
Universidade de São Paulo
Instituto de Matemática, Estatística e Ciência da Computação

Bacharelado em Ciência da Computação

Detecção de Vulnerabilidades em Hosts
USB utilizando Técnicas de Fuzzing

Externo

Gabriel Geraldino de Souza

Monografia Final
mac 499 — Trabalho de

Formatura Supervisionado

Supervisor: Prof. Dr. Marcos Antonio Simplicio Junior

São Paulo
2025

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

i

Agradecimentos

Agradeço ao Professor Doutor Marcos Antonio Simplicio Junior e ao Professor Dou-
tor Bruno de Carvalho Albertini, pela orientação, disponibilidade e pelas contribuições
fundamentais ao desenvolvimento deste trabalho.

Agradeço, também, ao mestrando Gustavo Cerqueira Bastos pelo apoio, pelas sugestões
técnicas e pela atenção durante as etapas de construção deste projeto.

Resumo

Gabriel Geraldino de Souza. Detecção de Vulnerabilidades em Hosts USB utilizando
Técnicas de Fuzzing Externo. Monografia (Bacharelado). Instituto de Matemática,
Estatística e Ciência da Computação, Universidade de São Paulo, São Paulo, 2025.

O protocolo Universal Serial Bus (USB) é uma das interfaces de comunicação mais onipresentes em
sistemas computacionais, conectando desde periféricos simples a componentes de sistemas críticos, como
caixas eletrônicos e dispositivos industriais. Essa ampla adoção, contudo, estabelece-o como uma significativa
superfície de ataque. Este trabalho tem como objetivo principal avaliar a segurança de sistemas que utilizam
o protocolo USB por meio de fuzzing, uma técnica de teste automatizada que consiste no envio de dados
massivos, inválidos ou inesperados para a descoberta de vulnerabilidades. Este trabalho envolve uma revisão
da literatura sobre o protocolo USB e falhas conhecidas, seguida pelo desenvolvimento de uma ferramenta
de software capaz de interpretar, manipular e reproduzir capturas de tráfego USB (.pcap) em baixo nível,
utilizando o módulo raw-gadget do kernel Linux. Esta ferramenta foi integrada a fuzzers como syzkaller

e radamsa, para automatizar a geração de casos de teste e identificar falhas de segurança, como negação
de serviço (DoS), corrupção de memória e outras anomalias no tratamento de pacotes. Os experimentos
comparam a eficácia dos diferentes métodos de mutação em relação ao impacto prático das vulnerabilidades
encontradas.

Palavras-chave: USB. Fuzzing. Análise de Vulnerabilidades. Teste de Software.

Abstract

Gabriel Geraldino de Souza. Detection of Vulnerabilities in USB Hosts Using Exter-
nal Fuzzing Techniques. Capstone Project Report (Bachelor). Institute of Mathematics
and Statistics, University of São Paulo, São Paulo, 2025.

The Universal Serial Bus (USB) protocol is one of the most ubiquitous communication interfaces in
computer systems, connecting everything from simple peripherals to critical system components, such as
ATMs and industrial devices. This widespread adoption, however, makes it a significant attack surface. The
main objective of this work is to evaluate the security of systems that utilize the USB protocol through
fuzzing, an automated testing technique that consists of sending massive, invalid, or unexpected data to
discover vulnerabilities. This work involves a review of the literature on the USB protocol and known flaws,
followed by the development of a software tool capable of interpreting, manipulating, and reproducing
low-level USB traffic captures (.pcap) using the raw-gadget kernel module. This tool was integrated with
fuzzers such as syzkaller and radamsa to automate the generation of test cases and identify security
flaws such as denial of service (DoS), memory corruption, and other anomalies in packet handling. The
experiments compare the effectiveness of different mutation methods in relation to the practical impact of
the vulnerabilities found.

Keywords: USB. Fuzzing. Vulnerability Analysis. Software Testing.

vii

Lista de Abreviaturas

CVE Vulnerabilidades e Exposições Comuns (Common Vulnerabilities and Exposures)
CWE Enumeração de Fraquezas Comuns (Common Weakness Enumeration)
URL Localizador Uniforme de Recursos (Uniform Resource Locator)
USB Barramento Serial Universal (Universal Serial Bus)
URB Bloco de Requisição USB (USB Request Block)
BCD Decimal Codificado em Binário (Binary-Coded Decimal)
HNP Protocolo de Negociação de Host (Host Negotiation Protocol)
SBC Computador de Placa Única (Single Board Computer)

FPGA Matriz de Portas Programáveis em Campo (Field-Programmable Gate Array)
TT Tradutor de Transações (Transaction Translator)

LSB Bit Menos Significativo (Least Significant Bit)
IME Instituto de Matemática, Estatística e Ciência da Computação
USP Universidade de São Paulo

viii

Lista de Figuras

2.1 Topologia USB, com múltiplas camadas e especificações 7
2.2 Hierarquia de descritores USB. Retirada de BeyondLogic, 2025 10

4.1 Estratégias de fuzzing empregadas pela ferramenta 27
4.2 Interface web da ferramenta . 31

Lista de Tabelas

2.1 Estrutura do Device Descriptor USB. Adaptada de USB Implementers
Forum, 2025b . 11

4.1 Comparativo entre SBCs e microcontroladores populares em relação ao
suporte a Linux e USB . 22

5.1 Performance da ferramenta desenvolvida medida em número de enumera-
ções por segundo. 35

ix

Lista de Programas

3.1 linux/v6.17.1/source/drivers/usb/gadget/function/f_fs.c: validação de des-
critores. 19

4.1 syzkaller/pkg/mgrconfig/configġo: trecho do código-fonte do syzkaller que
mostra a possibilidade de configuração de syscalls específicas 26

4.2 Log gerado pelo syzkaller para o bug “memory leak in __hci_cmd_sync_sk“ 28
4.3 Parsing de pacotes USB, utilizando pyshark: extração de device descriptors 29

xi

Sumário

1 Introdução 1
1.1 Contexto . 1
1.2 Problema e Motivação . 1
1.3 Objetivo . 2
1.4 Estrutura do trabalho . 3

2 USB 5
2.1 Arquitetura Física e Lógica . 5
2.2 Estrutura de Comunicação . 6

2.2.1 Pacotes . 6
2.2.2 Transações . 8
2.2.3 Transferências . 8

2.3 Iniciação e Detecção de Velocidade . 9
2.3.1 Enumeração e Descritores . 9

2.4 Captura de tráfego . 11
2.5 Abstrações de Software para Interação USB 12

3 Fuzzing 15
3.1 Trabalhos Relacionados . 16
3.2 Emulação de Dispositivos USB . 18
3.3 Análise de Vulnerabilidades . 19
3.4 Métricas Externas . 20

4 Desenvolvimento da ferramenta 21
4.1 Escolha e configuração do hardware . 21
4.2 Crawler do syz-bot . 23
4.3 Fuzzing com syzkaller . 25
4.4 Estratégias da ferramenta . 26
4.5 Base inicial de capturas . 27

xii

4.6 Validação e reprodução de bugs do syzbot 28
4.7 Parsing do tráfego . 28
4.8 Mutação de pacotes . 30
4.9 Reprodução dos pacotes . 31
4.10 Interface . 31

5 Experimentos e resultados 33
5.1 Negação de serviço . 33
5.2 Vazamento de memória do espaço do kernel 33
5.3 Format strings . 34
5.4 Performance . 35

6 Conclusão 37
6.1 Trabalho futuro . 37

Referências 39

1

Capítulo 1

Introdução

1.1 Contexto
Hoje, a sociedade moderna tem a tecnologia presente de forma universal em seu

cotidiano. Essa presença é intrinsicamente sustentada por uma série de protocolos e
interfaces de comunicação que, muitas vezes, operam de forma invisível ao usuário final.
Dentre estas, poucas são tão essenciais quanto o Universal Serial Bus (USB). Desde sua
concepção, o USB evoluiu de uma simples interface para conectar periféricos de baixa
velocidade, como teclados e mouses, para um ecossistema complexo e de alta performance,
capaz de transmitir dados a gigabits por segundo, fornecer energia para carregamento
rápido de dispositivos e conectar sistemas das mais distintas naturezas.

Atualmente o protocolo USB está integrado a quase todos os dispositivos computaci-
onais do dia-a-dia. Ele é o cerne da conexão de periféricos em computadores pessoais e
notebooks, mas sua aplicação se estende muito além. É encontrado, também, em sistemas
embarcados, infraestruturas críticas como caixas eletrônicos (ATMs), sistemas de controle
industrial (ICS), equipamentos médicos, sistemas automotivos e dispositivos de Internet das
Coisas (IoT). Essa disseminação massiva, embora tenha trazido conveniência e padronização
sem precedentes, introduziu simultaneamente uma superfície de ataque vasta e muitas
vezes subestimada.

A complexidade inerente ao protocolo USB, com suas diversas especificações, classes
de dispositivos, múltiplos modos de operação e inúmeras implementações e interfaces cria
um terreno fértil para a existência de vulnerabilidades. Uma falha na implementação de
um drivers USB de um sistema operacional ou no firmware de um dispositivo periférico
pode ter consequências severas, que vão desde a negação de serviço (DoS) até a execução
de código espúrio e completa tomada de controle do sistema hospedeiro.

1.2 Problema e Motivação
A avaliação da segurança de implementações USB é, portanto, uma tarefa de crucial

importância. Contudo, ela apresenta desafios significativos: muitas implementações de
drivers e firmwares, por exemplo, são de código fechado (closed-source), o que impede a

2

1 | INTRODUÇÃO

análise estática de código e a revisão manual por parte de pesquisadores de segurança.
Além disso, a interação com o hardware em baixo nível exige conhecimento especializado
e ferramentas adequadas. Nesse cenário, abordagens de teste de segurança de caixa-preta
(black-box), que não requerem acesso ao código-fonte do alvo, tornam-se difíceis, mas
indispensáveis.

Uma das técnicas mais eficazes para a descoberta de vulnerabilidades em cenários de
black-box é o fuzzing. O fuzzing é um processo de teste de software automatizado que
envolve o fornecimento de dados massivos, inválidos, inesperados ou aleatórios como
entrada para um programa. O objetivo é monitorar o comportamento do alvo em busca
de anomalias, como travamentos, asserções de código ou vazamentos de memória, que
possam indicar a presença de falhas de segurança exploráveis.

A motivação para este trabalho surge da necessidade de se ter uma ferramenta mais
acessível e eficaz para realizar o fuzzing do protocolo USB em baixo nível. Embora existam
soluções de hardware e software para tal, poucas se concentram na automação da geração
de casos de teste mutacionais a partir de capturas de tráfego reais, de uma maneira
que seja agnóstica ao dispositivo e ao sistema operacional. A capacidade de capturar
uma comunicação USB legítima, aplicar mutações inteligentes e reproduzi-la contra um
alvo permite simular uma gama quase infinita de interações anômalas, potencializando
a descoberta de vulnerabilidades que seriam difíceis de encontrar por meio de análise
manual ou testes tradicionais.

1.3 Objetivo
O objetivo principal deste trabalho é desenvolver e avaliar uma abordagem black-

box para o fuzzing de sistemas que utilizam o protocolo USB, com foco na descoberta
de vulnerabilidades não somente em drivers de sistemas operacionais e firmwares de
dispositivos, mas também na camada de aplicação.

Para alcançar este objetivo principal, foram definidos os seguintes objetivos específi-
cos:

• revisar a literatura existente sobre o protocolo USB, suas arquiteturas, especificações
e as vulnerabilidades de segurança historicamente conhecidas;

• desenvolver uma ferramenta de software capaz de interpretar, manipular e reproduzir
capturas de tráfego USB em baixo nível, de forma que seja possível emular um
dispositivo USB e enviar pacotes arbitrários;

• adaptar essa ferramenta de forma que possa ser utilizada como um fuzzer de contexto
geral, automatizando a geração de casos de teste por meio da mutação de pacotes
USB e, possivelmente, integrando com mutators existentes, como o radamsa;

• realizar experimentos práticos contra alvos selecionados para identificar falhas de
segurança, como negação de serviço (DoS), corrupção de memória e outras anomalias
no tratamento de pacotes;

• analisar e comparar a eficácia dos diferentes métodos de mutação empregados,
avaliando o impacto e a severidade das vulnerabilidades encontradas.

