANALISE DE VULNERABILIDADES

para ambientes de produgdo. O GadgetFS, por sua vez, ¢ um moédulo legado no qual o
FunctionFS foi baseado; também com limita¢des similares ao FunctionFS em termos
de flexibilidade e controle, o que é um obstaculo para o desenvolvimento de um fuzzer
eficaz.

Programa 3.1 linux/v6.17.1/source/drivers/usb/gadget/function/f_fs.c: validacdo de des-
critores.

1 switch (_ds->bDescriptorType) {

2 [...]

3 case USB_DT_INTERFACE: {

4 struct usb_interface_descriptor *ds = (void *)_ds;
5 pr_vdebug("interface descriptor\n");

6 if (length != sizeof *ds)

7 goto inv_length;

8

9 __entity(INTERFACE, ds->bInterfaceNumber);

10 if (ds->iInterface)

11 __entity(STRING, ds->iInterface);

12 *current_class = ds->bInterfaceClass;

13 *current_subclass = ds->bInterfaceSubClass;

14 }

15 break;

16 [...]

17 default:

18 /* We should never be here x/

19 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
20 return —EINVAL;

O trecho de c6digo 3.1 mostra um impeditivo do FunctionFS: um tratamento e valida-
cdo de descritores. Por outro lado, nesse mesmo cenario, raw-gadget nao faz nenhuma
validagdo ou interpretacao dessa estrutura. Ele a trata como um bloco de dados opaco e a
envia diretamente para o aplicativo de espaco do usuario, que entdo tem a responsabilidade
total de interpreta-la e responder adequadamente.

3.3 Analise de Vulnerabilidades

Vulnerabilidades relacionadas a USB podem surgir tanto por bugs de implementacdes
de drivers no host quanto por falhas na camada de aplicacdo. No nivel do kernel, vulnerabi-
lidades geralmente se manifestam como corrupcdo de memoria, leitura no kernelspace fora
dos limites, negacao de servico, ou execucao espuria de cddigo. Na camada de aplicagao,
falhas geralmente exigem maior conhecimento do contexto da aplicacdo e podem se
apresentar de diversas formas, como mau tratamento de format strings em descritores de
strings ou condig¢des de corrida (TOCTOU).

SERGEY BRATUS, 2012 apresenta um bug encontrado, em 2012, no Skype: ao definir
alguns descritores de string como "%n%s%n%s%n%s", a aplicacdo fechava inesperadamente.
O problema provavelmente residia em um uso de fun¢des como printf sem a devida
sanitizacdo, levando a uma falha potencialmente exploravel.

19

20

3 | FUZZING

Davis, 2013 define negagdo de servico (DoS), através de use-after-free (UAF) ou des-
referéncia de ponteiros nulos, como uma das mais comuns falhas encontradas, e essas
sdo falhas facilmente encontradas através de fuzzing. Konovarov, 2017 lista inumeros
exemplos de bugs do tipo encontrados pelo syzkaller, como CVE-2017-16525.

3.4 Meétricas Externas

Um desafio inerente ao fuzzing black-box é a observabilidade do sistema, que dificulta a
identificacao de falhas. Faz-se, entdo, necessario elaborar oraculos de detec¢ao de bugs que
possam ser empregadas para detectar diferenciais entre casos de teste, utilizando métricas
externas para guiar o processo de fuzzing. Operando as cegas, faz sentido combinar diversas
métricas para inferir o estado do sistema alvo e utilizar uma avaliacdo de curto-circuito,
dado que ndo ha como determinar precisamente o comportamento do sistema e qualquer
anomalia pode ser considerada um bug potencial.

Uma das técnicas para a deteccdo de diferencial no sistema alvo é a disponibilidade do
processo de enumeracdo USB. Dentre os codigos do projeto, ha renumerator.c, baseado no
modulo raw gadget que, simplificadamente:

1. em loop:
2. inicia USB no modo device, com USB_RAW_IOCTL_INIT e USB_RAW_IOCTL_RUN;
3. processa pacotes do tipo USB_RAW_EVENT_CONNECT;

4. responde com descritores e configuracdes de vendor ID 0x05e3 e product ID
0x f €00, simulando ser um mouse da marca Razer;

5. desconecta o device.

O objetivo é simples: forcar um processo infinito de enumeracao por parte do host, verifi-
cando a hipotese do host, por medidas de seguranca, ndo tratar mais USB a partir de certo
ponto, e servindo de base para o proceso de fuzzing.

Um outro exemplo de métrica externa que pode indicar uma negacéo de servico € a
falta de polling por lado do host. Se o device conectado tem um endpoint que requer polling
e o host deixa de enviar pacotes de polling, isso pode indicar que o device enviou um pacote
invalido e o host passou a ignora-lo, ou que o host travou; em ambos casos, é um resultado
anomalo interessante.

Capitulo 4

Desenvolvimento da ferramenta

Com base no capitulo 3, o presente trabalho propde a construcio de uma ferramenta de
fuzzing USB para ser usado em testes do tipo black-box. Visando uma maior acuracia nos
testes, a ferramenta também integra e combina resultados advindos de fuzzing em outros
sistemas, permitindo uma rapida identificacido de falhas presentes no kernel de sistemas
operacionais comuns, por exemplo.

A ferramenta é composta por dois componentes principais: um dispositivo USB pro-
gramavel, responsavel por emular dispositivos USB e enviar pacotes malformados; e um
software executor, responsavel por controlar o dispositivo USB, estruturar os pacotes a
serem enviados e monitorar o sistema alvo em busca de falhas.

Embora a observabilidade dos resultados com os testes sendo feitos de maneira com-
pletamente fechada seja bastante comprometida, os testes de fuzzing necessitam de um
oraculo de bugs, similar a um sistema de feedback, por dois simples motivos: é necessario
identificar se a maquina chegou a algum estado, de alguma forma, considerado inesperado;
€ necessario saber qual conjunto de pacotes levou a maquina a tal estado.

Previamente, na sec¢do 3.4, foi apresentado um script chamado renumerator . c, respon-
savel por verificar se o processo de enumeracao USB estd ocorrendo normalmente. Uma
versdo modificada desse script sera utilizada adiante como forma de oraculo. O processo é
simples: apos cada caso de teste, e um pequeno tempo de espera, o oraculo é acionado. O
sucesso da enumeracio tende a significar falha do teste, e esse processo aparenta cobrir a
maior parte das possiveis falhas, como crashes. Outro método utilizado para detecgio de
leituras indevidas de memoria no espaco do kernel sera demonstrado, a partir da analise da
saida de resposta a pacotes USB especificos. Alguns comportamentos inesperados, como
um erro que leve a um menu desconhecido ou uma mensagem erro, também sdo uma
forma de feedback valiosa, embora mais dificil de ser automatizada.

4.1 Escolha e configuraciao do hardware

A escolha do hardware é um ponto crucial para o desenvolvimento da ferramenta. E
necessario que o dispositivo USB programavel possua suporte a modo gadget, permitindo

21

22

4 | DESENVOLVIMENTO DA FERRAMENTA

que ele atue como um dispositivo USB completo, capaz de se comunicar com o host e enviar
pacotes malformados conforme necessario. O suporte a Linux é outro ponto importante,
visto que a implementacdo do software executor é muito mais simples nesse ambiente
devido a existéncia de modulos do kernel que permitem manipulacdo de pacotes USB
de forma direta. O custo e a disponibilidade do hardware também forem fatores a serem
considerados, visando a viabilidade pratica do projeto. A tabela 4.1 apresenta uma compa-
racdo entre as principais opg¢des de Single Board Computers (SBCs) e microcontroladores,
destacando as caracteristicas relevantes para o projeto.

