
Tutorials for Hibernate, EJB 2, EJB 3
Struts, JavaServerfaces (JSF)
Tomcat, JBoss, Myeclipse, Eclipse and other

Tutorials » Debugging, Testing, Tuning » Eclipse
Junit testing tutorial

Sprache /
Language

Navigation

Search

Homepage
Blog
Tutorials
Schedule
Hibernate, EJB 2, JDBC
Tutorials
EJB 3 development
Spring framework
General, Java technologies
Web frameworks, JSP and
Servlets Tutorials
Struts 1.x
JavaServer Faces Tutorials
Debugging, Testing, Tuning
Application Server
administration and
configuration
Tutoriales (español)
Bugs and Exceptions
References
Hibernate 3 / JPA book and
ebook
Tutorial and EBook Shop
Training - Development -
Support
Links/Tips
Feedback
Disclaimer
Social projects

Eclipse Junit testing tutorial

JUnit is a simple Java testing framework to write tests for you
Java application. This tutorial gives you an overview of the
features of JUnit and shows a little example how you can write
tests for your Java application.

General
Author:

Sascha Wolski

Sebastian Hennebrueder

http://www.laliluna.de/tutorials.html ? Tutorials for Struts, EJB,
xdoclet and eclipse.

Date:

April, 12 2005

Software:

Eclipse 3.x

Junit 2.x

Source code:

http://www.laliluna.de/assets/tutorials/junit-testing-source.zip

PDF Version

http://www.laliluna.de/assets/tutorials/junit-testing-en.pdf

What is JUnit
JUnit is a simple open source Java testing framework used to
write and run repeatable automated tests. It is an instance of the
xUnit architecture for unit testing framework. Eclipse supports
creating test cases and running test suites, so it is easy to use
for your Java applications.

News
News from
JavaOne 2008 in
San Francisco
(May. 06, 2008)
New JBoss Seam
tutorial
(Apr. 25, 2008)
2007 was a
succesful year
(Jan. 11, 2008)
Open sourced
further struts
tutorials
(Dec. 12, 2007)
Open sourced
struts tutorials
(Dec. 06, 2007)
Hibernate
ebook update
(Oct. 28, 2007)
Hibernate
Developer Guide

basic and
advanced
topics,
performance,
working
examples,
integration with
Spring, EJB3,
Struts and JSF
(MyFaces)
There is an
English eBook
and a German
paper book
available.

Get more
information.

Training

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

1 de 9 05-08-2008 10:31

JUnit features include:

Assertions for testing expected results

Test fixtures for sharing common test data

Test suites for easily organizing and running tests

Graphical and textual test runners

What is a test case
A test case is a class which holds a number of test methods. For
example if you want to test some methods of a class Book you
create a class BookTest which extends the JUnit TestCase class
and place your test methods in there.

How you write and run a
simple test

Create a subclass of TestCase:1.

public class BookTest extends TestCase{
//..

}

Write a test method to assert expected results on the object
under test:

2.

Note: The naming convention for a test method is testXXX()

public void testCollection() {
Collection collection = new ArrayList();
assertTrue(collection.isEmpty());

}

Write a suite() method that uses reflection to dynamically
create a test suite containing all the testXXX() methods:

3.

public static Test suite(){
return new TestSuite(BookTest.class);

}

Activate the JUnit view in Eclipse (Window > Show View >
Other.. > Java > JUnit).

4.

We offer remote
and onsite
training about
Hibernate and
EJB.

Get more
information.

Consulting /
Development

You need
consulting or a
development
team. We have a
small but highly
qualified
development
team.

Get more
information.

Support

You need one
time or regular
support. We
offer flexibles
support
services.

Get more
information.

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

2 de 9 05-08-2008 10:31

You find the JUnit tab near the Package Explorer tab. You can
change the position of the tab by drag and drop it.

5.

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

3 de 9 05-08-2008 10:31

Right click on the subclass of TestCase and choose Run >
JUnit Test to run the test.

Using a test fixture
A test fixture is useful if you have two or more tests for a
common set of objects. Using a test fixture avoids duplicating
the test code necessary to initialize and cleanup those common
objects for each test.

To create a test fixture, define a setUp() method that initializes
common object and a tearDown() method to cleanup those
objects. The JUnit framework automatically invokes the setUp()
method before a each test is run and the tearDown() method
after each test is run.

The following test uses a test fixture:

public class BookTest2 extends TestCase {

 private Collection collection;

 protected void setUp() {
 collection = new ArrayList();
 }

 protected void tearDown() {

 collection.clear();
 }

 public void testEmptyCollection(){

 assertTrue(collection.isEmpty());
 }
}

Dynamic and static way of
running single tests
JUnit supports two ways (static and dynamic) of running single
tests.

In static way you override the runTest() method inherited form
TestCase class and call the desired test case. A convenient way
to do this is with an anonymous inner class.

Note: Each test must be given a name, so you can identify it if it
fails.

TestCase test = new BookTest("equals test") {
public void runTest() {

 testEquals();
 }
};

The dynamic way to create a test case to be run uses reflection
to implement runTest. It assumes the name of the test is the
name of the test case method to invoke. It dynamically finds and
invokes the test method. The dynamic way is more compact to
write but it is less static type safe. An error in the name of the
test case goes unnoticed until you run it and get a
NoSuchMethodException. We leave the choice of which to use
up to you.