1.4 | ESTRUTURA DO TRABALHO

3

1.4 Estrutura do trabalho
O presente trabalho, além da introdução, é composto por cinco capítulos. O capítulo 2

apresenta uma visão geral do protocolo USB, incluindo sua arquitetura, funcionamento e
principais características. O capítulo 3 discute a técnica de fuzzing, detalhando diferentes
estratégias e aplicações. O capítulo 4 detalha o desenvolvimento da ferramenta de fuzzing

USB, abordando desde a escolha do hardware até a implementação do software. O capítulo
5 descreve os experimentos realizados e os resultados obtidos, analisando a eficácia da
ferramenta em diferentes cenários. Finalmente, o capítulo 6 finaliza o trabalho, discutindo
suas contribuições e sugerindo direções para pesquisas futuras.

5

Capítulo 2

USB

O padrão Universal Serial Bus (USB) começou a ser desenvolvido no início da década de
1990 por um consórcio de empresas de tecnologia liderado por Intel, Compaq, Microsoft,
IBM, DEC, NEC e Nortel. O objetivo era criar uma interface fundamentalmente nova para
superar as limitações de usabilidade e a fragmentação de conexões legadas, como portas
seriais (RS-232), paralelas e conectores PS/2 . Oficializado com a publicação da especificação
USB 1.0 em 1996, o padrão não somente unificou a conexão de periféricos, mas introduziu
o conceito de Plug and Play, simplificando drasticamente a configuração de hardware para
o usuário final.

Embora a especificação original 1.0 tenha definido as bases, foi a revisão USB 1.1,
lançada em 1998, que começou a popularizar o padrão, com as velocidades low speed (1.5
Mbits/s) e full speed (12 Mbits/s). Contudo, a onipresença do barramento consolidou-se
com a chegada do USB 2.0 em abril de 2000. Esta versão introduziu o modo high speed,
elevando a taxa de transferência para 480 Mbits/s – um aumento de 40 vezes sobre a
versão anterior – permitindo que o USB substituísse interfaces de alta largura de banda e
se tornasse o padrão dominante de mercado.

Versões subsequentes continuam a expandir a tecnologia, como o USB 3.0 (2008), que
introduziu a SuperSpeed (5 Gbits/s). Além da performance de dados, houve uma evolução
crítica na capacidade de fornecimento elétrico com o padrão USB Power Delivery (USB-PD).
É importante notar que, para manter a promessa de universalidade, o USB preserva uma
forte retrocompatibilidade. Essa decisão de design, embora benéfica para o usuário, resulta
em uma pilha de protocolos complexa e extensa, que deve gerenciar múltiplos estados,
velocidades e classes de dispositivos simultaneamente.

2.1 Arquitetura Física e Lógica

O USB opera sob uma arquitetura de barramento host-driven, com uma topologia de
estrela em camadas. Um único dispositivo host (ou hospedeiro), como um computador,
coordena toda a comunicação com múltiplos periféricos, também nomeados como devices

ou gadgets.

6

2 | USB

O barramento USB suporta a conexão de até 127 dispositivos simultaneamente, inclu-
indo o host, hubs e dispositivos finais; este é um limite estrutural da especificação USB,
dado que o campo de endereço contém 7 bits e o endereço 0 é um endereço reservado para
broadcast.

Hubs são dispositivos intermediários que expandem o número de portas disponíveis,
permitem a conexão em cascata de múltiplos dispositivos, garantem flexibilidade à topolo-
gia, onde dispositivos podem ser conectados e desconectados dinamicamente, facilitam a
gestão de energia e segmentação do tráfego.

É ilustrado na figura 2.1 uma topologia típica de barramento USB, com múltiplas
camadas e especificações. Nesse exemplo, o hub raiz se comunica com o hub A em high

speed (USB 2.0) e o mouse conectado ao hub A é isolado pelo hub utilizando um Transaction

Translator (TT), permitindo que o mouse opere em full speed (USB 1.1) sem impactar a
performance dos demais dispositivos. O funcionamento do TT é descrito pela primeira vez
na seção 11.14 da especificação USB 2.0, conforme USB Implementers Forum, 2025b.

Do lado do host, a interação com o barramento é gerenciada por uma controladora de
hardware, que também contém o hub raiz (root hub). Historicamente, existiram diferentes
especificações, como a Universal Host Controller Interface (UHCI) e a Open Host Controller

Interface (OHCI). A especificação USB 2.0 introduziu a Enhanced Host Controller Interface

(EHCI), que se tornou o padrão para a operação em high speed, simplificando o ecossistema
de drivers.

Fisicamente, as interface USB 1.1 e 2.0 consiste em um cabo de quatro vias: duas para
alimentação,𝑉𝐶𝐶 e𝐺𝑁𝐷, e duas para a transmissão de dados,𝐷+ e𝐷−. O padrão 3.0 conta
com um canal adicional, com linhas 𝑇𝑋/𝑅𝑋 adicionais para garantir maior velocidade. A
comunicação é serial e os dados são transmitidos de forma diferencial sobre o par 𝐷+/𝐷−,
o que confere alta imunidade a ruído eletromagnético. Para garantir transições de sinal
suficientes para a sincronização dos clocks entre o host e o device, o USB utiliza a codificação
Non-Return-to-Zero Inverted (NRZI) com a técnica de bit stuffing, que insere um bit 0 após
seis bits 1 consecutivos no fluxo de dados.

2.2 Estrutura de Comunicação

2.2.1 Pacotes
Os pacotes são as unidades atômicas de informação que trafegam no barramento. Os

dados são transmitidos com o bit menos significativo (LSB) primeiro. Quase todos os
pacotes USB são compostos por algum conjunto dos seguintes campos:

• SYNC: sequência de bits usada para sincronizar os clocks do transmissor e receptor.
Presente em todos os pacotes;

• PID (Packet ID): campo de 8 bits que identifica o tipo do pacote (token, dados,
handshake, SOF). Cada PID é composto por 4 bits de identificação seguidos por seus
4 bits complementares, como uma simples forma de checksum, permitindo detecção
de erros. Presente em todos os pacotes;

2.2 | ESTRUTURA DE COMUNICAÇÃO

7

Figura 2.1: Topologia USB, com múltiplas camadas e especificações

• endereço do dispositivo (ADDR): campo de 7 bits que especifica o endereço do
dispositivo de destino da transação;

• endpoint (ENDP): campo de 4 bits que identifica o endpoint específico dentro do
dispositivo;

• dados: campo variável que contém a carga útil (payload), presente apenas em pacotes
de dados;

• CRC (Cyclic Redundancy Check): campo usado para detecção de erros, com 5 bits

para pacotes de token e 16 bits para pacotes de dados;

• EOP (End of Packet): sinaliza o fim do pacote. Presente em todos os pacotes.

O protocolo USB 2.0 define quatro categorias principais de pacotes, cada uma identifi-
cada por PIDs distintos:

• pacotes de token: enviados para iniciar uma transação e podem ser do tipo IN, onde
o host deseja ler informações, OUT, onde o host envia dados ao dispositivo e SETUP,
para iniciar transações de controle;

• pacotes de dados: transportam a carga útil (payload). Existem diversos tipos de
pacotes de dados (DATA0, DATA1, DATA2, MDATA), definidos pelo PID;

• pacotes de handshake: indicam o status da transação. Podem ser ACK (confirmação),

8

2 | USB

NAK (indisponibilidade temporária), STALL (erro) e NYET (ainda sem resposta);

• pacotes de Start of Frame (SOF): broadcast enviado pelo host em intervalos regula-
res para manter a sincronização do barramento. Essencial para agendar transferências
periódicas (isócronas e de interrupção).

2.2.2 Transações
No nível lógico, a comunicação é organizada em transações. Como o barramento é

centrado no host, é ele quem inicia as transações. Uma transação completa é uma sequência
de pacotes que realiza uma transferência de dados útil e é tipicamente composta por três
fases:

• pacote de token: o cabeçalho da transação, enviado pelo host. Define a natureza da
transação (IN, OUT, SETUP), o endereço do dispositivo e o endpoint de destino;

• pacote de dados (opcional): contém a carga útil (payload). É enviado pelo host (em
transações OUT) ou pelo device (em transações IN);

• pacote de status (handshake): a fase final, onde o receptor acusa o recebimento
(ACK), reporta indisponibilidade temporária (NAK) ou sinaliza um erro (STALL).

2.2.3 Transferências
Transferências são operações lógicas de alto nível que podem envolver múltiplas

transações para completar o envio ou recebimento de dados. Existem quatro tipos principais
de transferências USB, cada uma adequada a diferentes necessidades de comunicação:

• transferências de controle: são mandatórias e essenciais para a operação do
barramento. Elas são usadas pelo host para operações de comando e status, mais no-
tavelmente durante o processo de enumeração, para descobrir, configurar e endereçar
um dispositivo recém-conectado;

• transferências de interrupção: ao contrário do que o nome indica, não são trans-
ferências exatamente baseadas em interrupções. São baseadas em uma sondagem
periódica (polling) feito pelo host e são usadas para dados pequenos e não periódicos
que exigem latência máxima, como cliques de um mouse;

• transferências em lote (bulk transfers): destinadas a grandes volumes de dados
sem requisitos de tempo real. Há garantia de entrega baseada no CRC e handshake
ACK/NAK, com retransmissão em caso de erros. São usadas para dispositivos como
impressoras e armazenamento em massa;

• transferências isócronas (isochronous transfers): utilizadas para fluxos de dados
que exigem entrega contínua e em tempo real, como áudio e vídeo. Pacotes corrom-
pidos ou perdidos não são retransmitidos, priorizando a latência sobre a integridade
dos dados.

As seções 5.6.4 e 5.7.4 da especificação USB 2.0 detalham um aspecto importante em
relação às transferências periódicas (isócronas e de interrupção): em full speed, não mais

2.3 | INICIAÇÃO E DETECÇÃO DE VELOCIDADE

9

que 90% da banca pode ser alocada para transferências periódicas, o limiar é de de 80%
para high speed USB Implementers Forum, 2025b.

2.3 Iniciação e Detecção de Velocidade
Apesar de toda a comunicação ser essencialmente controlada pelo host, a conexão é

fisicamente iniciada pelo dispositivo. Quando um dispositivo é conectado à porta, ele deve
anunciar sua presença ao host através de um resistor de pull-up de 1.5𝑘Ω. A posição deste
resistor determina a velocidade inicial do dispositivo:

• pull-up em 𝐷+: dispositivo de full speed ou high speed;

• pull-up em 𝐷−: dispositivo de low speed.

O host detecta a mudança de tensão causada por este resistor e inicia o processo
de enumeração. Dispositivos com capacidade high speed devem, obrigatoriamente, se
conectar inicialmente como full speed. Durante a enumeração, ocorre um específico onde o
dispositivo demonstra sua capacidade de operar em 480 Mbits/s, e só então o host comuta
o barramento para o modo de alta velocidade.

Uma extensão à especificação USB 2.0 é o USB On-The-Go (OTG), que permite que
dispositivos atuem tanto como host quanto como periférico, dependendo do contexto
da conexão, mas nunca simultaneamente. Nesse caso, o estado inicial de quem é device

e quem é host é determinado pela orientação do cabo e a troca de papéis é negociada
através do Host Negotiation Protocol (HNP), conforme descrito na seção 5.2 da extensão
USB Implementers Forum, 2025a da especificação USB 2.0.

2.3.1 Enumeração e Descritores
Após a iniciação da conexão, o host inicia o processo de enumeração, que é a sequência

de passos necessários para reconhecer, configurar e preparar o dispositivo para comu-
nicação. Durante este processo, o host se comunica com o endpoint 0 do dispositivo (o
endpoint de controle padrão) para ler uma hierarquia de estruturas de dados chamadas
descritores (descriptors). Estes descritores informam ao host tudo o que ele precisa saber
sobre o dispositivo.

A hierarquia de descritores é a seguinte, ilustrada na figura 2.2:

• device descriptor : existe apenas um por dispositivo. Contém informações globais,
como a versão da especificação USB suportada, os identificadores de fornecedor e
produto (Vendor ID e Product ID), e o número de configurações possíveis;

• configuration descriptor : um dispositivo pode ter múltiplas configurações, mas ape-
nas uma pode estar ativa por vez. Este descritor especifica características de uma
configuração, como o consumo de energia e o número de interfaces que ela agrupa.
A seleção é feita pelo host com o comando SetConfiguration;

• interface descriptor : agrupa um conjunto de endpoints que implementam uma funcio-
nalidade específica (e.g.: uma webcam pode ter uma interface para vídeo e outra para
áudio). As interfaces permitem configurações alternativas (bAlternateSetting),

10

2 | USB

que podem ser trocadas em tempo de execução com o comando SetInterface para,
por exemplo, alterar a largura de banda alocada;

• endpoint descriptor : descreve um único endpoint, que é um buffer de dados unidire-
cional (IN ou OUT). Define atributos cruciais como o tipo de transferência (control,
isochronous, bulk, ou interrupt), o tamanho máximo do pacote de dados e, para
endpoints isócronos e de interrupção, o intervalo de polling;

• string descriptors: opcionais, fornecem informações legíveis por humanos, como o
nome do fabricante, o nome do produto e o número de série. Os outros descritores
referenciam essas strings através de um índice.