Nome Linux USB (modo host) USB (modo gadget)
ESP32-S3 Muito limitado 0 1x USB 2.0
Raspberry Pi Zero 2W Suportado 1x USB 2.0 1x USB 2.0
Raspberry Pi 5 Suportado 2x USB 2.0, 2x USB 3.0 1x USB 2.0
BeagleBone Black Suportado 1x USB 2.0 1x USB 2.0

Tabela 4.1: Comparativo entre SBCs e microcontroladores populares em relagdo ao suporte a Linux e
USB

Field Programmable Gate Arrays (FPGAs) foram uma opgao considerada, mas o custo
mais elevado e a complexidade de desenvolvimento tornaram essa alternativa inviavel
para o escopo do projeto. Microcontroladores como o ESP32-S3 possuem suporte limi-
tado a Linux, o que dificulta a implementacdo do software executor. BleagleBone Black
e Raspberry Pi 5 sdo opc¢des viaveis, mas o Raspberry Pi Zero 2W tem um menor
custo, é amplamente disponivel e ndo apresenta limita¢des significativas em relacdo aos
demais. Portanto, o Raspberry Pi Zero 2W foi escolhido como a plataforma ideal para o
desenvolvimento da ferramenta.

Nota-se que, infelizmente, nenhuma opc¢ao considerada viavel possui suporte nativo a
USB 3.0 no modo gadget. Embora o USB 2.0 seja suficiente para a maioria dos testes de
fuzzing, essa limitacdo pode impactar a capacidade de explorar vulnerabilidades especificas
relacionadas ao USB 3.0.

O setup do Raspberry Pi Zero 2W tem alguns detalhes importantes, que impactam
diretamente a configuragio das portas e comunicacdo USB. Um dos problemas encontra-
dos durante a configuragio é que o moédulo do kernel utilizado pelo fuzzer, raw-gadget
(KonovaLrov, 2025a) ndo funciona com a versio 6.12 do kernel Linux, utilizada, por padrao,
pelo Raspberry Pi Imager. A solugdo de contorno encontrada é fazer o uso de uma
versdo do Raspberry Pi 0S Bullseye, com o kernel Linux na versido 5.20 fornecida em
R. P. FOUNDATION, 2023.

Apds a instalacdo do sistema operacional, a configuracao inicial pode ser feito com o
script a seguir:

apt-get update -y

apt-get dist-upgrade -y

apt-get dinstall -y raspberrypi-kernel-headers

printf "\ndtoverlay=dwc2" | sudo tee -a /boot/config.txt
printf "\ndtoverlay=disable-bt" | sudo tee -a /boot/config.txt
printf "\ndwc2" | sudo tee -a /etc/modules

O b~ W N R

4.2 | CRAWLER DO SYZ-BOT

7 git clone https://github.com/xairy/raw-gadget
8 reboot

setup.sh

Por padrao, o Raspberry tentara se conectar a rede Wi-Fi, se definida pelo imager.
Isso traz alguns problemas, como o acesso ao Raspberry pela rede. Pode-se desabilitar as
configuragdes wireless alterando a configuracdo de boot: printf "
ndtoverlay=disable-bt sudo tee -a /boot/config.txt. Sem a configuracdo de
rede, uma alternativa é fazer a conexao ao Raspberry via UART e obter um terminal
serial. Com o terminal serial, também ¢é possivel ativar PPP sobre UART para criar uma
interface de rede virtual, que sera util a seguir.

A instalacdo do raw-gadget deve ser feita apos reiniciar o sistema com o script acima,
para garantir que o SBC esteja no modo gadget. O processo de instalacdo do raw-gadget
pode ser simplesmente feito com os comandos a seguir:

1 cd raw-gadget/raw_gadget

2 sudo make
3 sudo ./insmod.sh

raw-gadget_install.sh

Nesse ponto, o mdédulo raw-gadget ja esta ativo, com a placa operando em modo
gadget. O nome do driver UDC estara listado em /sys/class/udc/. Resta configurar o
syzkaller, que sera utilizado pela integracdo com o SOURCE, 2025. A primeira etapa é
clonar o repositério, adaptar para o Raspbery Pi e executar o processo de build. Como o
processo é lento, deve ser feito fora do Raspberry Pi, com compila¢io cruzada, e os arquivos
copiados para a placa posteriormente. O script a seguir faz a compilacao do syzkaller
para a arquitetura ARM:

1 git clone https://github.com/google/syzkaller

alias syz-env="${PWD}/syzkaller/tools/syz-env"

cd syzkaller

DRIVER_NAME=# Resultado de $(ls /sys/class/udc/) dentro da placa

perl -0777 -i -pe ’s/char device\[32\];\s*sprintf\ (&device\[0\], "dummy_udc
\.%Lllu", procid\);\sxint rv = usb_raw_init\(fd, speed, "dummy_udc", &
device\[0\]\);/int rv = usb_raw_init(fd, speed, "${DRIVER_NAME}", "${
DRIVER_NAME}"); /g’ executor/common_usb_Llinux.h

6 syz-env make generate

syz-env GOARM=5 make TARGETARCH=arm execprog

8 syz-env make TARGETARCH=arm executor

a b» W N

~

syzkaller_setup.sh
Com os arquivos copiados para a placa, 0 syz-executor ja pode ser usado. Um unico

problema impede o uso do syz-executor e a integracdo com o syzbot: ndo ha seeds
carregadas.

4.2 Crawler do syz-bot

A fim de contornar o problema de auséncia de seeds apds a configuracdo inicial da
placa, uma opgao é simplesmente baixar todas seeds disponibilizadas pelo SoUurce, 2025. O

23

24

4 | DESENVOLVIMENTO DA FERRAMENTA

script abaixo faz o scraping de todos bugs encontrados, com logs para a reproducéo via
syzkaller. Isso é facilitado pela interface web publica, com todas informacdes necessarias
e sem restri¢des de acesso para bots.

O 00 N O U b WN

a o a0 b D DD DD DAMDDDMOOWWWWWWWWWNNDNMNNNMNMNNNMNRERRERRERERERERRFERE
N HF O OWOoWwW~NOU M WNKFEFOOOWONOOOOGDNAWDNMEOOOWONOOOGDMWNEREOGOOWNOOGDMWNREOO

import r
from bs4
import h
import t
import o

BASE_URL = "https://syzkaller.appspot.com"

SYZ_REPR

bug_1link

if not o
os.ma

def get_
respo

if re

pr

re

soup
rows

for r
st
if

if

def find

equests

import BeautifulSoup
ashlib

ime

s

O_LOG_PATH = "syz-repro-seeds"
s =[]
s.path.exists(SYZ_REPRO_LOG_PATH):

kedirs(SYZ_REPRO_LOG_PATH)

bug_urls(url):

nse = requests.get(url)
sponse.status_code != 200:
int(f"{url}: {responsel}")
turn []

= soup.find_all("tr")

ow in rows:

