
JSS Journal of Statistical Software
July 2004, Volume 11, Issue 3. http://www.jstatsoft.org/

Fast Generation of Discrete Random Variables

George Marsaglia
Florida State University

Wai Wan Tsang
University of Hong Kong

Jingbo Wang
University of Hong Kong

Abstract

We describe two methods—and provide C programs—for generating discrete random
variables with functions that are simple and fast, averaging ten times as fast as published
methods and more than five times as fast as the fastest of those. We provide general
procedures for implementing the two methods, as well as specific procedures for three of
the most important discrete distributions: Poisson, binomial and hypergeometric.

Keywords: random numbers, discrete variates, Poisson, binomial, hypergeometric.

1. Introduction

The methods we describe here were developed in the early 1960’s (Marsaglia 1963) with
the second method having a variation based on a device from the 70’s (Walker 1974). In
the intervening years we have found few methods that compare favorably with these. The
methods were developed when a few hundred memory locations could be a burden, and seem
even more pertinent today, when thousands of locations are readily available. The generating
functions take only a few lines of C code. Listings for the two functions are included in
the browse files section, as is code for setting up parameters that the generating functions
require.

2. Method I: Condensed table-lookup.

Consider a simple example of the method described in Marsaglia (1963) and advocated in the
1964 NBS handbook (Abramowitz and Stegun 1964).
We have a random variable X with distribution given by a table:

http://www.jstatsoft.org/

2 Fast Generation of Discrete Random Variables

value prob
a .2245
b .1271
c .3452
d .3032

Probably the fastest way to produce a realization of X in a computer is to create a table
T [10000] with ten thousand entries made up of 2245 a’s, 1271 b’s, 3452 c’s and 3032 d’s.
Then if i is a random integer in 0 ≤ i < 10000, set x = T [i]. That requires a 10K table—not
very large by modern standards, but if our probabilities were expressed to several more base-
10 digits, the resulting table is likely to be too large. Let’s see if we can get by with a smaller
table, but with nearly as much speed.
Since we are choosing uniformly from the 10000 elements in the T array, we are free to
place elements in the table in any way we want. Using the old Fortran convention in which
4*a,2*b,5*c means fill with 4 a’s, 2 b’s, 5 c’s, etc., suppose we fill the table as follows:
2000*a,1000*b,3000*c,3000*d,200*a,200*b,400*c,40*a,70*b,50*c,30*d,5*a,b,c,c,d,d
The groupings are determined by the first, then second, third,. . . digits of the probabilities for
each value.
We still have 10000 elements, with a total of 2245 a’s, 1271 b’s, etc., but now the first 9000
elements of the T table are just 9 blocks of 1000 identical elements. We could do as well
if we ignore those 9000 elements in T and instead, with probability 9000/10000, choose one
element from {a,a,b,c,c,c,d,d,d}.
Similarly, the 800 elements from T [9000] to T [9799] are just 8 blocks of 100 identical el-
ements, so, with probability 800/10000 we can choose one element from the small array
{a,a,b,b,c,c,c,c}.
Finally, the 190 elements in T [9800] to T [9989] are just 19 blocks of 10 identical elements, so
with probability 190/10000 we can select an element from {a,a,a,a,b,b,b,b,b,b,b,c,c,c,c,c,d,d,d}.
Thus we have a considerable saving in space, (from 10000 to 46), and still good speed, (about
90% as fast), if we generate our X as follows, given a random integer i in 0 ≤ i < 10000:

Setup:
A[9] ={a,a,b,c,c,c,d,d,d};
B[8] ={a,a,b,b,c,c,c,c};
C[19]={a,a,a,a,b,b,b,b,b,b,b,c,c,c,c,c,d,d,d};
D[10]={a,a,a,a,a,b,c,c,d,d};

Generating procedure, given random i in 0<=i<=9999:
if(i<9000) return A[i/1000];
if(i<9800) return B[(i-9000)/100];
if(i<9990) return C[(i-9800)/10];

return D[i-9990];

Rather than using the digits for base 10, we might form tables from the digits of the proba-
bilities to base 100. We then have only two tables, A and B, using the Fortran convention for
multiple table entries:

A[98] ={22*a,12*b,34*c,30*d}
B[200]={45*a,71*b,52*c,32*d}

Journal of Statistical Software 3

Total table space is 298, greater than the 46 for base 10, but still much smaller than the 10000
for base 10000. The generating procedure will be faster—almost as fast as that for the table
of 10000:

if(i<9800) return A[i/100];
return B[i-9800];

Of course a table lookup method may be overkill for such a simple discrete distribution. But
the above method can be applied very effectively to discrete distributions with hundreds of
values and with probabilities to eight or more places. We will, in fact, provide implementations
that express the probabilities as rationals with denominator 230. Then if we use base 64, each
probability will have five base-64 ‘digits’ that provide five small tables similar to, but perhaps
many times as large, as those in the example above. Furthermore, analogs to the above integer
divisions: i/1000, (i−9000)/100, etc. will be effected by shifts of our six-bit ‘digits’, resulting
in very fast generating procedures.

Given the underlying discrete distribution, the generating function looks like this:

int Dran() /* Uses 5 compact tables; jxr is global static Xorshift RNG */
{unsigned long j;
jxr^=jxr<<13; jxr^=jxr>>17; jxr^=jxr<<5; j=(jxr>>2);
if(j<t1) return AA[j>>24];
if(j<t2) return BB[(j-t1)>>18];
if(j<t3) return CC[(j-t2)>>12];
if(j<t4) return DD[(j-t3)>>6];
return EE[j-t4];
}

The initialization procedure uses the probabilities to set up static global AA,BB,CC,DD,EE
arrays and parameters t1,t2,t3,t4 determined by the table sizes. We use a Xorshift RNG
described in Marsaglia (2003); any of the several hundred given there could be used, as they
do very well in tests of randomness and are very fast.

Here are some specific comparisons for the compact-table method:
If we express the probabilites for the Poisson distribution, λ = 100, to the nearest rational
with denominator 230, (keeping only the numerators), then use the base-64 digits to form five
tables, the table entries will total 10202 and the resulting C function will produce Poisson-100
variates at over 60 million/second (Intel 1800MHz CPU).
For similarly expressed binomial probabilities, n = 100, p = .345, the five tables will have
total 5102 entries, with similar speed—over 60 million/second.

If we use base 1024, the three tables will total about 90020 elements for the Poisson-100
distribution and 47057 for the binomial, n = 100, p = .345. Speed in both cases will be faster
than the 5-table version, around 70 million/second.

A version based on two tables from the digits for base 215 would be only a little faster than
the three-table version, but would require ten times as many table entries.

For Poisson and other discrete variates with an infinite number of probabilities, we select only
those for which, for a sample of size 231(109.33), the expected number of occurences exceeds
0.5. The other probabilities are assumed zero. For those unusual situations where occurences

4 Fast Generation of Discrete Random Variables

with probability less than 5 × 10−10 must be accounted for, special tail-handling procedures
should be used.

The setup and generating procedures are much the same, whatever the choice of the base
digits. The accompanying C programs are five-table versions based on expressing the proba-
bilities to five base-64 digits.

Note that the actual memory space required for the compacted tables depends on n, the
number of possible values of the discrete random variable. If n ≤ 256 than the table entries
can be bytes, char in C, while n > 256 requires 16 bits for each table entry, short int in C.
Should you encounter discrete random variables taking more than 65536 values, your table
entries will require 32 bits each.

3. Method II: Table + square histogram.

This second method is likely to require fewer tabled values. It may be summarized as follows:
Use one byte from a 32-bit random integer to get an entry in a table of size 256.
If that tabled value is positive, return it.
Else use a slower method to produce a variate among values not covered by the single
table.

To set up the procedure for a discrete random variable taking values 0, 1, . . . , n− 1 with
probabilities p0, p1, . . . , pn−1, express each pi as

pi =
ki + θi

256
with ki an integer and 0 ≤ θi < 1.

(The k’s are the first digits in the expansion of the p’s to base 256.)
Now fill a table, J[256], with k0 0’s, k1 1’s,. . . ,kn−1 (n−1)’s. If the table is not full, (it might
typically have 2-15 unassigned cells), fill the remaining J[] locations with -1’s.