Figura 2.2: Hierarquia de descritores USB. Retirada de BeyondLogic, 2025

Todos tipos de descritores tem um formato binário rígido, com campos de tamanho
fixo e posições predefinidas, conforme detalhado na seção 9.6 da especificação USB 2.0
USB Implementers Forum, 2025b. Um padrão entre todos descritores é o primeiro byte,
que indica o tamanho total do descritor em bytes, e o segundo byte, que identifica o tipo
do descritor (e.g.: 0𝑥01 para device descriptor, 0𝑥02 para configuration descriptor, etc.). Os
demais campos variam conforme o tipo do descritor, mas seguem uma estrutura consistente
que facilita a análise e interpretação pelo host. A tabela 2.1 exemplifica a estrutura do
device descriptor.

2.4 | CAPTURA DE TRÁFEGO

11

Offset Campo Tamanho Valor Descrição
0 bLength 1 18 Tamanho do descritor em bytes
1 bDescriptorType 1 1 Tipo do descritor (device)
2 bcdUSB 2 BCD Especificação com a qual o dispositivo

é compatível, em Binary-Coded Deci-

mal (BCD)
4 bDeviceClass 1 Class Código de classe definido pela USB-IF.

Exemplos de classe são mass storage ou
áudio. Valores 0𝑥00 e 0𝑥𝐹𝐹 são casos
especiais: definido pela interface e pelo
fornecedor, respectivamente

5 bDeviceSubClass 1 SubClass Código de subclasse definido pela USB-
IF. Deve ser 0𝑥00 caso bDeviceClass
também seja nulo, e 0𝑥𝐹𝐹 caso a sub-
classe seja indefinida

6 bDeviceProtocol 1 Protocol Especifica o protocolo de comunicação
usado pelo dispositivo. Os valores 0𝑥00
e 0𝑥𝐹𝐹 indicam que não há protocolo
específico de classe, e protocolo espe-
cífico do fornecedor, respectivamente

7 bMaxPacketSize0 1 Número Tamanho máximo do pacote suportado
pelo endpoint 0

8 idVendor 2 ID Vendor ID atribuído pela USB-IF
10 idProduct 2 ID Product ID atribuído pelo fornecedor
12 bcdDevice 2 BCD Número de versão definido pelo desen-

volvedor do dispositivo, em BCD
14 iManufacturer 1 Índice Índice do string descriptor que descreve

o fabricante
15 iProduct 1 Índice Índice do string descriptor que descreve

o produto
16 iSerialNumber 1 Índice Índice do string descriptor que descreve

o número serial
17 bNumConfigurations 1 Número Número de possíveis configurações do

dispositivo

Tabela 2.1: Estrutura do Device Descriptor USB. Adaptada de USB Implementers Forum, 2025b

Após a leitura dos descritores, o host seleciona uma configuração, carrega o driver

apropriado com base nas informações de Vendor/Product ID (VID/PID) e classe do
dispositivo, e o dispositivo está pronto para ser utilizado.

2.4 Captura de tráfego
A captura de tráfego USB em um sistema pode ser realizada em diferentes níveis –

hardware, kernel, espaço de usuário — dependendo dos objetivos e do acesso disponível.

12

2 | USB

No nível de hardware existem existem analisadores de protocolo (protocol analyzers) e
analisadores lógicos (logic analyzers) que interceptam e encaminham sinais elétricos,
permitindo a reconstrução de tráfego com alta fidelidade temporal; é a única forma de
observar falhas que decorrem de condições físicas.

Também é possível fazer essa captura no nível de software, em duas camadas principais:
no espaço do kernel ou no espaço do usuário. A abordagem no espaço do usuário é muito
limitada, dado que essa técnica geralmente se baseia em "interceptar"(hooking) chamadas
de API de alto nível. Um exemplo no espaço do usuário é capturar chamadas ao método
libusb_bulk_transfer da libusb, todavia isso é restrito a programas aos quais se tem
controle.

A abordagem em nível de kernel é muito mais comum e robusta, tipicamente utilizando
o módulo usbmon. Ele opera como um sniffer de protocolo, interceptando os USB Request

Blocks (URBs) – estruturas de dados do kernel que encapsulam todas as informações
necessárias das transações USB Corbet et al., 2005. O usbmon se posiciona entre os drivers

de dispositivo e os drivers da controladora host, fornecendo uma visão completa e de baixo
nível de toda a comunicação USB do sistema. Ferramentas do espaço de usuário, como o
Wireshark consomem os dados do usbmon para decodificar esse tráfego em um formato
legível. Uma solução análoga em sistemas Windows é o driver de filtro chamado USBPcap,
que cumpre a mesma função que o usbmon.

2.5 Abstrações de Software para Interação USB
Embora a comunicação em baixo nível seja gerenciada pelo kernel e seus drivers de

controladora (host controllers), a interação de aplicações de espaço de usuário (userspace)
com dispositivos USB é, na maioria dos casos, mediada por bibliotecas de abstração. Essas
bibliotecas facilitam a criação de drivers customizados, ferramentas de análise e interação
direta com dispositivos USB sem a necessidade de desenvolver código de baixo nível.

A biblioteca mais fundamental neste ecossistema é a libusb (libusb Developers,
2025). Trata-se de uma API em C, de código aberto e multiplataforma (Linux, macOS,
Windows), que fornece acesso de baixo nível a dispositivos USB a partir do espaço de
usuário. Sua principal função é permitir que uma aplicação assuma o controle direto de uma
interface USB, sem passar pelos drivers de classe do kernel (como usb-storage ou usbhid).
Quando o sistema operacional já possui um driver associado à interface, a aplicação
pode solicitar que a libusb desvincule esse driver (libusb_detach_kernel_driver), e
então reivindicar a interface (libusb_claim_interface). Uma vez que a interface está
sob controle da aplicação, a libusb expõe funções para comunicação direta com seus
endpoints, permitindo o envio e recebimento de transferências de controle, lote, interrupção
e isócronas.

Sobre esta base, outras bibliotecas de nível superior foram criadas. O PyUSB e o
usb4java, por exemplo, são wrappers em Python e Java, respectivamente, para a libusb,
que oferece a mesma funcionalidade de baixo nível, mas com a conveniência e agilidade de
prototipagem das linguagens de mais alto nível. Também em um nível de abstração mais
alto, existe a HIDAPI. Esta biblioteca foca exclusivamente em dispositivos da classe Human

Interface Device (HID) e abstrai completamente os detalhes do protocolo USB. A HIDAPI

2.5 | ABSTRAÇÕES DE SOFTWARE PARA INTERAÇÃO USB

13

permite que uma aplicação leia e escreva relatórios HID sem precisar lidar com endpoints,
descritores ou tipos de transferência, fornecendo uma API mais simples e orientada ao uso
típico de teclados, mouses, controles e sensores HID.

15

Capítulo 3

Fuzzing

fuzzing é uma técnica de teste automatizado em softwares por meio do fornecimento
massivo de entradas inválidas, inesperadas ou aleatórias. A ideia central é avaliar como
o programa se comporta diante dessas entradas, identificando anomalias que indiquem
falhas de robustez ou de segurança. Tais anomalias podem se manifestar na forma de
travamentos (crashes), execuções não terminantes (loops infinitos), uso excessivo de recur-
sos computacionais, ou vulnerabilidades clássicas de memória, como buffer overflows e
use-after-free (UAF). Embora seja uma ténica antiga, inicialmente descrita em Miller et al.,
1990, que cunhou o termo fuzzing após o programa chamado fuzz, a técnica evoluiu para
métodos mais inteligentes e guiados por métricas internas do programa.

Os tipos de fuzzing podem ser classificados segundo o nível de conhecimento do alvo
e o modo de geração de entradas. No que diz respeito à literatura, fuzzing apresenta uma
taxonomia consolidada, na qual os principais trabalhos utilizam terminologias e categorias
bastante uniformes para descrever estratégias, arquiteturas e técnicas adotadas pelos
fuzzers. Um dos estudos mais abrangentes nesse sentido é Manès et al., 2018, no qual a
classificação dada a seguir segue em conformidade.

Em um fuzzing black-box, o sistema sob teste é tratado como uma caixa-preta: o fuzzer

tem acesso somente a entradas e saídas, limitando-se a observar o que lhe é fornecido, por
canais diretos ou laterais. Essa limitação muitas vezes resulta em uma exploração menos
eficiente, já que o fuzzer não tem informações sobre a estrutura interna do programa,
dificultando a correlação entre a entrada fornecida e o estado interno atingido pelo sistema.
Uma estratégia de fuzzing white-box foi inicialmente apresentada pela Microsoft em
Godefroid et al., 2012, utilizando instrumentação, execução simbólica e informações
internas do sistema, permitindo uma exploração mais direcionada, com melhor cobertura
de código e melhor detecção de falhas.

Entre esses extremos, há ainda uma abordagem grey-box, que combina a eficiência dos
simples testes aleatórios com a inteligência da instrumentação parcial do programa. Tanto
as estratégias black-box quanto grey-box possibilitam um fuzzing guiado por cobertura de
código (coverage-guided), onde a geração de entradas é orientada por métricas de cobertura:
entradas que exercitam novos trechos de código recebem "energia"para serem mutadas
e exploradas ainda mais. Esse conceito de energia é explorado em Böhme et al., 2016,

16

3 | FUZZING

que mostra como a exercitação de novos caminhos de código pode ser priorizada com
base em um modelo cadeia de Markov, distinguindo trechos de código menos comumente
alcançados.

Preliminarmente, outro componente essencial do processo de fuzzing é o corpus, o con-
junto de entradas que serve de ponto de partida para as mutações. Um corpus bem projetado
cobre a maior variedade possível de caminhos de execução, aumentando a eficiência do
teste. O fuzzer gera novas entradas aplicando mutações sobre o corpus: inserção, remoção,
substituição de bytes, recombinação de partes de diferentes amostras ou até transformações
estruturais específicas do formato de dados em teste. Essas mutações buscam produzir
pequenas variações que levem o programa a novos estados de execução.

Em termos de geração de dados, existem duas famílias principais e conceitualmente
distintas: mutational e generational. fuzzers mutacionais partem de um corpus existente
e aplicam mutações sintáticas ou semânticas para produzir variantes, enquanto fuzzers

generacionais criam entradas do zero, baseando-se em modelos ou gramáticas que descre-
vem a estrutura esperada dos dados. Cada abordagem tem suas vantagens e desvantagens:
fuzzers mutacionais são mais simples de implementar e podem ser eficazes quando o corpus
inicial é representativo, mas enfrentam dificuldade em explorar profundamente formatos
complexos. fuzzers generacionais, por outro lado, podem alcançar uma cobertura mais
ampla de formatos específicos, mas exigem um conhecimento prévio detalhado sobre a
estrutura dos dados e mutações estruturais podem ser mais complexas. Na prática, ambos
métodos podem ser aplicados de forma complementar, inicialmente complementando o
corpus com entradas geracionais e adições implementadas durante a execução por meio
de mutações.

Finalmente, após encontrados resultados considerados interessantes com a execução do
fuzzer, há o processo de minimização, também conhecido como delta debugging, para redu-
zir entradas interessantes até a menor forma que ainda reproduz o comportamento alvo – a
entrada utilizada pelo fuzzer tende a não ser "minimal", dificultando uma possível posterior
depuração. Com os resultados, e quando possível, inicia-se o fluxo de pós-processamento:
agrupar e deduplicar bugs equivalentes (por stack trace, cobertura, instrumentação como
KASAN ou KMSAN) para obter um diagnóstico e gerar um relatório "maximal"reproduzível;
esses passos transformam ruído bruto de crashes em bugs acionáveis e úteis para corre-
ção.

3.1 Trabalhos Relacionados
Ao longo dos anos, diversos trabalhos apresentaram implementações e novas estra-

tégias para ferramentas de fuzzing, cada uma com suas características, pontos fortes e
limitações.