= BeautifulSoup(response.text, "html.parser")

at_cells = row.find_all("td", class_="stat")

not stat_cells:
continue

any(cell.text.strip() in ("C", "syz") for cell in stat_cells):
title_cell = row.find("td", class_="title")

if title_cell and title_cell.a:

bug_url = BASE_URL + title_cell.a[’href’]

bug_links.append(bug_url)

_first_syz_href(bug_url):

time.sleep(l) # syzbot is limited to 1 request per second

respo
if re
pr
re

soup
rows
for r
re
fo

retur

def down

nse = requests.get(bug_url)
sponse.status_code != 200:
int(f"{bug_url}: {responsel}")
turn None

= BeautifulSoup(response.text, "html.parser™")

= soup.find_all("tr")
ow in rows:

pro_cells = row.find_all("td", class_="repro")

r cell in repro_cells:
a_tags = cell.find_all("a")
for a in a_tags:
if a.text.strip() == "syz":
return BASE_URL + a[’href’]
n None

load_syz_repro(syz_url):

4.3 | FUZZING COM SYZKALLER

53 time.sleep(l) # syzbot is limited to 1 request per second

54 response = requests.get(syz_url)

55 if response.status_code != 200:

56 print(f"{syz_url}: {response}")

57 return None

58 return response.text

59

60 for bug_list_url in ["/upstream?manager=ci2-upstream-usb", "/upstream/fixed?
manager=ci2-upstream-usb"]:

61 get_bug_urls(BASE_URL + bug_list_url)

62 print(len(bug_links))

63

64 for 1ink in bug_links:

65 print(link)

66 syz_repro_url = find_first_syz_href(link)

67 if syz_repro_url:

68 print(f"Found syz repro URL: {syz_repro_url}")

69 syz_repro = download_syz_repro(syz_repro_url)

70 filename = hashlib.shal(syz_repro_url.encode()).hexdigest()[:12]

71 with open(f"{SYZ_REPRO_LOG_PATH}/{f1ilename}.log", "w") as f:

72 f.write(syz_repro)

syzbot_scraper.py

Note que nem todas seeds produzem resultados relevantes, e o parsing de seeds fun-
cionais ndo ¢ trivial: ha bugs ndo reproduziveis, ou com syscalls que ndo tem relacédo
com USB (e, portanto, ndo reproduziveis no host), por exemplo; essas syscalls podem ou
nao ter algum efeito no resultado. Para contornar essa limitacdo, um pequeno filtro foi
aplicado a todos arquivos de log, selecionando apenas aqueles que contém chamadas de
sistema relativas a USB, e sem chamadas que nao sao reproduziveis externamente, como
name_to_handle_at.

A reproducdo de um arquivo de log, com pacotes enviados ao host, pode ser feita
com o comando sudo syz-execprog -executor ./syz-executor -slowdown=1
-threaded=1 -collide=1 -procs=1 -enable=” -debug <seed.log>,onde <seed.log>
€ o arquivo de log obtido pelo crawler.

4.3 Fuzzing com syzkaller

Uma das formas de excluir a dependéncia de logs de erros divulgados pelo projeto
syzbot é fazer o uso do proprio syzkaller para realizar fuzzing genérico na pilha USB
do kernel Linux. Essa abordagem pode revelar vulnerabilidades ndo previamente conhe-
cidas e aumentar a abrangéncia dos testes. Para esse proposito, faz-se necessario o uso
do syz-manager, componente do syzkaller responsavel por orquestrar o processo de
fuzzing, com uma configuracdo especifica para esse proposito. Embora isso nao aparente
ser possivel com a configuragio padrio, o cddigo que especifica o arquivo de configuragéo
mostra o contrario.

Uma rapida analise de alguns logs de erros gerados pelo syzkaller com relagiao ao
subsistema USB aponta o uso de pseudochamadas de sistema especificas, usualmente
seguindo o formato syz_usb_x, como syz_usb_ep_read. As chamadas de sistema open,

4 | DESENVOLVIMENTO DA FERRAMENTA

Programa 4.1 syzkaller/pkg/mgrconfig/configgo: trecho do cédigo-fonte do syzkaller que
mostra a possibilidade de configuracdo de syscalls especificas

// List of syscalls to test (optional). For example:

// "enable_syscalls": ["mmap", "openat$ashmem", "ioct1$ASHMEMx"]

EnabledSyscalls []string ‘json:"enable_syscalls,omitempty"¢

// List of system calls that should be treated as disabled (optional).

DisabledSyscalls []string ‘json:"disable_syscalls,omitempty"*

// List of syscalls that should not be mutated by the \textit{fuzzer} (
optional).

o b wWN

close, read, write, joctl também sio frequentemente utilizadas. Demais configuracdes,
como o kernel a ser utilizado pelo fuzzer ou aspectos relativos a performance ficam a
critério do usuario.

4.4 Estratégias da ferramenta

A ferramenta, sucintamente, ndo é um unico software monolitico destinado a realizar
fuzzing USB. Ela é composta por alguns componentes que a assemelham a um framework,
permitindo a implementagdo manual de estratégias de fuzzing para testar hipdteses mais
direcionadas. Paralelamente, hd um componente de fuzzing mais genérico, que visa explorar
a superficie de ataque de forma mais ampla, a partir de uma captura de trafego. Em resumo,
a ferramenta desenvolvida possui trés estratégias principais de fuzzing:

fuzzing direcionado a hipoteses especificas, implementadas manualmente;

fuzzing genérico, a partir de mutacdes aplicadas a um corpus de PCAPs;

« fuzzing genérico, guiado por vulnerabilidades conhecidas extraidas de um fuzzing
instrumentado;

« simples reproducdo de bugs conhecidos.

O terceiro caso é baseado em vulnerabilidades encontradas por Konovarov, 2017, com,
como previamente citado, bugs reportados em SOURCE, 2025. O syzbot é uma das escolha
bastante promissora, dado seu baixo custo e velocidade de reproducao. Essa estratégia é
reduzida, apos um parsing e reproducéo de logs, ao caso do fuzzing genérico a partir de
mutacdes aplicadas a um corpus de PCAPs, conforme ilustrado em 4.1.

4.5 | BASE INICIAL DE CAPTURAS

Estratégia de fuzzing

1 l

Reprodugdo de bugs do
syzbot

Guiado por logs de bugs

, :

Hipdtese especifica Validagdo do bug de entrada

I

Reprodugao e captura do
triafego USB

v

Guiado por corpus de
capturas

|

Carregamento da base
inicial de capturas Verificagdo do estado
Mutacdo

Figura 4.1: Estratégias de fuzzing empregadas pela ferramenta

4.5 Base inicial de capturas

O conjunto de capturas utilizado para os testes de fuzzing foi construido através de
duas fontes principais:

« logs do syzkaller, obtidos via crawler (se¢do 4.2) do syzbot e instancia local (4.3);

« trafego USB capturado em PCAPs, obtidos via coleta local, através de diversos dispo-
sitivos como mouses e outros periféricos, e amostras do Wireshark (W. FOUNDATION,

2025).

28

4 | DESENVOLVIMENTO DA FERRAMENTA

4.6 Validacao e reproducao de bugs do syzbot

Embora os logs do syzkaller sejam reproduziveis com ferramentas como o
syz_execprog/syz_executor, esses logs nio representam diretamente o trafego do
dispositivo USB em um formato padronizado, como PCAP. O conteudo do arquivo de
logs é composto por uma série de pseudochamadas de sistema que sdo interpretadas pelo
executor do syzkaller. Embora seja tecnicamente viavel fazer o parsing dessas chamadas
e converté-las para PCAPs, padronizando as entradas, esse processo é complexo e propenso
a erros, devido a natureza abstrata das chamadas. Outro fator que precariza essa ideia é a
restricdo ao formato de uma implementacéo especifica, utilizada pelo executor, que pode
vir a mudar com o tempo.

