Signed Binary Representations Revisited

Katsuyuki Okeya, Hitachi Katja Schmidt-Samoa, Christian Spahn, Tsuyoshi Takagi, TU Darmstadt

<u>http://www.cdc.informatik.tu-</u> <u>darmstadt.de/reports/reports/crypto04-eprint.pdf</u>

Conteúdo

Motivação

Non-Adjacent Form (NAF)

Mutual Opposite Form (MOF)

wNAF

wMOF

Conclusão

Motivação para Algoritmos de Exponenciação

Smart-cards: verdadeiros computadores de bolso, pela enorme capacidade de armazenamento e pela versatilidade, já que as informações guardadas nele podem ser lidas e alteradas por terminais autorizados.

Baseia-se em curvas elípticas uma vez que criptossistemas de curvas elípticas (ECC) dão grande segurança com chaves de comprimento moderado.

Motivação para Algoritmos de Exponenciação (cont.)

Em multiplicação escalar usual, temos: $d \times P = P + P + ... + P$

Já a multiplicação escalar usando curvas elípticas é mais rápida, uma vez que o NAF ajuda a diminuir o número de somas pois, 15 P = P + P + ...+ P (15 vezes) vira 15P = P + 2(P + 2(P + 2P)), por exemplo.

O método mais comum para calcular exponenciação de elementos em Grupos Abelianos é o esquema das janelas deslizantes.

Non-Adjacent Form (NAF)

Non-Adjacent Form (NAF) - representação binária com sinal, que é obtida aplicando-se a conversão: $1|0|-1 \leftarrow 1|1$, repetidamente, onde a|b denota a concatenação dos bits a e b.

Um exemplo de NAF:

Mutual Opposite Form (MOF) é um string binário com sinal que satisfaz as seguintes propriedades:

Os sinais dos bits adjacentes não nulos (sem considerar os bits nulos) são opostos.

O maior bit não nulo e o menor bit não nulo são 1 e -1, respectivamente.

Um exemplo de MOF é:

```
345 = 1 0 1 0 1 1 0 0 1 (Binary representation)
1 -1 1 -1 1 0 -1 0 1 -1 (MOF representation)
```

Para gerar um MOF, é feita a subtração bit-a-bit (2d - d):

$$2d = 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1$$

$$-d = 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 1$$

$$1 \ -1 \ 1 \ -1 \ 1 \ 0 \ -1 \ 0 \ 1 \ -1$$

Teorema 1: Seja n um inteiro positivo. O (n+1)-bit MOF tem 2ⁿ pares de representações diferentes, ou seja, qualquer n-bit de string binário pode ser unicamente representado pelo (n+1)-bit MOF.

Demonstração:

Para n = 1, temos que o 2-bit MOF é 0|0 ou 1|-1, uma vez que o 1-bit dos strings binários 0 e 1 são convertidos para os MOFs 0|0 e 1|-1, respectivamente.

Demonstração:

Para n = 1, temos que o 2-bit MOF é 0|0 ou 1|-1, uma vez que o 1-bit dos strings binários 0 e 1 são convertidos para os MOFs 0|0 e 1|-1, respectivamente.

Para n = k+1, temos 2 casos:

(k+1)-bit do string binário é 0 → podemos assumir que o (k+2)-bit MOF é 0 e aplicar a conversão um-para-um dos k-bits restantes.

(k+1)-bit do string binário é 1 \rightarrow o k-bit do string binário pode ser 0 ou 1. Logo, convertemos o (k+1)-bit dos string binários 1|0|* e 1|1|* para o (k+2)-bit MOF 1|-1|* e 1|0|*, respectivamente.

Proposição 1: A operação μ = 2d – d converte o string binário para μ MOF.

Proposição 1: A operação μ = 2d – d converte o string binário para μ MOF.

Demonstração:

Sabemos que μ_n = 1 se d_{n-1} = 1. Por μ_i = $d_{i-1} - d_i$, temos μ_i = 0 ou 1 para d_i = 0. Então, o bit mais a esquerda de μ será 1.