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

4 de 9 05-08-2008 10:31

TestCast test = new BookTest("testEquals");

What is a TestSuite
If you have two tests and you'll run them together you could run
the tests one at a time yourself, but you would quickly grow
tired of that. Instead, JUnit provides an object TestSuite which
runs any number of test cases together. The suite method is like
a main method that is specialized to run tests.

Create a suite and add each test case you want to execute:

public static void suite(){
TestSuite suite = new TestSuite();
suite.addTest(new BookTest("testEquals"));
suite.addTest(new BookTest("testBookAdd"));
return suite;

}

Since JUnit 2.0 there is an even simpler way to create a test
suite, which holds all testXXX() methods. You only pass the class
with the tests to a TestSuite and it extracts the test methods
automatically.

Note: If you use this way to create a TestSuite all test methods
will be added. If you do not want all test methods in the
TestSuite use the normal way to create it.

Example:

public static void suite(){
return new TestSuite(BookTest.class);

}

A little example
Create a new Java project named JUnitExample.

Add a package de.laliluna.tutorial.junitexample where you place
the example classes and a package
test.laliluna.tutorial.junitexample where you place your test
classes.

The class Book

Create a new class Book in the package
de.laliluna.tutorial.junitexample.

Add two properties title of type String and price of type double.

Add a constructor to set the two properties.

Provide a getter- and setter-method for each of them.

Add a method trunk for a method equals(Object object) which
checks if the object is an instance of the class Book and the
values of the object are equal. The method return a boolean
value.

Note: Do not write the logic of the equals(..) method, we do it
after finish creating the test method.

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

5 de 9 05-08-2008 10:31

The following source code shows the class Book.

public class Book {

 private String title;
 private double price;

 /**
 * Constructor
 *
 * @param title
 * @param price
 */
 public Book(String title,
 double price) {
 this.title = title;
 this.price = price;
 }

 /**
 * Check if an object is an instance of book
 * and the values of title and price are equal
 * then return true, otherwise return false
 */
 public boolean equals(Object object) {

 return false;
 }

 public double getPrice() {
 return price;
 }

 public void setPrice(double price) {
 this.price = price;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }
}

The test case BookTest

Create a new test case BookTest in the package
test.laliluna.tutorial.junitexample Right click on the package
and choose New > JUnit Test Case.

In the wizard choose the methods stubs setUp(), tearDown() and
constructor().

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

6 de 9 05-08-2008 10:31

The following source code shows the class BookTest

public class BookTest extends TestCase {

 /**
 * setUp() method that initializes common objects
 */
 protected void setUp() throws Exception {
 super.setUp();
 }

 /**
 * tearDown() method that cleanup the common objects
 */
 protected void tearDown() throws Exception {
 super.tearDown();
 }

 /**
 * Constructor for BookTest.
 * @param name
 */
 public BookTest(String name) {
 super(name);
 }

}

Now we want to write a test for the equals(..) method of the
class Book. We provide three private properties, book1, book2
and book3 of type Book.

private Book book1;
private Book book2;
private Book book3;

Within the setUp() method we initializes the three properties
with some values. Property book1 and book3 are the same.

protected void setUp() throws Exception {
super.setUp();

 book1 = new Book("ES", 12.99);
 book2 = new Book("The Gate", 11.99);

book3 = new Book("ES", 12.99);
}

Within the tearDown() method we cleanup the properties:

protected void tearDown() throws Exception {
super.tearDown();

 book1 = null;
 book2 = null;

book3 = null;
}

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

7 de 9 05-08-2008 10:31

Now, add a test method testEquals() to the test case. Within the
method we use the assertFalse() method of the JUnit framework
to test if the return-value of the equals(..) method is false,
because book1 and book2 are not the same. If the return-value is
false the logic of the equals() method is correct, otherwise there
is a logical problem while comparing the objects. We want to
test if the method compares the objects correctly by using the
assertTrue() method. Book1 and Book3 are the same, because
both are an instance of the class Book and have the same values.

The following source code shows the testEquals() method:

public void testEquals(){
 assertFalse(book2.equals(book1));
 assertTrue(book1.equals(book1));
}

Writing the logic of the equals()
method

We have finished the test and now we can add the logic to the
equals() method stub. Open the class Book and add the logic to
the equals() method. First we check if the object given by the
method is an instance of Book. Then compare the properties title
and price, if they are equal return true.

public boolean equals(Object object) {
if (object instanceof Book) {

 Book book = (Book) object;
 return getTitle().equals(book.getTitle())
 && getPrice() == book.getPrice();
 }
 return false;
}

Create the suite() method

In order to run the test method testEquals() add a method
suite() to the class BookTest.

Note: You can also create a separate class where you add the
suite() method.

Within the method create a new instance of TestSuite and use
the method addTest(..) to add a test. Here we use the
dynamically way to add a test to a TestSuite.

The method looks like the follows:

public static Test suite(){
 TestSuite suite = new TestSuite();
 suite.addTest(new BookTest("testEquals"));

return suite;
}

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

8 de 9 05-08-2008 10:31

Run the test

After finishing all test methods we want to run the JUnit test
case. Right mouse button on the class BookTest and choose Run
As > JUnit Test.

On the JUnit view (Menu Windows -> show view) of Eclipse you
can see how many runs, errors and failures occurred.

Copyright (c) 2004-2008 by Sebastian Hennebrueder, laliluna.de Impressum

Eclipse Junit testing tutorial http://www.laliluna.de/eclipse-junit-testing-tutorial.html

9 de 9 05-08-2008 10:31