O American Fuzzy Lop (AFL), lançado em 2013 e continuado através do projeto AFL++
(Fioraldi et al., 2020), é indiscutivelmente o fuzzer que popularizou o fuzzing guiado por
cobertura (coverage-guided). Sua principal inovação foi o uso de uma instrumentação leve
para monitorar quais caminhos de código uma entrada exercita. Com essa informação, o
AFL emprega um algoritmo genético para priorizar e mutar as entradas do corpus que
descobrem novos caminhos, permitindo-lhe explorar eficientemente a lógica interna de

3.1 | TRABALHOS RELACIONADOS

17

programas complexos sem a necessidade de análise de código-fonte. Dada sua eficácia e
simplicidade de uso, o AFL foi responsável pela descoberta de múltiplas vulnerabilidades
em softwares importantes (Zalewski, 2025) e seu design se tornou a base para inúmeras
ferramentas subsequentes e pesquisas acadêmicas na área (Manès et al., 2018). As mutações
empregadas pelo AFL incluem duas categorias principais: determinística e havoc. Dentre
as mutações determinísticas, destacam-se bit flips e substituições por valores interessantes,
como edge cases de inteiros (0, 1, −1, 28 − 1, ...). Mutações havoc são utilizadas após esgotar
o modo determinístico, com mutações aleatórias empilhadas (stacked mutations).

Radamsa (Helin, 2025) é um projeto que se auto descreve como um gerador de casos
de teste para testes de robustez. Ele é projetado para ser simples, rápido e eficaz na geração
de entradas mutadas a partir de um corpus inicial, e operar completamente às cegas. Como
suporta e aplica mutações a qualquer tipo de entrada, é frequentemente utilizado em
conjunto com outras ferramentas de fuzzing, como o previamente mencionado AFL++,
para aumentar a diversidade das entradas testadas e melhorar a cobertura do código. A
ausência de qualquer tipo de integração com instrumentações inviabiliza uma análise
mais profunda do desempenho do mesmo, como já explorado em Pramanik e Tayade,
2019.

Outro importante fuzzer com muitos bugs encontrados é o syzkaller, software de
fuzzing desenvolvido pelo Google, focado em encontrar vulnerabilidades no kernel Linux.
O syzkaller é um fuzzer guiado por cobertura sem supervisão, instrumentado principal-
mente pelo kcov para análise de cobertura de código e sanitizers do kernel como KASAN e
KMSAN para detecção de erros. O suporte ao subsistema USB se dá através do módulo do
kernel raw-gadget, apresentado em Konovalov, 2019. Um dos pontos interessantes do
syzkaller é seu repositório público com milhares de bugs encontrados no kernel Linux,
centralizados através do syzbot (Source, 2025). Zou et al., 2022 mostra que muitos dos
bugs de baixa severidade encontrados podem ser escalados para um impacto de risco
maior.

O trabalho ramsauer2019black-box propõe uma abordagem de fuzzing black-box

utilizada para avaliar a segurança do protocolo de rede MQTT. O processo de geração
de entradas empregado é simples e utiliza apenas o radamsa para mutação de entradas.
Uma abordagem interessante, por outro lado, é uma medida de contorno para o cenário
black-box: na ausência de instrumentação direta do sistema alvo, o trabalho utiliza métri-
cas externas para determinar se o sistema conectado está ativo, permitindo a identificação
de entradas anômalas que causam falhas.

Dentre as muitas implementações de fuzzers existentes, Chen et al., 2018 busca otimizar
o processo de fuzzing ao introduzir uma abordagem de "fuzzing conjunto", onde múltiplos
fuzzers são utilizados com sincronização do corpus entre eles. A ideia é aproveitar as forças
individuais de cada fuzzer para explorar diferentes partes do espaço de entrada, aumentando
a probabilidade de encontrar bugs. Essa abordagem é particularmente eficaz quando os
fuzzers envolvidos possuem estratégias de mutação e cobertura distintas, permitindo
uma exploração mais abrangente do programa alvo. O problema, todavia, é quando a
instrumentação no objeto de teste é limitada, dado que isso inviabiliza uma avaliação do
desempenho de cada fuzzer para seleção e priorização.

Visando o escopo do presente trabalho, Schumilo et al., 2014 apresenta, pela primeira

18

3 | FUZZING

vez, uma abordagem de fuzzing de alta performance para drivers USB, chamada de vUSBf.
O vUSBf define um conjunto de casos de teste e os pacotes são manipulados utilizando
scapy. A execução dos testes ocorre com a virtualização paralela de múltiplos hosts
utilizando KVM e QEMU, e os erros são detectados por meio de monitoramento de logs do
kernel, que deve estar configurado para máxima verbosidade. Trabalhos antecessores,
como Tonder e Engelbrecht, 2014 continham a necessidade de um dispositivo físico
(usualmente Facedancer) para emular o dispositivo USB, ao mesmo tempo em que alguma
instrumentação do sistema alvo era necessária.

3.2 Emulação de Dispositivos USB
Uma das tarefas que antecede a construção de um fuzzer é a escolha de como o

dispositivo USB será emulado, de forma que pacotes possam ser enviados para dispositivos
externos ao fuzzer. No caso de fuzzers usando sistemas embarcados baseados em FPGA,
por exemplo, esse controle fica a cargo da implementação do hardware. Por conveniência
e flexibilidade, a maior parte dos fuzzers USB utiliza o kernel Linux em dispositivos com
suporte a USB OTG – que permite o uso do modo gadget.

Funções cruciais para o fuzzer, como um controle mais direto do hardware, são limitadas
ao kernelspace. Embora seja tecnicamente possível codificar o fuzzer inteiro no espaço do
kernel, isso certamente não é uma boa ideia devido ao risco de bugs que podem causar kernel

panic, por exemplo. Então surge a necessidade de utilizar um módulo do kernel, que serve
como uma ponte entre o userspace e kernelspace para utilizar funções restritas ao kernel. Há
diversas opções de módulos do kernel Linux que podem ser utilizados para assumir o modo
gadget e enviar pacotes manipulados. Dentre as principais opções existentes, destacam-se
FunctionFS, GadgetFS e raw-gadget.

Cada uma dessas opções apresenta características distintas que influenciam diretamente
na implementação e eficácia do fuzzer. A escolha entre essas opções deve considerar fatores
como facilidade de uso, flexibilidade e desempenho.

O módulo escolhido para o desenvolvimento do fuzzer é o raw-gadget, que funciona
com bind direto a controladores UDC e fornece uma interface de nível muito baixo que
encaminha as requisições USB para o userspace com verificações mínimas, o que permite
um controle mais fino dos dados. É um módulo que foi desenvolvido visando fuzzing,
mas mesmo assim apresenta algumas sanitizações que limitam a reprodução de alguns
bugs.

Uma das poucas limitações do raw-gadget, por exemplo, é a checagem de comprimento
máximo de transferências. Bugs que levam a vazamento de memória, por exemplo, podem
causar uma transferência de dados com tamanho inesperado. Limitar o tamanho máximo
de transferências pode impedir a reprodução de tais bugs. Esse cenário já apareceu em uma
lista de discussão do kernel e um patch foi enviado pelo mantenedor, após a vulnerabilidade
CVE-2025-38494 ser reportada e não ser efetivamente reproduzível com o raw-gadget.
Konovalov, 2025b

Em contraste, FunctionFS foi pensado para montar funções padrões e válidas dentro
de um gadget. Justamente por isso, oferece mais segurança, coerência e previsibilidade

3.3 | ANÁLISE DE VULNERABILIDADES

19

para ambientes de produção. O GadgetFS, por sua vez, é um módulo legado no qual o
FunctionFS foi baseado; também com limitações similares ao FunctionFS em termos
de flexibilidade e controle, o que é um obstáculo para o desenvolvimento de um fuzzer

eficaz.

Programa 3.1 linux/v6.17.1/source/drivers/usb/gadget/function/f_fs.c: validação de des-
critores.
1 switch (_ds->bDescriptorType) {
2 [...]
3 case USB_DT_INTERFACE: {
4 struct usb_interface_descriptor *ds = (void *)_ds;
5 pr_vdebug("interface descriptor\n");
6 if (length != sizeof *ds)
7 goto inv_length;
8
9 __entity(INTERFACE, ds->bInterfaceNumber);

10 if (ds->iInterface)
11 __entity(STRING, ds->iInterface);
12 *current_class = ds->bInterfaceClass;
13 *current_subclass = ds->bInterfaceSubClass;
14 }
15 break;
16 [...]
17 default:
18 /* We should never be here */
19 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
20 return -EINVAL;

O trecho de código 3.1 mostra um impeditivo do FunctionFS: um tratamento e valida-
ção de descritores. Por outro lado, nesse mesmo cenário, raw-gadget não faz nenhuma
validação ou interpretação dessa estrutura. Ele a trata como um bloco de dados opaco e a
envia diretamente para o aplicativo de espaço do usuário, que então tem a responsabilidade
total de interpretá-la e responder adequadamente.

3.3 Análise de Vulnerabilidades

Vulnerabilidades relacionadas a USB podem surgir tanto por bugs de implementações
de drivers no host quanto por falhas na camada de aplicação. No nível do kernel, vulnerabi-
lidades geralmente se manifestam como corrupção de memória, leitura no kernelspace fora
dos limites, negação de serviço, ou execução espúria de código. Na camada de aplicação,
falhas geralmente exigem maior conhecimento do contexto da aplicação e podem se
apresentar de diversas formas, como mau tratamento de format strings em descritores de
strings ou condições de corrida (TOCTOU).

Sergey Bratus, 2012 apresenta um bug encontrado, em 2012, no Skype: ao definir
alguns descritores de string como "%n%s%n%s%n%s", a aplicação fechava inesperadamente.
O problema provavelmente residia em um uso de funções como printf sem a devida
sanitização, levando a uma falha potencialmente explorável.

20

3 | FUZZING

Davis, 2013 define negação de serviço (DoS), através de use-after-free (UAF) ou des-
referência de ponteiros nulos, como uma das mais comuns falhas encontradas, e essas
são falhas facilmente encontradas através de fuzzing. Konovalov, 2017 lista inúmeros
exemplos de bugs do tipo encontrados pelo syzkaller, como CVE-2017-16525.

3.4 Métricas Externas
Um desafio inerente ao fuzzing black-box é a observabilidade do sistema, que dificulta a

identificação de falhas. Faz-se, então, necessário elaborar oráculos de detecção de bugs que
possam ser empregadas para detectar diferenciais entre casos de teste, utilizando métricas
externas para guiar o processo de fuzzing. Operando às cegas, faz sentido combinar diversas
métricas para inferir o estado do sistema alvo e utilizar uma avaliação de curto-circuito,
dado que não há como determinar precisamente o comportamento do sistema e qualquer
anomalia pode ser considerada um bug potencial.

Uma das técnicas para a detecção de diferencial no sistema alvo é a disponibilidade do
processo de enumeração USB. Dentre os códigos do projeto, há renumerator.c, baseado no
módulo raw gadget que, simplificadamente:

1. em loop:

2. inicia USB no modo device, com USB_RAW_IOCTL_INIT e USB_RAW_IOCTL_RUN;

3. processa pacotes do tipo USB_RAW_EVENT_CONNECT;

4. responde com descritores e configurações de vendor ID 0𝑥05𝑒3 e product ID
0𝑥𝑓 𝑒00, simulando ser um mouse da marca Razer;

5. desconecta o device.

O objetivo é simples: forçar um processo infinito de enumeração por parte do host, verifi-
cando a hipótese do host, por medidas de segurança, não tratar mais USB a partir de certo
ponto, e servindo de base para o proceso de fuzzing.

Um outro exemplo de métrica externa que pode indicar uma negação de serviço é a
falta de polling por lado do host. Se o device conectado tem um endpoint que requer polling

e o host deixa de enviar pacotes de polling, isso pode indicar que o device enviou um pacote
inválido e o host passou a ignorá-lo, ou que o host travou; em ambos casos, é um resultado
anômalo interessante.

21

Capítulo 4

Desenvolvimento da ferramenta

Com base no capítulo 3, o presente trabalho propõe a construção de uma ferramenta de
fuzzing USB para ser usado em testes do tipo black-box. Visando uma maior acurácia nos
testes, a ferramenta também integra e combina resultados advindos de fuzzing em outros
sistemas, permitindo uma rápida identificação de falhas presentes no kernel de sistemas
operacionais comuns, por exemplo.