Programa 4.2 Log gerado pelo syzkaller para o bug “memory leak in __hci_cmd_sync_sk®

1 # https://syzkaller.appspot.com/bug?id=4
286db64b1c9b392d18c1314c37e9de9fach2e40

2 # See https://goo.gl/kgGztd for information about syzkaller reproducers.

3 #{"repeat":true,"procs":1,"slowdown":1,"sandbox":"none","sandbox_arg":0,"leak
":true,"close_fds":true,"vhci":true,"callcomments":true}

4 syz_usb_connect (0x5, 0x36, 0x0, 0x0)

5 ro = userfaultfd(0x1)

6 ioct1SUFFDIO_API(r0, 0xc0l8aa3f, &(0x7f0000000000)={0xaa, 0x4d0})

7 bpfSMAP_CREATE (0x0, &(0x7f0000000000)=ANY=[@ANYBLOB="1700000007"], 0x50)

8 sendto$packet (OxFFFFFfffffffffff, &(Ox7f0000000000)="[", Ox1l, 0x0, 0x0, Ox0)

9 rl = syz_init_net_socket$bt_hci(0x1f, 0x3, 0x1)

10 bind$bt_hci(rl, &(0x7f0000000100)={0x1f, Oxffff, 0x3}, Ox6)
11 write$binfmt_misc(rl, &(0x7f0000000000), Oxd)

Como essa é uma tarefa que nao é executada frequentemente, uma alternativa encon-
trada foi reproduzir o log e capturar o trafego gerado em PCAPs. Essa abordagem, embora
menos direta, garante que o trafego capturado seja fiel ao comportamento do syzkaller,
sem a necessidade de interpretar e converter as chamadas manualmente. Outro ponto
positivo dessa ideia é a mitigagdo do problema de logs ndo minimizados: ao converter a
captura para PCAP e filtrar por USB, ha ao menos a garantia de que todo o log ¢, de fato,
referente a USB.

O processo descrito é trivial: basta executar o log com o syz-execprog, como descrito
anteriormente, enquanto uma ferramenta de captura de pacotes USB esta ativa, como o
Wireshark. Uma limitacdo dessa abordagem é que, ao capturar apenas o trafego USB,
perde-se o contexto das chamadas de sistema que prepararam o ambiente; bugs que
dependem de interagdes complexas entre chamadas de sistema, por exemplo, podem néo
ser reproduziveis.

4.7 Parsing do trafego

Os arquivos de captura de trafego USB, no formato PCAP, precisam ser interpretados
e convertidos para estruturas de dados que possam ser manipuladas pela ferramenta de
fuzzing. Para esse proposito, foi utilizado o framework Pyshark (KiIMINEwT, 2025), que é

4.7 | PARSING DO TRAFEGO

um wrapper do tshark, permitindo a leitura e analise de arquivos PCAP de forma eficiente,
com a divisdo de campos dos pacotes USB oferecida pelo Wireshark.

O parsing dos pacotes consiste na extragao dos campos relevantes de cada pacote USB,
conforme definido da especificacdo. Para extrair o campo idVendor ou idProduct, por
exemplo, faz-se necessario definir toda a estrutura de um device descriptor, iterar por
todos pacotes USB da captura e, assim que um pacote desse tipo for encontrado, mapea-lo
para a estrutura definida.

Programa 4.3 Parsing de pacotes USB, utilizando pyshark: extracido de device descriptors

1 import pyshark

2 import struct

3

4 def parse_device(data):

5 # bLength para device descriptor ésempre 18 bytes

6 if len(data) != 18: return False

7 # campos do device descriptor, conforme spec USB 2.0

8 fields = struct.unpack(’<BBHBBBBHHHBBBB’, data[:18])

9 # bDescriptorType para device descriptor é1

10 if fields[1] != 1: return False

11 # bMaxPacketSize sé pode ser 8, 16, 32 ou 64 para USB 2.0,
12 if fields[6] not in [8, 16, 32, 64]: return False

13 print(f"Device Descriptor:")

14 print(f" bLength: {fields[0]}")

15 print(f" idVendor: Ox{fields[7]:04x} | idProduct: Ox{fields[8]:04x}")
16 return True

17

18 def process_payload(raw_bytes):

19 bLength = raw_bytes[0]

20 bDescriptorType = raw_bytes[1]

21 descriptor_data = raw_bytes[0 : blLength]

22 # faz o parsing do device descriptor, se a estrutura for compativel
23 if bDescriptorType == 1 and blLength == 18:

24 parse_device(descriptor_data)

25

26 def main():

27 capture = pyshark.FileCapture(’usb_capture.pcap’)

28 for pkt in capture:

29 # filtra apenas pacotes USB, com dados

30 if hasattr(pkt, ’usbll’) and hasattr(pkt.usbll, ’data’):
31 hex_str = pkt.usbll.data

32 clean_hex = hex_str.replace(’:’, ’’)

33 # filtra pacotes sem dados relevantes

34 if(clean_hex == "Data <none>" or clean_hex == "00"): continue
35 raw_bytes = bytes.fromhex(clean_hex)

36 process_payload(raw_bytes)

37

38 if __name__ == "__main__":

39 main()

Dessa forma, todos campos relevantes dos pacotes USB podem ser extraidos e armaze-
nados, para posterior manipulagdo e mutagao pelo fuzzer.

30

4 | DESENVOLVIMENTO DA FERRAMENTA

Um ponto importante a ser destacado é que o parsing demonstrado acima pode abranger
alguns erros do tipo falso-positivo, onde um pacote é identificado com um determinado
descritor, e na verdade néo o é. Isso ocorre devido a natureza dos dados capturados, que
podem conter ruidos ou pacotes malformados que seguem a estrutura de determinado
tipo. Durante os experimentos realizados, notou-se que esse tipo de erro ndo impacta
significativamente o processo de fuzzing. As restri¢des impostas pelo parser, como ao
restringir os valores do campo bMaxPacketSize, no exemplo acima, ajudam a mitigar
esse problema.

4.8 Mutacao de pacotes

Seguindo a logica do fuzzer, descrita na secdo 4.4, a mutacao dos pacotes USB é um
passo que sucede o carregamento e o parsing das entradas. Nao ¢ inteligente testar todos
os possiveis valores para cada campo do pacote, dado que essa tarefa exaustiva é inviavel
na pratica. O espaco de entradas é muito grande — um configuration descriptor pode
assumir, sem ferir a especificacio, qualquer valor em seus 18 bytes, um nimero na ordem
de 10" - e o processo de fuzzing nio é facilmente escalavel.

O processo de mutagio de pacotes implementado na ferramenta itera sobre cada campo
do pacote USB a ser mutado e aplica as seguintes mutagdes, descritas em MANEs et al., 2018
e PRAMANIK e TAYADE, 2019, utilizadas por fuzzers como FIORALDI et al, 2020, honggfuzz e
ramsauer2019blackbox:

« mutacdo aritmética: incrementa ou decrementa o valor do campo em r, onde r é um
inteiro aleatorio tal que 1 < r < 35;

baseado em dicionario: valores como format strings, Gteis para bugs como o apontado
na se¢do 3.3, e valores proximos a limites comuns, usados em estratégias de analise
de valor limite, como 0, —1 ou 255;

« integracao com HELIN, 2025;
« sobreescrita com valores de outro campo do mesmo pacote.