De μ_i = d_{i-1} - d_i = 1, sabemos que d_{i-1} = 1 e que μ_{i-1} = d_{i-2} - d_{i-1} = 0 ou -1, baseado em d_{i-2} = 1 ou 0, respectivamente. Essa relação nos dá $\mu_i \mid \mu_{i-1} \mid ... \mid \mu_{i-k+1} \mid \mu_{i-k} = 1 \mid 0 \mid ... \mid 0 \mid -1$ para algum k.

MOF & NAF

Se aplicarmos o método das janelas deslizantes da direita-paraesquerda (sem carry) $0|1 \leftarrow 1|-1$ e $0|-1 \leftarrow -1|1$ para MOF de d, então o NAF de d é obtido:

wNAF

Uma sequência de dígitos com sinal é chamada wNAF se e somente se:

O bit mais significativo não nulo é positivo.

Dentre quaisquer w dígitos consecutivos, ao menos um é não nulo.

Cada dígito não nulo é ímpar e menor que 2^{w-1} em valor absoluto.

W	2 ^{w-1}	Dígitos
2	$2^{2-1}=2$	-1, 1
3	$2^{3-1}=4$	-3, -1, 1, 3
4	$2^{4-1} = 8$	-7, -5, -3, -1, 1, 3, 5, 7

wNAF

Um exemplo de wNAF:

```
345 = 1 0 1 0 1 1 0 0 1 (Binary representation)
1 0 1 0 1 1 0 0 1

1 0 1 0 0 1

1 0 0 3 0 0 1

1 0 0 -3 0 0 3 0 0 1 (3NAF representation)
```

MOF & wNAF

Aplicando o método das janelas deslizantes de largura w para o MOF de d, obtemos o wNAF de d.

Para w = 3:

$$0|0|1$$
 \leftarrow $0|1|-1$
 $0|0|-1$ \leftarrow $0|-1|1$
 $0|0|3$ \leftarrow $1|-1|1 ou 1|0|-1$
 $0|0|-3$ \leftarrow $-1|1|-1 ou -1|0|1$

MOF & wNAF

```
345 = 1 0 1 0 1 1 0 0 1 (Binary representation)
1 -1 1 -1 1 0 -1 0 1 -1 (MOF representation)
1 -1 1 -1 1 0 0 1
1 -1 1 -1 0 0 3 0 0 1
1 0 0 -3 0 0 3 0 0 1 (3NAF representation)
```

wNAF

Teorema 2: Todo inteiro d não-negativo tem uma representação wNAF, que é única exceto pelo número de zeros a esquerda.

wNAF

Teorema 2: Todo inteiro d não-negativo tem uma representação wNAF, que é única exceto pelo número de zeros a esquerda.

Demonstração:

Há 3 casos a tratar.

- 1) conversão MOF → wNAF (já visto)
- 2) conversão wNAF → MOF
- 3) estas 2 conversões são inversas uma da outra.

Definimos wMOF como o resultado do método das janelas deslizantes de largura w da esquerda-para-direita sobre MOF.

De modo semelhante, construímos wMOF:

Para w = 3, temos:

$$1|-1|1 \text{ ou } 1|0|-1 \longrightarrow 0|0|3$$
 $-1|1|-1 \text{ ou } -1|0|1 \longrightarrow 0|0|-3$
 $1|-1|0 \longrightarrow 0|1|0$
 $-1|1|0 \longrightarrow 0|-1|0$

```
345 = 1 0 1 0 1 1 0 0 1 (Binary representation)

1 -1 1 -1 1 0 -1 0 1 -1 (MOF representation)

0 0 3 -1 1 0 -1 0 1 -1

0 0 3 0 -1 0 1 -1

0 0 3 0 -1 0 0 0 -3 -1 (3MOF representation)
```

Teorema 3: Todo inteiro d não-negativo tem uma representação wMOF, que é única exceto pelo número de zeros a esquerda.

Teorema 3: Todo inteiro d não-negativo tem uma representação wMOF, que é única exceto pelo número de zeros a esquerda.

Demonstração:

Há 3 casos a tratar.