A ferramenta é composta por dois componentes principais: um dispositivo USB pro-
gramável, responsável por emular dispositivos USB e enviar pacotes malformados; e um
software executor, responsável por controlar o dispositivo USB, estruturar os pacotes a
serem enviados e monitorar o sistema alvo em busca de falhas.

Embora a observabilidade dos resultados com os testes sendo feitos de maneira com-
pletamente fechada seja bastante comprometida, os testes de fuzzing necessitam de um
oráculo de bugs, similar a um sistema de feedback, por dois simples motivos: é necessário
identificar se a máquina chegou a algum estado, de alguma forma, considerado inesperado;
é necessário saber qual conjunto de pacotes levou a máquina a tal estado.

Previamente, na seção 3.4, foi apresentado um script chamado renumerator.c, respon-
sável por verificar se o processo de enumeração USB está ocorrendo normalmente. Uma
versão modificada desse script será utilizada adiante como forma de oráculo. O processo é
simples: após cada caso de teste, e um pequeno tempo de espera, o oráculo é acionado. O
sucesso da enumeração tende a significar falha do teste, e esse processo aparenta cobrir a
maior parte das possíveis falhas, como crashes. Outro método utilizado para detecção de
leituras indevidas de memória no espaço do kernel será demonstrado, a partir da análise da
saída de resposta a pacotes USB específicos. Alguns comportamentos inesperados, como
um erro que leve a um menu desconhecido ou uma mensagem erro, também são uma
forma de feedback valiosa, embora mais difícil de ser automatizada.

4.1 Escolha e configuração do hardware

A escolha do hardware é um ponto crucial para o desenvolvimento da ferramenta. É
necessário que o dispositivo USB programável possua suporte a modo gadget, permitindo

22

4 | DESENVOLVIMENTO DA FERRAMENTA

que ele atue como um dispositivo USB completo, capaz de se comunicar com o host e enviar
pacotes malformados conforme necessário. O suporte a Linux é outro ponto importante,
visto que a implementação do software executor é muito mais simples nesse ambiente
devido a existência de módulos do kernel que permitem manipulação de pacotes USB
de forma direta. O custo e a disponibilidade do hardware também forem fatores a serem
considerados, visando a viabilidade prática do projeto. A tabela 4.1 apresenta uma compa-
ração entre as principais opções de Single Board Computers (SBCs) e microcontroladores,
destacando as características relevantes para o projeto.

Nome Linux USB (modo host) USB (modo gadget)
ESP32-S3 Muito limitado 0 1x USB 2.0

Raspberry Pi Zero 2W Suportado 1x USB 2.0 1x USB 2.0
Raspberry Pi 5 Suportado 2x USB 2.0, 2x USB 3.0 1x USB 2.0
BeagleBone Black Suportado 1x USB 2.0 1x USB 2.0

Tabela 4.1: Comparativo entre SBCs e microcontroladores populares em relação ao suporte a Linux e

USB

Field Programmable Gate Arrays (FPGAs) foram uma opção considerada, mas o custo
mais elevado e a complexidade de desenvolvimento tornaram essa alternativa inviável
para o escopo do projeto. Microcontroladores como o ESP32-S3 possuem suporte limi-
tado a Linux, o que dificulta a implementação do software executor. BleagleBone Black
e Raspberry Pi 5 são opções viáveis, mas o Raspberry Pi Zero 2W tem um menor
custo, é amplamente disponível e não apresenta limitações significativas em relação aos
demais. Portanto, o Raspberry Pi Zero 2W foi escolhido como a plataforma ideal para o
desenvolvimento da ferramenta.

Nota-se que, infelizmente, nenhuma opção considerada viável possui suporte nativo a
USB 3.0 no modo gadget. Embora o USB 2.0 seja suficiente para a maioria dos testes de
fuzzing, essa limitação pode impactar a capacidade de explorar vulnerabilidades específicas
relacionadas ao USB 3.0.

O setup do Raspberry Pi Zero 2W tem alguns detalhes importantes, que impactam
diretamente a configuração das portas e comunicação USB. Um dos problemas encontra-
dos durante a configuração é que o módulo do kernel utilizado pelo fuzzer, raw-gadget
(Konovalov, 2025a) não funciona com a versão 6.12 do kernel Linux, utilizada, por padrão,
pelo Raspberry Pi Imager. A solução de contorno encontrada é fazer o uso de uma
versão do Raspberry Pi OS Bullseye, com o kernel Linux na versão 5.20 fornecida em
R. P. Foundation, 2023.

Após a instalação do sistema operacional, a configuração inicial pode ser feito com o
script a seguir:
1 apt-get update -y
2 apt-get dist-upgrade -y
3 apt-get install -y raspberrypi-kernel-headers
4 printf "\ndtoverlay=dwc2" | sudo tee -a /boot/config.txt
5 printf "\ndtoverlay=disable-bt" | sudo tee -a /boot/config.txt
6 printf "\ndwc2" | sudo tee -a /etc/modules

4.2 | CRAWLER DO SYZ-BOT

23

7 git clone https://github.com/xairy/raw-gadget
8 reboot

setup.sh

Por padrão, o Raspberry tentará se conectar a rede Wi-Fi, se definida pelo imager.
Isso traz alguns problemas, como o acesso ao Raspberry pela rede. Pode-se desabilitar as
configurações wireless alterando a configuração de boot: printf "
ndtoverlay=disable-bt sudo tee -a /boot/config.txt. Sem a configuração de
rede, uma alternativa é fazer a conexão ao Raspberry via UART e obter um terminal
serial. Com o terminal serial, também é possível ativar PPP sobre UART para criar uma
interface de rede virtual, que será útil a seguir.

A instalação do raw-gadget deve ser feita após reiniciar o sistema com o script acima,
para garantir que o SBC esteja no modo gadget. O processo de instalação do raw-gadget
pode ser simplesmente feito com os comandos a seguir:
1 cd raw-gadget/raw_gadget
2 sudo make
3 sudo ./insmod.sh

raw-gadget_install.sh

Nesse ponto, o módulo raw-gadget já está ativo, com a placa operando em modo
gadget. O nome do driver UDC estará listado em /sys/class/udc/. Resta configurar o
syzkaller, que será utilizado pela integração com o Source, 2025. A primeira etapa é
clonar o repositório, adaptar para o Raspbery Pi e executar o processo de build. Como o
processo é lento, deve ser feito fora do Raspberry Pi, com compilação cruzada, e os arquivos
copiados para a placa posteriormente. O script a seguir faz a compilação do syzkaller
para a arquitetura ARM:
1 git clone https://github.com/google/syzkaller
2 alias syz-env="${PWD}/syzkaller/tools/syz-env"
3 cd syzkaller
4 DRIVER_NAME=# Resultado de $(ls /sys/class/udc/) dentro da placa
5 perl -0777 -i -pe ’s/char device\[32\];\s*sprintf\(&device\[0\], "dummy_udc

\.%llu", procid\);\s*int rv = usb_raw_init\(fd, speed, "dummy_udc", &
device\[0\]\);/int rv = usb_raw_init(fd, speed, "${DRIVER_NAME}", "${
DRIVER_NAME}");/g’ executor/common_usb_linux.h

6 syz-env make generate
7 syz-env GOARM=5 make TARGETARCH=arm execprog
8 syz-env make TARGETARCH=arm executor

syzkaller_setup.sh

Com os arquivos copiados para a placa, o syz-executor já pode ser usado. Um único
problema impede o uso do syz-executor e a integração com o syzbot: não há seeds
carregadas.

4.2 Crawler do syz-bot
A fim de contornar o problema de ausência de seeds após a configuração inicial da

placa, uma opção é simplesmente baixar todas seeds disponibilizadas pelo Source, 2025. O

24

4 | DESENVOLVIMENTO DA FERRAMENTA

script abaixo faz o scraping de todos bugs encontrados, com logs para a reprodução via
syzkaller. Isso é facilitado pela interface web pública, com todas informações necessárias
e sem restrições de acesso para bots.

1 import requests
2 from bs4 import BeautifulSoup
3 import hashlib
4 import time
5 import os
6
7 BASE_URL = "https://syzkaller.appspot.com"
8 SYZ_REPRO_LOG_PATH = "syz-repro-seeds"
9

10 bug_links = []
11
12 if not os.path.exists(SYZ_REPRO_LOG_PATH):
13 os.makedirs(SYZ_REPRO_LOG_PATH)
14
15 def get_bug_urls(url):
16 response = requests.get(url)
17 if response.status_code != 200:
18 print(f"{url}: {response}")
19 return []
20
21 soup = BeautifulSoup(response.text, "html.parser")
22 rows = soup.find_all("tr")
23
24 for row in rows:
25 stat_cells = row.find_all("td", class_="stat")
26 if not stat_cells:
27 continue
28 if any(cell.text.strip() in ("C", "syz") for cell in stat_cells):
29 title_cell = row.find("td", class_="title")
30 if title_cell and title_cell.a:
31 bug_url = BASE_URL + title_cell.a[’href’]
32 bug_links.append(bug_url)
33
34 def find_first_syz_href(bug_url):
35 time.sleep(1) # syzbot is limited to 1 request per second
36 response = requests.get(bug_url)
37 if response.status_code != 200:
38 print(f"{bug_url}: {response}")
39 return None
40
41 soup = BeautifulSoup(response.text, "html.parser")
42 rows = soup.find_all("tr")
43 for row in rows:
44 repro_cells = row.find_all("td", class_="repro")
45 for cell in repro_cells:
46 a_tags = cell.find_all("a")
47 for a in a_tags:
48 if a.text.strip() == "syz":
49 return BASE_URL + a[’href’]
50 return None
51
52 def download_syz_repro(syz_url):

4.3 | FUZZING COM SYZKALLER

25

53 time.sleep(1) # syzbot is limited to 1 request per second
54 response = requests.get(syz_url)
55 if response.status_code != 200:
56 print(f"{syz_url}: {response}")
57 return None
58 return response.text
59
60 for bug_list_url in ["/upstream?manager=ci2-upstream-usb", "/upstream/fixed?

manager=ci2-upstream-usb"]:
61 get_bug_urls(BASE_URL + bug_list_url)
62 print(len(bug_links))
63
64 for link in bug_links:
65 print(link)
66 syz_repro_url = find_first_syz_href(link)
67 if syz_repro_url:
68 print(f"Found syz repro URL: {syz_repro_url}")
69 syz_repro = download_syz_repro(syz_repro_url)
70 filename = hashlib.sha1(syz_repro_url.encode()).hexdigest()[:12]
71 with open(f"{SYZ_REPRO_LOG_PATH}/{filename}.log", "w") as f:
72 f.write(syz_repro)

syzbot_scraper.py

Note que nem todas seeds produzem resultados relevantes, e o parsing de seeds fun-
cionais não é trivial: há bugs não reproduzíveis, ou com syscalls que não tem relação
com USB (e, portanto, não reproduzíveis no host), por exemplo; essas syscalls podem ou
não ter algum efeito no resultado. Para contornar essa limitação, um pequeno filtro foi
aplicado a todos arquivos de log, selecionando apenas aqueles que contém chamadas de
sistema relativas a USB, e sem chamadas que não são reproduzíveis externamente, como
name_to_handle_at.

A reprodução de um arquivo de log, com pacotes enviados ao host, pode ser feita
com o comando sudo syz-execprog -executor ./syz-executor -slowdown=1
-threaded=1 -collide=1 -procs=1 -enable=” -debug <seed.log>, onde <seed.log>
é o arquivo de log obtido pelo crawler.

4.3 Fuzzing com syzkaller
Uma das formas de excluir a dependência de logs de erros divulgados pelo projeto

syzbot é fazer o uso do próprio syzkaller para realizar fuzzing genérico na pilha USB
do kernel Linux. Essa abordagem pode revelar vulnerabilidades não previamente conhe-
cidas e aumentar a abrangência dos testes. Para esse propósito, faz-se necessário o uso
do syz-manager, componente do syzkaller responsável por orquestrar o processo de
fuzzing, com uma configuração específica para esse propósito. Embora isso não aparente
ser possível com a configuração padrão, o código que especifica o arquivo de configuração
mostra o contrário.