Nenhuma técnica de mutacao utilizada visa quebrar fortemente a estrutura de um
pacote USB. Como o protocolo é fortemente estruturado, mutagdes que alterem significa-
tivamente a estrutura do pacote, como adicionar ou remover muitos bytes, dificilmente
levardo a resultados uteis, visto que o pacote provavelmente sera descartado pelo host
durante o processamento.

E, similarmente ao que FIORALDI et al, 2020 faz com o seu denominado modo havoc,
apos esgotarem as mutacdes implementadas acima, o fuzzer aplica, exaustivamente, bit
flips. E dificil de determinar quantos bits devem ser alterados, embora CHA et al., 2015
mostre uma estratégia para chegar a um valor ideal, a aplicacdo é impraticavel no contexto
do presente fuzzer, que simplesmente aplica a mutagio de k € [1,|n/2]] bits, onde n é o
tamanho da entrada mutavel.

4.9 | REPRODUCAO DOS PACOTES

4.9 Reproducao dos pacotes

Apds a mutacdo dos pacotes USB, o proximo passo é a reproducio desses pacotes no
sistema alvo. A ferramenta desenvolvida utiliza o médulo raw-gadget (Konovarov, 2025a),
que permite o envio de dados arbitrarios diretamente ao host. Como USB é fortemente
centrado no host, o fuzzer atua como um dispositivo USB completo, completando o processo
de enumeracao como um dispositivo comum, com as devidas muta¢des aplicadas.

4.10 Interface

Foi implementada uma simples interface web que possibilita a execugao das estratégias
de fuzzing desenvolvidas e o acompanhamento de seus resultados em tempo real. Essa
interface foi desenvolvida utilizando o framework Flask, responsavel pela camada de
aplicacdo HTTP, em conjunto com Socket.IO, tecnologia que permite comunicagio
bidirecional em tempo real entre cliente e servidor por meio de WebSockets.

Atualmente, o servidor é acessivel na porta 5000/TCP, sem mecanismos de autentica-
¢do. A interface tem como objetivo fornecer uma visualizagdo mais clara e estruturada
dos resultados do processo de fuzzing, reduzindo a necessidade de conexdes SSH para
monitoramento.

RaspPi Zero — USB Device Web Ul

syzkaller v || Start || Kill
PID:

proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc
proc

got output:

got output: syz_usb_connect: usb_raw_open success

got output: parse_usb_descriptor: found interface #0 (70, 63) at 0x2000079b

got output: parse_usb_descriptor: found endpoint #0 at 0x200007df

got output: syz_usb_connect: add_usb_index success

got output: syz_usb_connect: usb_raw_init success

got output: syz_usb_connect: usb_raw_run success

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0x100, 0x0, wLen: 18
got output: syz_usb_connect: writing 18 bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0x100, 0x0, wLen: 18
got output: syz_usb_connect: writing 18 bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0x302, 0x409, wLen:
got output: syz_usb_connect: writing 2 bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0x302, 1 0x409, wlLen:
got output: syz_usb_connect: writing 8 bytes

got output: syz_usb_connect: bReqType: @x80 (IN), bReq: 0x301, 1 0x409, wlLen:
got output: syz_usb_connect: writing @ bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0x303, 1 0x409, wlLen:
got output: syz_usb_connect: writing 2 bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0x303, i 0x409, wlLen:
got output: syz_usb_connect: writing 8 bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0xfeo, 1 0x0, wLen: 5
got output: syz_usb_connect: writing @ bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0x200, 0x0, wLen: 9
got output: syz_usb_connect: writing 9 bytes

got output: syz_usb_connect: bReqType: @x80 (IN), bReq: 0x200, 0x0, wLen: 624
got output: syz_usb_connect: writing 624 bytes

got output: syz_usb_connect: bReqType: 0x80 (IN), bReq: 0xfoo, 0x0, wLen: 5
got output: syz_usb_connect: writing @ bytes

proc got output: killing hanging pid 2

proc got execute reply

handle completion: completed=0 output_size=262144

[I I R S IS S IS IS IS S I I I B I B B B I B S S]

Figura 4.2: Interface web da ferramenta

31

Capitulo 5

Experimentos e resultados

Como uma forma de validar a ferramenta desenvolvida, foram realizados experimentos
com o objetivo de avaliar sua eficacia na deteccao de vulnerabilidades, de forma compa-
rativa. A analise proposta nesta secao parte de bugs ja conhecidos, encontrados na pilha
USB do kernel Linux por um fuzzing guiado por cobertura, ou de outros erros descritos na
literatura.

Foram selecionados alguns casos de teste que condizem com a proposta deste trabalho,
formuladas hipoteses e geradas as devidas entradas relevantes para o fuzzer, a fim de
apresentar os resultados e limitacoes da ferramenta proposta. Os detalhes dos experimentos
conduzidos sdo apresentados nas se¢des seguintes.

5.1 Negacio de servico

A classe de vulnerabilidades mais facil de ser testada pela ferramenta proposta sdo
erros de negacdo de servico. Um oraculo é facilmente construido para detectar tais falhas,
uma vez que o sistema hospedeiro pode ser monitorado para observar se ele permanece
responsivo durante o processo de enumeragao do dispositivo USB.

Além das diversas falhas desse tipo destacadas em Konovarov, 2017, outros traba-
lhos como EUNTAE JANG, 2025 mostram que usualmente, travamentos do kernel levam
a uma reinicializacdo do sistema e travamento temporario da enumeracio por parte do
sistema hospedeiro. Isso valida exatamente o que a implementacao do oraculo proposta
monitora.

5.2 Vazamento de memaoria do espaco do kernel

Outra classe de bugs comum ¢ a leitura indevida de memoria no espaco do kernel. A
secdo 3.2 destaca, brevemente, a vulnerabilidade CVE-2025-38494. Essa vulnerabilidade
é causada por um bug de underflow aritmético em drivers/hid/hid-core.c, compo-
nente do kernel Linux que fornece funcionalidades basicas para Human Interface Device
(HID).

33

34

5 | EXPERIMENTOS E RESULTADOS

Essa vulnerabilidade é exploravel através de um dispositivo USB com um descritor de
relatoério HID malformado. Ap6s a enumeragéo do dispositivo, o sistema hospedeiro faz uma
requisicdo HID (transferéncia de controle) do tipo HID_REQ_SET_REPORT ao dispositivo
USB com um relatério contendo memoria do espaco do kernel.

A primeira observagao a ser feita é que a vulnerabilidade é exploravel através do fuzzer
proposto. A se¢do 4.4 descreve a capacidade da ferramente de reproduzir bugs encontrados
em sistemas com instrumentacao disponivel, e essa é uma falha publicada por SOURCE,
2025.

Todavia, a simples capacidade de reproduzir o bug nao é suficiente para validar a
eficacia da ferramenta. A reproduc¢ido do bug simplesmente gera como retorno alguns
kilobytes de memoria; sem distin¢do da fonte desses dados, ndo é possivel inferir se eles
sdo provenientes de uma vulnerabilidade. Faz-se, entdo, necessario que a ferramenta seja
capaz de reconhecer a vulnerabilidade de forma auténoma.