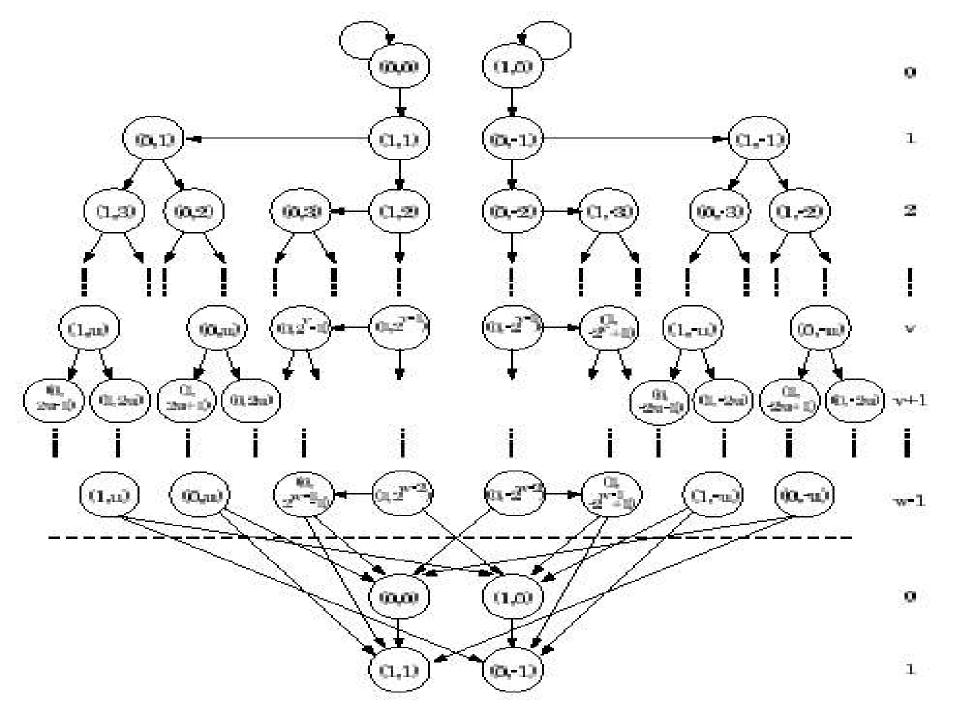
- 1) conversão MOF → wMOF (já visto)
- 2) conversão wMOF → MOF
- 3) estas 2 conversões são inversas uma da outra.

Teorema 4: A densidade média não-nula de wMOF é assintoticamente 1/(w+1) para $n \mapsto oo$.

Teorema 4: A densidade média não-nula de wMOF é assintoticamente 1/(w+1) para $n \mapsto oo$.

Demonstração:

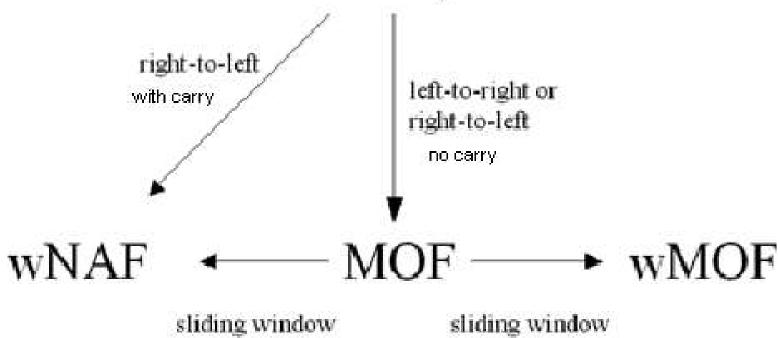
Usando Cadeia de Markov para provar isso, temos.....



Largura w	1 / densidade observada	1 / densidade esperada
2	2.988	3
3	3.970	4
4	4.946	5
5	5.914	6
6	6.878	7

Conclusão: Métodos janela sobre **MOF**

binary



right-to-left

left-to-right

Referência

<u>http://www.cdc.informatik.tu-</u> <u>darmstadt.de/reports/reports/crypto04-eprint.pdf</u>

Maiores Informações

<u>http://www.linux.ime.usp.br/~julee/mac499/monografia.html</u>