Uma rápida análise de alguns logs de erros gerados pelo syzkaller com relação ao
subsistema USB aponta o uso de pseudochamadas de sistema específicas, usualmente
seguindo o formato syz_usb_*, como syz_usb_ep_read. As chamadas de sistema open,

26

4 | DESENVOLVIMENTO DA FERRAMENTA

Programa 4.1 syzkaller/pkg/mgrconfig/configġo: trecho do código-fonte do syzkaller que
mostra a possibilidade de configuração de syscalls específicas

1 // List of syscalls to test (optional). For example:
2 // "enable_syscalls": ["mmap", "openat$ashmem", "ioctl$ASHMEM*"]
3 EnabledSyscalls []string ‘json:"enable_syscalls,omitempty"‘
4 // List of system calls that should be treated as disabled (optional).
5 DisabledSyscalls []string ‘json:"disable_syscalls,omitempty"‘
6 // List of syscalls that should not be mutated by the \textit{fuzzer} (

optional).

close, read, write, ioctl também são frequentemente utilizadas. Demais configurações,
como o kernel a ser utilizado pelo fuzzer ou aspectos relativos a performance ficam a
critério do usuário.

4.4 Estratégias da ferramenta

A ferramenta, sucintamente, não é um único software monolítico destinado a realizar
fuzzing USB. Ela é composta por alguns componentes que a assemelham a um framework,
permitindo a implementação manual de estratégias de fuzzing para testar hipóteses mais
direcionadas. Paralelamente, há um componente de fuzzing mais genérico, que visa explorar
a superfície de ataque de forma mais ampla, a partir de uma captura de tráfego. Em resumo,
a ferramenta desenvolvida possui três estratégias principais de fuzzing:

• fuzzing direcionado a hipóteses específicas, implementadas manualmente;

• fuzzing genérico, a partir de mutações aplicadas a um corpus de PCAPs;

• fuzzing genérico, guiado por vulnerabilidades conhecidas extraídas de um fuzzing

instrumentado;

• simples reprodução de bugs conhecidos.

O terceiro caso é baseado em vulnerabilidades encontradas por Konovalov, 2017, com,
como previamente citado, bugs reportados em Source, 2025. O syzbot é uma das escolha
bastante promissora, dado seu baixo custo e velocidade de reprodução. Essa estratégia é
reduzida, após um parsing e reprodução de logs, ao caso do fuzzing genérico a partir de
mutações aplicadas a um corpus de PCAPs, conforme ilustrado em 4.1.

4.5 | BASE INICIAL DE CAPTURAS

27

Figura 4.1: Estratégias de fuzzing empregadas pela ferramenta

4.5 Base inicial de capturas
O conjunto de capturas utilizado para os testes de fuzzing foi construído através de

duas fontes principais:

• logs do syzkaller, obtidos via crawler (seção 4.2) do syzbot e instância local (4.3);

• tráfego USB capturado em PCAPs, obtidos via coleta local, através de diversos dispo-
sitivos como mouses e outros periféricos, e amostras do Wireshark (W. Foundation,
2025).

28

4 | DESENVOLVIMENTO DA FERRAMENTA

4.6 Validação e reprodução de bugs do syzbot

Embora os logs do syzkaller sejam reproduzíveis com ferramentas como o
syz_execprog/syz_executor, esses logs não representam diretamente o tráfego do
dispositivo USB em um formato padronizado, como PCAP. O conteúdo do arquivo de
logs é composto por uma série de pseudochamadas de sistema que são interpretadas pelo
executor do syzkaller. Embora seja tecnicamente viável fazer o parsing dessas chamadas
e convertê-las para PCAPs, padronizando as entradas, esse processo é complexo e propenso
a erros, devido à natureza abstrata das chamadas. Outro fator que precariza essa ideia é a
restrição ao formato de uma implementação específica, utilizada pelo executor, que pode
vir a mudar com o tempo.

Programa 4.2 Log gerado pelo syzkaller para o bug “memory leak in __hci_cmd_sync_sk“

1 # https://syzkaller.appspot.com/bug?id=4
a86db64b1c9b392d18c1314c37e9de9facb2e40

2 # See https://goo.gl/kgGztJ for information about syzkaller reproducers.
3 #{"repeat":true,"procs":1,"slowdown":1,"sandbox":"none","sandbox_arg":0,"leak

":true,"close_fds":true,"vhci":true,"callcomments":true}
4 syz_usb_connect(0x5, 0x36, 0x0, 0x0)
5 r0 = userfaultfd(0x1)
6 ioctl$UFFDIO_API(r0, 0xc018aa3f, &(0x7f0000000000)={0xaa, 0x4d0})
7 bpf$MAP_CREATE(0x0, &(0x7f0000000000)=ANY=[@ANYBLOB="1700000007"], 0x50)
8 sendto$packet(0xffffffffffffffff, &(0x7f0000000000)=’[’, 0x1, 0x0, 0x0, 0x0)
9 r1 = syz_init_net_socket$bt_hci(0x1f, 0x3, 0x1)

10 bind$bt_hci(r1, &(0x7f0000000100)={0x1f, 0xffff, 0x3}, 0x6)
11 write$binfmt_misc(r1, &(0x7f0000000000), 0xd)

Como essa é uma tarefa que não é executada frequentemente, uma alternativa encon-
trada foi reproduzir o log e capturar o tráfego gerado em PCAPs. Essa abordagem, embora
menos direta, garante que o tráfego capturado seja fiel ao comportamento do syzkaller,
sem a necessidade de interpretar e converter as chamadas manualmente. Outro ponto
positivo dessa ideia é a mitigação do problema de logs não minimizados: ao converter a
captura para PCAP e filtrar por USB, há ao menos a garantia de que todo o log é, de fato,
referente a USB.

O processo descrito é trivial: basta executar o log com o syz-execprog, como descrito
anteriormente, enquanto uma ferramenta de captura de pacotes USB está ativa, como o
Wireshark. Uma limitação dessa abordagem é que, ao capturar apenas o tráfego USB,
perde-se o contexto das chamadas de sistema que prepararam o ambiente; bugs que
dependem de interações complexas entre chamadas de sistema, por exemplo, podem não
ser reproduzíveis.

4.7 Parsing do tráfego
Os arquivos de captura de tráfego USB, no formato PCAP, precisam ser interpretados

e convertidos para estruturas de dados que possam ser manipuladas pela ferramenta de
fuzzing. Para esse propósito, foi utilizado o framework Pyshark (KimiNewt, 2025), que é

4.7 | PARSING DO TRÁFEGO

29

um wrapper do tshark, permitindo a leitura e análise de arquivos PCAP de forma eficiente,
com a divisão de campos dos pacotes USB oferecida pelo Wireshark.

O parsing dos pacotes consiste na extração dos campos relevantes de cada pacote USB,
conforme definido da especificação. Para extrair o campo idVendor ou idProduct, por
exemplo, faz-se necessário definir toda a estrutura de um device descriptor, iterar por
todos pacotes USB da captura e, assim que um pacote desse tipo for encontrado, mapeá-lo
para a estrutura definida.

Programa 4.3 Parsing de pacotes USB, utilizando pyshark: extração de device descriptors

1 import pyshark
2 import struct
3
4 def parse_device(data):
5 # bLength para device descriptor ésempre 18 bytes
6 if len(data) != 18: return False
7 # campos do device descriptor, conforme spec USB 2.0
8 fields = struct.unpack(’<BBHBBBBHHHBBBB’, data[:18])
9 # bDescriptorType para device descriptor é1

10 if fields[1] != 1: return False
11 # bMaxPacketSize só pode ser 8, 16, 32 ou 64 para USB 2.0,
12 if fields[6] not in [8, 16, 32, 64]: return False
13 print(f"Device Descriptor:")
14 print(f" bLength: {fields[0]}")
15 print(f" idVendor: 0x{fields[7]:04x} | idProduct: 0x{fields[8]:04x}")
16 return True
17
18 def process_payload(raw_bytes):
19 bLength = raw_bytes[0]
20 bDescriptorType = raw_bytes[1]
21 descriptor_data = raw_bytes[0 : bLength]
22 # faz o parsing do device descriptor, se a estrutura for compatível
23 if bDescriptorType == 1 and bLength == 18:
24 parse_device(descriptor_data)
25
26 def main():
27 capture = pyshark.FileCapture(’usb_capture.pcap’)
28 for pkt in capture:
29 # filtra apenas pacotes USB, com dados
30 if hasattr(pkt, ’usbll’) and hasattr(pkt.usbll, ’data’):
31 hex_str = pkt.usbll.data
32 clean_hex = hex_str.replace(’:’, ’’)
33 # filtra pacotes sem dados relevantes
34 if(clean_hex == "Data <none>" or clean_hex == "00"): continue
35 raw_bytes = bytes.fromhex(clean_hex)
36 process_payload(raw_bytes)
37
38 if __name__ == "__main__":
39 main()

Dessa forma, todos campos relevantes dos pacotes USB podem ser extraídos e armaze-
nados, para posterior manipulação e mutação pelo fuzzer.

30

4 | DESENVOLVIMENTO DA FERRAMENTA

Um ponto importante a ser destacado é que o parsing demonstrado acima pode abranger
alguns erros do tipo falso-positivo, onde um pacote é identificado com um determinado
descritor, e na verdade não o é. Isso ocorre devido à natureza dos dados capturados, que
podem conter ruídos ou pacotes malformados que seguem a estrutura de determinado
tipo. Durante os experimentos realizados, notou-se que esse tipo de erro não impacta
significativamente o processo de fuzzing. As restrições impostas pelo parser, como ao
restringir os valores do campo bMaxPacketSize, no exemplo acima, ajudam a mitigar
esse problema.

4.8 Mutação de pacotes

Seguindo a lógica do fuzzer, descrita na seção 4.4, a mutação dos pacotes USB é um
passo que sucede o carregamento e o parsing das entradas. Não é inteligente testar todos
os possíveis valores para cada campo do pacote, dado que essa tarefa exaustiva é inviável
na prática. O espaço de entradas é muito grande – um configuration descriptor pode
assumir, sem ferir à especificação, qualquer valor em seus 18 bytes, um número na ordem
de 10

13 – e o processo de fuzzing não é facilmente escalável.

O processo de mutação de pacotes implementado na ferramenta itera sobre cada campo
do pacote USB a ser mutado e aplica as seguintes mutações, descritas em Manès et al., 2018
e Pramanik e Tayade, 2019, utilizadas por fuzzers como Fioraldi et al., 2020, honggfuzz e
ramsauer2019blackbox:

• mutação aritmética: incrementa ou decrementa o valor do campo em 𝑟 , onde 𝑟 é um
inteiro aleatório tal que 1 ≤ 𝑟 ≤ 35;

• baseado em dicionário: valores como format strings, úteis para bugs como o apontado
na seção 3.3, e valores próximos a limites comuns, usados em estratégias de análise
de valor limite, como 0, −1 ou 255;

• integração com Helin, 2025;

• sobreescrita com valores de outro campo do mesmo pacote.

Nenhuma técnica de mutação utilizada visa quebrar fortemente a estrutura de um
pacote USB. Como o protocolo é fortemente estruturado, mutações que alterem significa-
tivamente a estrutura do pacote, como adicionar ou remover muitos bytes, dificilmente
levarão a resultados úteis, visto que o pacote provavelmente será descartado pelo host

durante o processamento.

E, similarmente ao que Fioraldi et al., 2020 faz com o seu denominado modo havoc,
após esgotarem as mutações implementadas acima, o fuzzer aplica, exaustivamente, bit

flips. É difícil de determinar quantos bits devem ser alterados, embora Cha et al., 2015
mostre uma estratégia para chegar a um valor ideal, a aplicação é impraticável no contexto
do presente fuzzer, que simplesmente aplica a mutação de 𝑘 ∈ [1, ⌊𝑛/2⌋] bits, onde 𝑛 é o
tamanho da entrada mutável.

4.9 | REPRODUÇÃO DOS PACOTES

31

4.9 Reprodução dos pacotes
Após a mutação dos pacotes USB, o próximo passo é a reprodução desses pacotes no

sistema alvo. A ferramenta desenvolvida utiliza o módulo raw-gadget (Konovalov, 2025a),
que permite o envio de dados arbitrários diretamente ao host. Como USB é fortemente
centrado no host, o fuzzer atua como um dispositivo USB completo, completando o processo
de enumeração como um dispositivo comum, com as devidas mutações aplicadas.

4.10 Interface
Foi implementada uma simples interface web que possibilita a execução das estratégias

de fuzzing desenvolvidas e o acompanhamento de seus resultados em tempo real. Essa
interface foi desenvolvida utilizando o framework Flask, responsável pela camada de
aplicação HTTP, em conjunto com Socket.IO, tecnologia que permite comunicação
bidirecional em tempo real entre cliente e servidor por meio de WebSockets.