Um oraculo simples para essa vulnerabilidade, que traz consigo uma maior presenca de
falsos positivos e falsos negativos, é a observacdo da saida e uma importante caracteristica
do enderecamento canénico (canonical addressing) em arquiteturas x86-64. Nessa arqui-
tetura, os ponteiros do kernel possuem os bits mais significativos iguais ao bit 47 (sinal);
em binario, 1111 equivale a 0xF. Uma heuristica simples, portanto, é verificar se os dados
retornados contém grupos consecutivos de 8 bytes (tamanho de um ponteiro em x86-64)
com os bits mais significativos iguais a 0xFFFF.

Durante os testes da ferramenta, e reproducao de diversos bugs de acesso de memoria
no espaco do kernel, outro padrédo observado foi a presenca do texto localhost. A causa
raiz dessa ocorréncia néo foi investigada a fundo. De qualquer forma, esse padrao foi in-
corporado como uma heuristica adicional para deteccdo de vazamentos de memoria.

Essa estratégia de oraculo foi implementada na ferramenta desenvolvida, mas néo é
utilizada por padrao devido a necessidade de analise e confirmacao do resultado, visto que
a precisao sobre do oraculo pode ser muito prejudicada.

5.3 Format strings

A secdo 3.3 apresenta um bug encontrado no aplicativo Skype, em SERGEY BRATUS,
2012. O bug em questdo é uma vulnerabilidade de format string, onde um dispositivo
USB malicioso, durante o processo de enumeracéo, envia uma string de formato especi-
almente formatada para o sistema alvo em seu descritor de string apontado pelo campo
iManufacturer.

Este bug é interessante pois, diferentemente dos outros exemplos apresentados neste
capitulo, se trata de uma falha na camada de aplicagido, em um software de terceiros, de
codigo fechado. A ferramente desenvolvida tem uma limitacdo notoéria nesse cenario: além
de nao ter acesso ao estado do sistema hospedeiro, a informacao sobre o estado de um
software dentro do sistema alvo também ¢ dificilmente inferida através de um oraculo ou
canal lateral, utilizado em outros testes.

Um oraculo depende do nivel de observabilidade que a ferramenta tem sobre o sistema

5.4 | PERFORMANCE

alvo. Embora o presente trabalho vise a criacdo de uma ferramenta de fuzzing USB capaz
de operar "as cegas", qualquer capacidade de instrumentagdo ou monitoramento mais
avancado do sistema alvo pode ser aproveitada para melhorar a eficacia do fuzzer. Na
auséncia de tal capacidade, a ferramenta ird operar continuamente e um oraculo disponivel
sera, por exemplo, uma observabilidade visual, indicando se o aplicativo alvo (neste caso,
o Skype) esta funcionando.

Embora o bug em questdo nédo tenha sido profundamente documentado, é possivel
inferir que o fuzzer proposto é capaz de atingir o mesmo resultado. A se¢do 4.8 descreve
a capacidade da ferramenta de mutar pacotes USB; dentre as mutacdes aplicadas, estdo
dicionarios e bit flips.

O dicionario utilizado pela ferramenta contém, de forma enviesada, uma string de
formato tipica que inclui o erro aqui apresentado, embora o estado de erro também seja
alcancavel através de mutagdes de bit flip. Portanto, é razoavel concluir que a ferramenta
desenvolvida é capaz de encontrar o mesmo bug no Skype.

A velocidade de tal descoberta depende de diversos fatores, incluindo a performance
do sistema hospedeiro, randomicidade dos bit flips e corpus inicial. Com o corpus composto
pelas capturas apresentadas nesse trabalho, inferiu-se que o bug poderia ser encontrado
antes da ferramente alcancar o modo exaustivo descrito na secio 4.8, pois, dentre a base
construida, com aproximadamente 750 entradas, dispositivos com descritores semelhantes
estdo presentes. Isso corresponde ao, maximo, um niimero da ordem de 10’ mutacoes.

5.4 Performance

A melhor maneira encontrada para medir a performance da ferramenta foi através do
monitoramento do nimero de enumeracdes de um dispositivo USB por segundo. A coleta
ocorreu de forma similar ao que foi descrito na secdo 3.4: o dispositivo USB foi conectado
ao sistema alvo, e a ferramenta comecgou o processo de enumeracdo continua, simulando
ser um mouse. Foram realizadas 5 medicdes, cada uma com duracdo de 60 segundos, e a
média do nimero de enumeragdes por segundo foi calculada. A tabela 5.1 apresenta os
resultados obtidos.

Sistema Hospedeiro | Enumeracdes por segundo
Macbook Air M1 5.10
Smart TV LG UN7300 2.28
PlayStation 4 1.86
Raspberry Pi Zero 2W 1.40
Média 2.66

Tabela 5.1: Performance da ferramenta desenvolvida medida em niimero de enumeragdes por segundo.

Essa métrica é 1util avaliar a eficiéncia da ferramenta, pois reflete diretamente a capa-
cidade do fuzzer de explorar o espago de entrada do sistema alvo em um determinado
periodo de tempo.

35

36

5 | EXPERIMENTOS E RESULTADOS

Observa-se que a performance varia significativamente entre diferentes sistemas hospe-
deiros, o que pode ser atribuido as diferencas de capacidade de processamento e demonstra
onde esta a maior limitacdo da ferramenta desenvolvida. O valor médio de 2.66 enumeragdes
por segundo nao é problematico para a reproducio de bugs conhecidos, mas pode ser
insuficiente para um grande nimero muta¢des em um intervalo tempo pequeno.

Capitulo 6

Conclusao

O presente trabalho abordou a seguranca do protocolo USB, uma interface onipresente
e critica em sistemas computacionais modernos, mas que apresenta uma vasta superficie
de ataque frequentemente subestimada. Diante da dificuldade de realizar auditorias em
drivers de codigo fechado, o objetivo principal foi o desenvolvimento e avaliacdo de uma
ferramenta de hardware e software capaz de realizar fuzzing em uma abordagem black-
box, sem necessidade de acesso ao codigo-fonte ou instrumentacéo interna do sistema
alvo.

Para viabilizar essa analise, foi desenvolvida uma ferramenta baseada no Raspberry
Pi Zero 2W, escolhido por seu custo acessivel e suporte a USB On-The-Go. A solucdo
de software se fundamentou no uso do médulo de kernel raw-gadget, que permitiu a
manipulacdo de pacotes em baixo nivel e a emulagido de dispositivos USB completos,
superando as limitagdes de validacdo impostas por drivers padrdao como o FunctionFS. A
ferramenta operou como um framework integrador, capaz de aplicar mutacdes genéricas
em capturas de trafego (PCAP) e, também, reproduzir vulnerabilidades conhecidas a partir
de logs do syzkaller e do syzbot.

Os experimentos demonstraram que, apesar dos desafios inerentes a observabilidade
em testes black-box, é possivel inferir o estado de seguranca do host através de métricas
externas. A utilizacdo de uma técnica de feedback baseada no processo de enumeracao de
dispositivos pode ser eficaz para detectar falhas de negacao de servigo (DoS) e travamentos
no sistema hospedeiro. Dessa forma, o projeto cumpre seu objetivo de entregar uma
solucdo com alta flexibilidade, validando a eficacia do fuzzing externo na identificacdo de
vulnerabilidades criticas em implementacdes da pilha USB.