Atualmente, o servidor é acessível na porta 5000/TCP, sem mecanismos de autentica-
ção. A interface tem como objetivo fornecer uma visualização mais clara e estruturada
dos resultados do processo de fuzzing, reduzindo a necessidade de conexões SSH para
monitoramento.

Figura 4.2: Interface web da ferramenta

33

Capítulo 5

Experimentos e resultados

Como uma forma de validar a ferramenta desenvolvida, foram realizados experimentos
com o objetivo de avaliar sua eficácia na detecção de vulnerabilidades, de forma compa-
rativa. A análise proposta nesta seção parte de bugs já conhecidos, encontrados na pilha
USB do kernel Linux por um fuzzing guiado por cobertura, ou de outros erros descritos na
literatura.

Foram selecionados alguns casos de teste que condizem com a proposta deste trabalho,
formuladas hipóteses e geradas as devidas entradas relevantes para o fuzzer, a fim de
apresentar os resultados e limitações da ferramenta proposta. Os detalhes dos experimentos
conduzidos são apresentados nas seções seguintes.

5.1 Negação de serviço
A classe de vulnerabilidades mais fácil de ser testada pela ferramenta proposta são

erros de negação de serviço. Um oráculo é facilmente construído para detectar tais falhas,
uma vez que o sistema hospedeiro pode ser monitorado para observar se ele permanece
responsivo durante o processo de enumeração do dispositivo USB.

Além das diversas falhas desse tipo destacadas em Konovalov, 2017, outros traba-
lhos como Euntae Jang, 2025 mostram que usualmente, travamentos do kernel levam
a uma reinicialização do sistema e travamento temporário da enumeração por parte do
sistema hospedeiro. Isso valida exatamente o que a implementação do oráculo proposta
monitora.

5.2 Vazamento de memória do espaço do kernel
Outra classe de bugs comum é a leitura indevida de memória no espaço do kernel. A

seção 3.2 destaca, brevemente, a vulnerabilidade CVE-2025-38494. Essa vulnerabilidade
é causada por um bug de underflow aritmético em drivers/hid/hid-core.c, compo-
nente do kernel Linux que fornece funcionalidades básicas para Human Interface Device

(HID).

34

5 | EXPERIMENTOS E RESULTADOS

Essa vulnerabilidade é explorável através de um dispositivo USB com um descritor de
relatório HID malformado. Após a enumeração do dispositivo, o sistema hospedeiro faz uma
requisição HID (transferência de controle) do tipo HID_REQ_SET_REPORT ao dispositivo
USB com um relatório contendo memória do espaço do kernel.

A primeira observação a ser feita é que a vulnerabilidade é explorável através do fuzzer

proposto. A seção 4.4 descreve a capacidade da ferramente de reproduzir bugs encontrados
em sistemas com instrumentação disponível, e essa é uma falha publicada por Source,
2025.

Todavia, a simples capacidade de reproduzir o bug não é suficiente para validar a
eficácia da ferramenta. A reprodução do bug simplesmente gera como retorno alguns
kilobytes de memória; sem distinção da fonte desses dados, não é possível inferir se eles
são provenientes de uma vulnerabilidade. Faz-se, então, necessário que a ferramenta seja
capaz de reconhecer a vulnerabilidade de forma autônoma.

Um oráculo simples para essa vulnerabilidade, que traz consigo uma maior presença de
falsos positivos e falsos negativos, é a observação da saída e uma importante característica
do endereçamento canônico (canonical addressing) em arquiteturas x86-64. Nessa arqui-
tetura, os ponteiros do kernel possuem os bits mais significativos iguais ao bit 47 (sinal);
em binário, 1111 equivale a 0𝑥𝐹 . Uma heurística simples, portanto, é verificar se os dados
retornados contêm grupos consecutivos de 8 bytes (tamanho de um ponteiro em x86-64)
com os bits mais significativos iguais a 0𝑥𝐹𝐹𝐹𝐹 .

Durante os testes da ferramenta, e reprodução de diversos bugs de acesso de memória
no espaço do kernel, outro padrão observado foi a presença do texto localhost. A causa
raiz dessa ocorrência não foi investigada a fundo. De qualquer forma, esse padrão foi in-
corporado como uma heurística adicional para detecção de vazamentos de memória.

Essa estratégia de oráculo foi implementada na ferramenta desenvolvida, mas não é
utilizada por padrão devido a necessidade de análise e confirmação do resultado, visto que
a precisão sobre do oráculo pode ser muito prejudicada.

5.3 Format strings
A seção 3.3 apresenta um bug encontrado no aplicativo Skype, em Sergey Bratus,

2012. O bug em questão é uma vulnerabilidade de format string, onde um dispositivo
USB malicioso, durante o processo de enumeração, envia uma string de formato especi-
almente formatada para o sistema alvo em seu descritor de string apontado pelo campo
iManufacturer.

Este bug é interessante pois, diferentemente dos outros exemplos apresentados neste
capítulo, se trata de uma falha na camada de aplicação, em um software de terceiros, de
código fechado. A ferramente desenvolvida tem uma limitação notória nesse cenário: além
de não ter acesso ao estado do sistema hospedeiro, a informação sobre o estado de um
software dentro do sistema alvo também é dificilmente inferida através de um oráculo ou
canal lateral, utilizado em outros testes.

Um oráculo depende do nível de observabilidade que a ferramenta tem sobre o sistema

5.4 | PERFORMANCE

35

alvo. Embora o presente trabalho vise a criação de uma ferramenta de fuzzing USB capaz
de operar "às cegas", qualquer capacidade de instrumentação ou monitoramento mais
avançado do sistema alvo pode ser aproveitada para melhorar a eficácia do fuzzer. Na
ausência de tal capacidade, a ferramenta irá operar continuamente e um oráculo disponível
será, por exemplo, uma observabilidade visual, indicando se o aplicativo alvo (neste caso,
o Skype) está funcionando.

Embora o bug em questão não tenha sido profundamente documentado, é possível
inferir que o fuzzer proposto é capaz de atingir o mesmo resultado. A seção 4.8 descreve
a capacidade da ferramenta de mutar pacotes USB; dentre as mutações aplicadas, estão
dicionários e bit flips.

O dicionário utilizado pela ferramenta contém, de forma enviesada, uma string de
formato típica que inclui o erro aqui apresentado, embora o estado de erro também seja
alcançável através de mutações de bit flip. Portanto, é razoável concluir que a ferramenta
desenvolvida é capaz de encontrar o mesmo bug no Skype.

A velocidade de tal descoberta depende de diversos fatores, incluindo a performance
do sistema hospedeiro, randomicidade dos bit flips e corpus inicial. Com o corpus composto
pelas capturas apresentadas nesse trabalho, inferiu-se que o bug poderia ser encontrado
antes da ferramente alcançar o modo exaustivo descrito na seção 4.8, pois, dentre a base
construída, com aproximadamente 750 entradas, dispositivos com descritores semelhantes
estão presentes. Isso corresponde ao, máximo, um número da ordem de 107 mutações.

5.4 Performance

A melhor maneira encontrada para medir a performance da ferramenta foi através do
monitoramento do número de enumerações de um dispositivo USB por segundo. A coleta
ocorreu de forma similar ao que foi descrito na seção 3.4: o dispositivo USB foi conectado
ao sistema alvo, e a ferramenta começou o processo de enumeração contínua, simulando
ser um mouse. Foram realizadas 5 medições, cada uma com duração de 60 segundos, e a
média do número de enumerações por segundo foi calculada. A tabela 5.1 apresenta os
resultados obtidos.

Sistema Hospedeiro Enumerações por segundo
Macbook Air M1 5.10

Smart TV LG UN7300 2.28
PlayStation 4 1.86

Raspberry Pi Zero 2W 1.40
Média 2.66

Tabela 5.1: Performance da ferramenta desenvolvida medida em número de enumerações por segundo.

Essa métrica é útil avaliar a eficiência da ferramenta, pois reflete diretamente a capa-
cidade do fuzzer de explorar o espaço de entrada do sistema alvo em um determinado
período de tempo.

36

5 | EXPERIMENTOS E RESULTADOS

Observa-se que a performance varia significativamente entre diferentes sistemas hospe-
deiros, o que pode ser atribuído às diferenças de capacidade de processamento e demonstra
onde está a maior limitação da ferramenta desenvolvida. O valor médio de 2.66 enumerações
por segundo não é problemático para a reprodução de bugs conhecidos, mas pode ser
insuficiente para um grande número mutações em um intervalo tempo pequeno.

37

Capítulo 6

Conclusão

O presente trabalho abordou a segurança do protocolo USB, uma interface onipresente
e crítica em sistemas computacionais modernos, mas que apresenta uma vasta superfície
de ataque frequentemente subestimada. Diante da dificuldade de realizar auditorias em
drivers de código fechado, o objetivo principal foi o desenvolvimento e avaliação de uma
ferramenta de hardware e software capaz de realizar fuzzing em uma abordagem black-

box, sem necessidade de acesso ao código-fonte ou instrumentação interna do sistema
alvo.

Para viabilizar essa análise, foi desenvolvida uma ferramenta baseada no Raspberry
Pi Zero 2W, escolhido por seu custo acessível e suporte a USB On-The-Go. A solução
de software se fundamentou no uso do módulo de kernel raw-gadget, que permitiu a
manipulação de pacotes em baixo nível e a emulação de dispositivos USB completos,
superando as limitações de validação impostas por drivers padrão como o FunctionFS. A
ferramenta operou como um framework integrador, capaz de aplicar mutações genéricas
em capturas de tráfego (PCAP) e, também, reproduzir vulnerabilidades conhecidas a partir
de logs do syzkaller e do syzbot.

Os experimentos demonstraram que, apesar dos desafios inerentes à observabilidade
em testes black-box, é possível inferir o estado de segurança do host através de métricas
externas. A utilização de uma técnica de feedback baseada no processo de enumeração de
dispositivos pode ser eficaz para detectar falhas de negação de serviço (DoS) e travamentos
no sistema hospedeiro. Dessa forma, o projeto cumpre seu objetivo de entregar uma
solução com alta flexibilidade, validando a eficácia do fuzzing externo na identificação de
vulnerabilidades críticas em implementações da pilha USB.

6.1 Trabalho futuro
O desenvolvimento desta ferramenta abriu diversas frentes de pesquisa que, devido

a limitações de hardware e escopo temporal, não puderam ser abordadas neste trabalho,
mas que representam passos naturais para a evolução do fuzzing USB.

No âmbito do suporte a protocolos, a expansão para a especificação 3.0 do USB é uma
prioridade. A escolha do Raspberry Pi Zero 2W limitou os experimentos às velocidades

38

6 | CONCLUSÃO

do USB 2.0. A migração para plataformas de hardware que suportem USB 3.0 em modo
gadget é trivial em nível de software e permitiria explorar uma superfície de ataque mais
ampla e complexa. Adicionalmente, a investigação do protocolo USB Power Delivery (USB-

PD) pode ser um campo promissor, conforme recentemente demonstrado emKim et al., 2023.
Ataques focados na negociação de tensão e corrente podem explorar vulnerabilidades físicas
e lógicas nos controladores de energia dos hosts, uma vertente ainda pouco explorada.

Em relação às capacidades do software, uma melhoria significativa seria a implemen-
tação de suporte a transferências isócronas, atualmente não suportadas pelo módulo
raw-gadget. Isso permitiria o fuzzing de drivers de dispositivos de streaming em tempo
real, por exemplo, que dependem desse tipo de transferência para garantir latência.

Por fim, para aprimorar a metodologia de ataque, um modo de operação como proxy

USB, permitindo que a ferramenta atue simultaneamente como host (para o dispositivo
real) e device (para o alvo), interceptando e mutando o tráfego em tempo real, de forma
Man-in-the-Middle (MITM) é interessante. Essa arquitetura também facilitaria a exploração
de condições de corrida, como em vulnerabilidades do tipo Time-of-Check to Time-of-Use

(TOCTOU), onde o atacante altera os dados entre o momento da validação e o seu uso
efetivo — uma técnica já explorada em projetos como Secure, 2024, mas que carece de
implementações acessíveis em ferramentas mais generalistas.

39

Referências

[BeyondLogic 2025] BeyondLogic. USB Descriptors. url: https://www.beyondlogic.
org/usbnutshell/usb5.shtml (acesso em 11/09/2025) (citado na pg. 10).

[Böhme et al. 2016] Marcel Böhme, Van-Thuan Pham e Abhik Roychoudhury.
“Coverage-based greybox fuzzing as markov chain”. Em: Proceedings of the

2016 ACM SIGSAC Conference on Computer and Communications Security. CCS
’16. Vienna, Austria: Association for Computing Machinery, 2016, pgs. 1032–1043.
isbn: 9781450341394. doi: 10.1145/2976749.2978428. url: https://doi.org/10.1145/
2976749.2978428 (citado na pg. 15).

[Cha et al. 2015] Sang Kil Cha, Maverick Woo e David Brumley. “Program-adaptive
mutational fuzzing”. Em: Proceedings of the 2015 IEEE Symposium on Security

and Privacy. SP ’15. USA: IEEE Computer Society, 2015, pgs. 725–741. isbn:
9781467369497. doi: 10.1109/SP.2015.50. url: https://doi.org/10.1109/SP.2015.50
(citado na pg. 30).

[Chen et al. 2018] Yuanliang Chen, Yu Jiang, Jie Liang, Mingzhe Wang e Xun Jiao.
“Enfuzz: from ensemble learning to ensemble fuzzing”. Em: CoRR abs/1807.00182
(2018). arXiv: 1807.00182. url: http://arxiv.org/abs/1807.00182 (citado na pg. 17).

[Corbet et al. 2005] Jonathan Corbet, Alessandro Rubini e Greg Kroah-Hartman.
“Interrupt handling”. Em: Linux Device Drivers. 3ª ed. Sebastopol, CA: O’Reilly
Media, 2005. Cap. 13 (citado na pg. 12).

[Davis 2013] Andy Davis. Lessons learned from 50 bugs: Common USB driver vulnera-

bilities. 2013. url: https://www.nccgroup.com/media/kkpb02u0/_usb_driver_
vulnerabilities_whitepaper_v2.pdf (acesso em 26/10/2025) (citado na pg. 20).

[Euntae Jang 2025] Jonghyuk Song Euntae Jang Donghyon Jeong. DEF CON 31 Car

Hacking Village - Automotive USB Fuzzing. url: https://www.youtube.com/watch?
v=W_vQ5s1bB30 (acesso em 09/09/2025) (citado na pg. 33).

[Fioraldi et al. 2020] Andrea Fioraldi, Dominik Maier, Heiko Eissfeldt e Marc
Heuse. “AFL++: combining incremental steps of fuzzing research”. Em: 14th

USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association,
ago. de 2020 (citado nas pgs. 16, 30).

https://www.beyondlogic.org/usbnutshell/usb5.shtml
https://www.beyondlogic.org/usbnutshell/usb5.shtml
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1109/SP.2015.50
https://doi.org/10.1109/SP.2015.50
https://arxiv.org/abs/1807.00182
http://arxiv.org/abs/1807.00182
https://www.nccgroup.com/media/kkpb02u0/_usb_driver_vulnerabilities_whitepaper_v2.pdf
https://www.nccgroup.com/media/kkpb02u0/_usb_driver_vulnerabilities_whitepaper_v2.pdf
https://www.youtube.com/watch?v=W_vQ5s1bB30
https://www.youtube.com/watch?v=W_vQ5s1bB30

40

REFERÊNCIAS

[R. P. Foundation 2023] Raspberry Pi Foundation. Raspberry Pi OS (armhf) 2023-05-

03 (kernel 5.20). 2023. url: https://downloads.raspberrypi.com/raspios_armhf/
images/raspios_armhf-2023-05-03/ (acesso em 23/10/2025) (citado na pg. 22).

[W. Foundation 2025] Wireshark Foundation. SampleCaptures. 2025. url: https://
wiki.wireshark.org/samplecaptures (acesso em 26/10/2025) (citado na pg. 27).

[Godefroid et al. 2012] Patrice Godefroid, Michael Y. Levin e David Molnar. “Sage:
whitebox fuzzing for security testing”. Em: Commun. ACM 55.3 (mar. de 2012),
pgs. 40–44. issn: 0001-0782. doi: 10.1145/2093548.2093564. url: https://doi.org/10.
1145/2093548.2093564 (citado na pg. 15).

[Helin 2025] Aki Helin. Radamsa - A general-purpose fuzzer. url: https://gitlab.com/
akihe/radamsa (acesso em 11/09/2025) (citado nas pgs. 17, 30).

[Kim et al. 2023] Kyungtae Kim et al. “Fuzz the power: dual-role state guided black-box
fuzzing for USB power delivery”. Em: 32nd USENIX Security Symposium (USENIX

Security 23). Anaheim, CA: USENIX Association, ago. de 2023, pgs. 5845–5861. isbn:
978-1-939133-37-3. url: https://www.usenix.org/conference/usenixsecurity23/
presentation/kim-kyungtae (citado na pg. 38).

[KimiNewt 2025] KimiNewt. Pyshark: Python wrapper for tshark, allowing python pac-

ket parsing using wireshark dissectors. 2025. url: https://github.com/KimiNewt/
pyshark (citado na pg. 28).

[Konovalov 2017] Andrey Konovalov. Linux kernel: multiple vulnerabilities in the USB

subsystem. 2017. url: https://www.openwall.com/lists/oss-security/2017/11/06/8
(acesso em 26/10/2025) (citado nas pgs. 20, 26, 33).

[Konovalov 2019] Andrey Konovalov. Coverage-guided USB fuzzing with Syzkaller.
2019. url: https://www.offensivecon.org/speakers/2019/andrey-konovalov.html
(acesso em 23/10/2025) (citado na pg. 17).

[Konovalov 2025a] Andrey Konovalov. USB Raw Gadget — a low-level interface for

the Linux USB Gadget subsystem. 2025. url: https://github.com/xairy/raw-gadget
(acesso em 23/10/2025) (citado nas pgs. 22, 31).

[Konovalov 2025b] Andrey Konovalov. Patch na lista de discussão do kernel Linux

sobre a limitação no tamanho de transferências no Raw Gadget. url: https://lore.
kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.
git.andreyknvl@gmail.com/ (acesso em 09/09/2025) (citado na pg. 18).

[libusb Developers 2025] libusb Developers. libusb: C library for USB device access.
2025. url: https://libusb.info/ (acesso em 11/09/2025) (citado na pg. 12).

[Manès et al. 2018] Valentin J. M. Manès et al. “Fuzzing: art, science, and engineering”.
Em: CoRR abs/1812.00140 (2018). arXiv: 1812.00140. url: http://arxiv.org/abs/1812.
00140 (citado nas pgs. 15, 17, 30).

https://downloads.raspberrypi.com/raspios_armhf/images/raspios_armhf-2023-05-03/
https://downloads.raspberrypi.com/raspios_armhf/images/raspios_armhf-2023-05-03/
https://wiki.wireshark.org/samplecaptures
https://wiki.wireshark.org/samplecaptures
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
https://gitlab.com/akihe/radamsa
https://gitlab.com/akihe/radamsa
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-kyungtae
https://www.usenix.org/conference/usenixsecurity23/presentation/kim-kyungtae
https://github.com/KimiNewt/pyshark
https://github.com/KimiNewt/pyshark
https://www.openwall.com/lists/oss-security/2017/11/06/8
https://www.offensivecon.org/speakers/2019/andrey-konovalov.html
https://github.com/xairy/raw-gadget
https://lore.kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.git.andreyknvl@gmail.com/
https://lore.kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.git.andreyknvl@gmail.com/
https://lore.kernel.org/linux-usb/a6024e8eab679043e9b8a5defdb41c4bda62f02b.1757016152.git.andreyknvl@gmail.com/
https://libusb.info/
https://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/1812.00140

REFERÊNCIAS

41

[Miller et al. 1990] Barton P. Miller, Lars Fredriksen e Bryan So. “An empirical
study of the reliability of unix utilities”. Em: Commun. ACM 33.12 (dez. de 1990),
pgs. 32–44. issn: 0001-0782. doi: 10.1145/96267.96279. url: https://doi.org/10.
1145/96267.96279 (citado na pg. 15).

[Pramanik e Tayade 2019] Arijit Pramanik e Ashwin Tayade. “Study and comparison
of general purpose fuzzers”. Em: University of Wisconsin-Madison, 2019. url:
https://wcventure.github.io/FuzzingPaper/Paper/J19_Study.pdf (citado nas
pgs. 17, 30).

[Schumilo et al. 2014] Sergej Schumilo, Ralf Spenneberg e Hendrik Schwartke.
Don’t Trust Your USB! How to Find Bugs in USB Device Drivers. 2014. url: https:
//blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-
How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf (citado na pg. 17).

[Secure 2024] Anvil Secure. USB-Racer. 2024. url: https://github.com/anvilsecure/usb-
racer (acesso em 26/10/2025) (citado na pg. 38).

[Sergey Bratus 2012] Travis Goodspeed Sergey Bratus. Facedancer USB: Exploiting

the Magic School Bus. 2012. url: https://recon.cx/2012/schedule/events/237.en.html
(acesso em 26/10/2025) (citado nas pgs. 19, 34).

[Source 2025] Google Open Source. syzbot. url: https : / / syzkaller. appspot . com/
(acesso em 16/09/2025) (citado nas pgs. 17, 23, 26, 34).

[Tonder e Engelbrecht 2014] Rijnard van Tonder e Herman Engelbrecht. “Lowe-
ring the USB fuzzing barrier by transparent Two-Way emulation”. Em: 8th USENIX

Workshop on Offensive Technologies (WOOT 14). San Diego, CA: USENIX Associa-
tion, ago. de 2014. url: https://www.usenix.org/conference/woot14/workshop-
program/presentation/van-tonder (citado na pg. 18).

[USB Implementers Forum 2025a] USB Implementers Forum. On-The-Go and Embed-

ded Host Supplement to the USB Revision 2.0 Specification. url: https://www.usb.
org/document-library/usb-20-specification (acesso em 11/09/2025) (citado na
pg. 9).

[USB Implementers Forum 2025b] USB Implementers Forum. Universal Serial Bus 2.0

Specification. url: https://www.usb.org/document-library/usb-20-specification
(acesso em 11/09/2025) (citado nas pgs. 6, 9–11).

[Zalewski 2025] Michał Zalewski. AFL Bug-o-rama Trophy Case. url: http://lcamtuf.
coredump.cx/afl/#bugs (acesso em 11/09/2025) (citado na pg. 17).

https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://wcventure.github.io/FuzzingPaper/Paper/J19_Study.pdf
https://blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://blackhat.com/docs/eu-14/materials/eu-14-Schumilo-Dont-Trust-Your-USB-How-To-Find-Bugs-In-USB-Device-Drivers-wp.pdf
https://github.com/anvilsecure/usb-racer
https://github.com/anvilsecure/usb-racer
https://recon.cx/2012/schedule/events/237.en.html
https://syzkaller.appspot.com/
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder
https://www.usenix.org/conference/woot14/workshop-program/presentation/van-tonder
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/#bugs

42

REFERÊNCIAS

[Zou et al. 2022] Xiaochen Zou, Guoren Li, Weiteng Chen, Hang Zhang e Zhiyun
Qian. “SyzScope: revealing High-Risk security impacts of Fuzzer-Exposed bugs in
linux kernel”. Em: 31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, ago. de 2022, pgs. 3201–3217. isbn: 978-1-939133-31-1.
url: https://www.usenix.org/conference/usenixsecurity22/presentation/zou
(citado na pg. 17).

https://www.usenix.org/conference/usenixsecurity22/presentation/zou

	Introdução
	Contexto
	Problema e Motivação
	Objetivo
	Estrutura do trabalho

	USB
	Arquitetura Física e Lógica
	Estrutura de Comunicação
	Pacotes
	Transações
	Transferências

	Iniciação e Detecção de Velocidade
	Enumeração e Descritores

	Captura de tráfego
	Abstrações de Software para Interação USB

	Fuzzing
	Trabalhos Relacionados
	Emulação de Dispositivos USB
	Análise de Vulnerabilidades
	Métricas Externas

	Desenvolvimento da ferramenta
	Escolha e configuração do hardware
	Crawler do syz-bot
	Fuzzing com syzkaller
	Estratégias da ferramenta
	Base inicial de capturas
	Validação e reprodução de bugs do syzbot
	Parsing do tráfego
	Mutação de pacotes
	Reprodução dos pacotes
	Interface

	Experimentos e resultados
	Negação de serviço
	Vazamento de memória do espaço do kernel
	Format strings
	Performance

	Conclusão
	Trabalho futuro

	Referências