6.1 Trabalho futuro

O desenvolvimento desta ferramenta abriu diversas frentes de pesquisa que, devido
a limitacoes de hardware e escopo temporal, ndo puderam ser abordadas neste trabalho,
mas que representam passos naturais para a evolucio do fuzzing USB.

No ambito do suporte a protocolos, a expanséo para a especificacdo 3.0 do USB é uma
prioridade. A escolha do Raspberry Pi Zero 2W limitou os experimentos as velocidades

37

38

6 | CONCLUSAO

do USB 2.0. A migracao para plataformas de hardware que suportem USB 3.0 em modo
gadget ¢ trivial em nivel de software e permitiria explorar uma superficie de ataque mais
ampla e complexa. Adicionalmente, a investigacido do protocolo USB Power Delivery (USB-
PD) pode ser um campo promissor, conforme recentemente demonstrado em Kim et al., 2023.
Ataques focados na negociacdo de tensdo e corrente podem explorar vulnerabilidades fisicas
e logicas nos controladores de energia dos hosts, uma vertente ainda pouco explorada.

Em relacéo as capacidades do software, uma melhoria significativa seria a implemen-
tacdo de suporte a transferéncias isdcronas, atualmente nao suportadas pelo médulo
raw-gadget. Isso permitiria o fuzzing de drivers de dispositivos de streaming em tempo
real, por exemplo, que dependem desse tipo de transferéncia para garantir laténcia.

Por fim, para aprimorar a metodologia de ataque, um modo de operagdo como proxy
USB, permitindo que a ferramenta atue simultaneamente como host (para o dispositivo
real) e device (para o alvo), interceptando e mutando o trafego em tempo real, de forma
Man-in-the-Middle (MITM) é interessante. Essa arquitetura também facilitaria a exploracéo
de condi¢des de corrida, como em vulnerabilidades do tipo Time-of-Check to Time-of-Use
(TOCTOU), onde o atacante altera os dados entre o momento da validacdo e o seu uso
efetivo — uma técnica ja explorada em projetos como SECURE, 2024, mas que carece de
implementacdes acessiveis em ferramentas mais generalistas.

Referéncias

[BEyoNDLoOGIC 2025] BEYONDLOGIC. USB Descriptors. URL: https://www.beyondlogic.

org/usbnutshell/usb5.shtml (acesso em 11/09/2025) (citado na pg. 10).

[BOHME et al. 2016] Marcel BouME, Van-Thuan PHAM e Abhik RoYCHOUDHURY.

“Coverage-based greybox fuzzing as markov chain”. Em: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security. CCS

’16. Vienna, Austria: Association for Computing Machinery, 2016, pgs. 1032-1043.

ISBN: 9781450341394. po1: 10.1145/2976749.2978428. URL: https://doi.org/10.1145/
2976749.2978428 (citado na pg. 15).

[CHA et al. 2015] Sang Kil CHA, Maverick Woo e David BRUMLEY. “Program-adaptive
mutational fuzzing”. Em: Proceedings of the 2015 IEEE Symposium on Security
and Privacy. SP ’15. USA: IEEE Computer Society, 2015, pgs. 725-741. ISBN:
9781467369497. por: 10.1109/SP.2015.50. urL: https://doi.org/10.1109/SP.2015.50
(citado na pg. 30).

[CHEN et al. 2018] Yuanliang CHEN, Yu JIANG, Jie L1ANG, Mingzhe WANG e Xun J1a0.
“Enfuzz: from ensemble learning to ensemble fuzzing”. Em: CoRR abs/1807.00182
(2018). arXiv: 1807.00182. URL: http://arxiv.org/abs/1807.00182 (citado na pg. 17).

[CORBET et al. 2005] Jonathan CoRrBET, Alessandro RUBINI e Greg KRoAH-HARTMAN.
“Interrupt handling”. Em: Linux Device Drivers. 3* ed. Sebastopol, CA: O’Reilly
Media, 2005. Cap. 13 (citado na pg. 12).

[Davis 2013] Andy Davis. Lessons learned from 50 bugs: Common USB driver vulnera-
bilities. 2013. URL: https://www.nccgroup.com/media/kkpb02u0/_usb_driver_
vulnerabilities_whitepaper_v2.pdf (acesso em 26/10/2025) (citado na pg. 20).

[EUNTAE JANG 2025] Jonghyuk Song EUNTAE JaNG Donghyon Jeong. DEF CON 31 Car
Hacking Village - Automotive USB Fuzzing. URL: https://www.youtube.com/watch?
v=W_vQ5s1bB30 (acesso em 09/09/2025) (citado na pg. 33).

[FiorALDI et al. 2020] Andrea FioraLpi, Dominik MAIER, Heiko EisSFELDT e Marc
HEUSE. “AFL++: combining incremental steps of fuzzing research”. Em: 14th
USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association,
ago. de 2020 (citado nas pgs. 16, 30).

39

https://www.beyondlogic.org/usbnutshell/usb5.shtml
https://www.beyondlogic.org/usbnutshell/usb5.shtml
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://arxiv.org/abs/1807.00182
http://arxiv.org/abs/1807.00182
https://www.nccgroup.com/media/kkpb02u0/_usb_driver_vulnerabilities_whitepaper_v2.pdf
https://www.nccgroup.com/media/kkpb02u0/_usb_driver_vulnerabilities_whitepaper_v2.pdf
https://www.youtube.com/watch?v=W_vQ5s1bB30
https://www.youtube.com/watch?v=W_vQ5s1bB30

40

REFERENCIAS

[R. P. FounpATION 2023] Raspberry Pi FouNDATION. Raspberry Pi OS (armhf) 2023-05-
03 (kernel 5.20). 2023. URL: https://downloads.raspberrypi.com/raspios_armhf/
images/raspios_armhf-2023-05-03/ (acesso em 23/10/2025) (citado na pg. 22).

[W. FounpATION 2025] Wireshark FounDATION. SampleCaptures. 2025. URL: https://
wiki.wireshark.org/samplecaptures (acesso em 26/10/2025) (citado na pg. 27).

[GODEFROID et al. 2012] Patrice GoDEFROID, Michael Y. LEVIN e David MOLNAR. “Sage:
whitebox fuzzing for security testing”. Em: Commun. ACM 55.3 (mar. de 2012),
pgs. 40—44. 1ssN: 0001-0782. por: 10.1145/2093548.2093564. URL: https://doi.org/10.
1145/2093548.2093564 (citado na pg. 15).

[HELin 2025] Aki HELIN. Radamsa - A general-purpose fuzzer. URL: https://gitlab.com/
akihe/radamsa (acesso em 11/09/2025) (citado nas pgs. 17, 30).

[Km et al. 2023] Kyungtae Kim et al. “Fuzz the power: dual-role state guided black-box
fuzzing for USB power delivery”. Em: 32nd USENIX Security Symposium (USENLX
Security 23). Anaheim, CA: USENIX Association, ago. de 2023, pgs. 5845-5861. ISBN:
978-1-939133-37-3. URL: https://www.usenix.org/conference/usenixsecurity23/
presentation/kim-kyungtae (citado na pg. 38).

[KiMmINEwT 2025] KimMINEWT. Pyshark: Python wrapper for tshark, allowing python pac-
ket parsing using wireshark dissectors. 2025. URL: https://github.com/KimiNewt/
pyshark (citado na pg. 28).

[KonovaLov 2017] Andrey KoNovaLov. Linux kernel: multiple vulnerabilities in the USB
subsystem. 2017. URL: https://www.openwall.com/lists/oss-security/2017/11/06/8
(acesso em 26/10/2025) (citado nas pgs. 20, 26, 33).

[Konovarov 2019] Andrey KonovaLrov. Coverage-guided USB fuzzing with Syzkaller.
2019. URL: https://www.offensivecon.org/speakers/2019/andrey-konovalov.html
(acesso em 23/10/2025) (citado na pg. 17).

[KonovaLov 2025a] Andrey Konovarov. USB Raw Gadget — a low-level interface for
the Linux USB Gadget subsystem. 2025. URL: https://github.com/xairy/raw-gadget
(acesso em 23/10/2025) (citado nas pgs. 22, 31).

[KonovaLrov 2025b] Andrey KoNovaLrov. Patch na lista de discussdo do kernel Linux
sobre a limitagdo no tamanho de transferéncias no Raw Gadget. URL: https://lore.
kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.
git.andreyknvi@gmail.com/ (acesso em 09/09/2025) (citado na pg. 18).

[L1BUSB DEVELOPERS 2025] LIBUSB DEVELOPERS. libusb: C library for USB device access.
2025. URL: https://libusb.info/ (acesso em 11/09/2025) (citado na pg. 12).

[MANES et al. 2018] Valentin J. M. MANES et al. “Fuzzing: art, science, and engineering”.
Em: CoRR abs/1812.00140 (2018). arXiv: 1812.00140. URL: http://arxiv.org/abs/1812.
00140 (citado nas pgs. 15, 17, 30).

https://downloads.raspberrypi.com/raspios_armhf/images/raspios_armhf-2023-05-03/
https://downloads.raspberrypi.com/raspios_armhf/images/raspios_armhf-2023-05-03/
https://wiki.wireshark.org/samplecaptures
https://wiki.wireshark.org/samplecaptures
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-kyungtae
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-kyungtae
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://www.openwall.com/lists/oss-security/2017/11/06/8
https://www.offensivecon.org/speakers/2019/andrey-konovalov.html
https://github.com/xairy/raw-gadget
https://lore.kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.git.andreyknvl@gmail.com/
https://lore.kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.git.andreyknvl@gmail.com/
https://lore.kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.git.andreyknvl@gmail.com/
https://libusb.info/
https://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140

REFERENCIAS

[MILLER et al. 1990] Barton P. MILLER, Lars FREDRIKSEN e Bryan So. “An empirical
study of the reliability of unix utilities”. Em: Commun. ACM 33.12 (dez. de 1990),
pgs. 32-44. 1ssN: 0001-0782. por: 10.1145/96267.96279. URL: https://doi.org/10.
1145/96267.96279 (citado na pg. 15).

[PRAMANIK e TAYADE 2019] Arijit PRAMANIK e Ashwin TAYADE. “Study and comparison
of general purpose fuzzers”. Em: University of Wisconsin-Madison, 2019. URL:
https://wcventure.github.io/FuzzingPaper/Paper/)J19_Study.pdf (citado nas
pgs. 17, 30).

[ScHumiLO et al. 2014] Sergej ScHUMILO, Ralf SPENNEBERG e Hendrik SCHWARTKE.
Don’t Trust Your USB! How to Find Bugs in USB Device Drivers. 2014. URL: https:
//blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-
How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf (citado na pg. 17).

[SECURE 2024] Anvil SECURE. USB-Racer. 2024. URL: https://github.com/anvilsecure/usb-
racer (acesso em 26/10/2025) (citado na pg. 38).

[SERGEY BraTUsS 2012] Travis Goodspeed SERGEY BraTUs. Facedancer USB: Exploiting
the Magic School Bus. 2012. URL: https://recon.cx/2012/schedule/events/237.en.html
(acesso em 26/10/2025) (citado nas pgs. 19, 34).

[Sourck 2025] Google Open SOURCE. syzbot. URL: https://syzkaller.appspot.com/
(acesso em 16/09/2025) (citado nas pgs. 17, 23, 26, 34).

[ToNDER e ENGELBRECHT 2014] Rijnard van TONDER e Herman ENGELBRECHT. “Lowe-
ring the USB fuzzing barrier by transparent Two-Way emulation”. Em: 8th USENIX
Workshop on Offensive Technologies (WOOT 14). San Diego, CA: USENIX Associa-
tion, ago. de 2014. URL: https://www.usenix.org/conference/woot14/workshop-
program/presentation/van-tonder (citado na pg. 18).

[USB ImPLEMENTERS FOrRUM 2025a] USB IMPLEMENTERS FORUM. On-The-Go and Embed-
ded Host Supplement to the USB Revision 2.0 Specification. URL: https://www.usb.
org/document-library/usb-20-specification (acesso em 11/09/2025) (citado na

pg. 9).

[USB IMPLEMENTERS FORUM 2025b] USB IMPLEMENTERS FORUM. Universal Serial Bus 2.0
Specification. URL: https://www.usb.org/document-library/usb-20-specification
(acesso em 11/09/2025) (citado nas pgs. 6, 9-11).

[ZaLEWSKI 2025] Michal ZaLewski. AFL Bug-o-rama Trophy Case. URL: http://Icamtuf.
coredump.cx/afl/#bugs (acesso em 11/09/2025) (citado na pg. 17).

41

https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://wcventure.github.io/FuzzingPaper/Paper/J19_Study.pdf
https://blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://github.com/anvilsecure/usb-racer
https://github.com/anvilsecure/usb-racer
https://recon.cx/2012/schedule/events/237.en.html
https://syzkaller.appspot.com/
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs

42

REFERENCIAS

[Zou et al. 2022] Xiaochen Zou, Guoren L1, Weiteng CHEN, Hang ZHANG e Zhiyun
Q1aN. “SyzScope: revealing High-Risk security impacts of Fuzzer-Exposed bugs in
linux kernel”. Em: 31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, ago. de 2022, pgs. 3201-3217. 1sBN: 978-1-939133-31-1.
URL: https://www.usenix.org/conference/usenixsecurity22/presentation/zou
(citado na pg. 17).

https://www.usenix.org/conference/usenixsecurity22/presentation/zou

	Introdução
	Contexto
	Problema e Motivação
	Objetivo
	Estrutura do trabalho

	USB
	Arquitetura Física e Lógica
	Estrutura de Comunicação
	Pacotes
	Transações
	Transferências

	Iniciação e Detecção de Velocidade
	Enumeração e Descritores

	Captura de tráfego
	Abstrações de Software para Interação USB

	Fuzzing
	Trabalhos Relacionados
	Emulação de Dispositivos USB
	Análise de Vulnerabilidades
	Métricas Externas

	Desenvolvimento da ferramenta
	Escolha e configuração do hardware
	Crawler do syz-bot
	Fuzzing com syzkaller
	Estratégias da ferramenta
	Base inicial de capturas
	Validação e reprodução de bugs do syzbot
	Parsing do tráfego
	Mutação de pacotes
	Reprodução dos pacotes
	Interface

	Experimentos e resultados
	Negação de serviço
	Vazamento de memória do espaço do kernel
	Format strings
	Performance

	Conclusão
	Trabalho futuro

	Referências