Then to generate the required variate D: Let i be a random 32-bit integer, with j formed
from the rightmost 8-bits of i.(In C, j=i&255;). If J[j]≥ 0 return J[j], else return a D by the
square histogram method described below, with probabilities θ0, θ1, . . . , θn−1 normalized to
sum to 1. The single uniform [0,1) variate that the square histogram requires may be formed
as the floating point version of i/232, with i the random 32-bit integer whose rightmost eight
bits determined the table-lookup index.

The result is a fast and simple procedure. It depends on a preliminary setup for the square
histogram, with required tables K[] and V[] of size n. The method produces the specified
discrete variates at about 40 million/second, not as fast as the compact-table method, but
still far faster than most available methods.

4. The square histogram method.

A square histogram is depicted in the following figure:

Journal of Statistical Software 5

2 4 3 0 2
2222244443 33333 0000022222
2222244444 33333 0000022222
2222211111 33333 0000022222
2222211111 22222 0000022222
2222211111 22222 0000044444
0000011111 22222 0000044444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111222 223333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444
0000011111 22222 3333344444

0 1 2 3 4

Every square histogram contains n equal-width columns (n = 5 in this example), and each
column has a bottom-part and a top-part. The bottom-part of each column “belongs” to
the index 0, 1, . . . , n−1 of that column, the top-part of each column “belongs” to the index
label at the top of that column, stored in an array K[n]. (The top part may be empty.)
Each column has a division point, contained in an array V[n], indicating where ownership
of the column content changes. For this example, in C notation, K[5]={2,4,3,0,2} and
V[5]={.15,.38,.57,.74,.96}.

The height of the square histogram is .20 in this example. Note that the division points in
the V array are not {.15, .18, .17, .14, .16} as might be expected, but rather .15, .20+ .18, .40+
.17, .60 + .14, .80 + .16. That is because if we know the index of a column, we already know
the range of the uniform number that determined it, reducing the arithmetic necessary for
deciding whether we are below or above the division point.

Now to generate our discrete random variable, we choose a point uniformly from the square
histogram and return the label of the area in which that point falls. Instead of the usual
two uniform variates to get a random point in the square histogram we can, by means of the
arrays K[n] and V [n], get our result from a single uniform [0,1) variate U :

j = b5Uc; if U < V [j] return j; else return K[j].

This rule provides a fast and easy way to generate a random variable J taking values 0, 1, 2, 3, 4
with probabilities .21, .18, .26, .17, .18. (the sums of the areas belonging to each index). And
such a simple rule will work for any discrete random variable taking values 0, 1, 2, . . . , n−1
with probabilities p0, p1, . . . , pn−1,

∑
pi = 1.

All one need to do is form a regular histogram for 0, 1, . . . , n−1 with bars of height p0, p1, . . . , pn−1,
then use the Robin Hood rule—take from the richest to bring the poorest up to average—
bringing one, then another and another until all are average and a square histogram has been
formed.

6 Fast Generation of Discrete Random Variables

We illustrate with simple square-histogram-forming examples. Suppose we have a random
variable J that takes values 0, 1, 2 with probabilities 2

15 , 7
15 , 6

15 . The average height of the
square histogram will be 5/15, so we form a histogram with heights given by those probabil-
ities, drawn within and above the anticipated final form of the histogram. We iterate with
the Robin Hood method. First, we bring the poorest, column 0, up to average, reducing the
‘wealth’ of column 1, then take from the newly richest, column 2, to bring the diminished
column 1 up to average.

11111
1111122222 22222
1111122222 11111 22222 111112222222222
1111122222 111111111122222 111111111122222
1111122222 =⇒ 111111111122222 =⇒ 111111111122222

000001111122222 000001111122222 000001111122222
000001111122222 000001111122222 000001111122222

We now have a square histogram with arrays K[3] = {1, 2, 2} and V [3] = { 2
15 , 9

15 , 15
15} and the

generating rule, using a uniform [0,1) variate U : j = b3Uc if U < V [j] return j, else return
K[j]. Note how the values in the V array are determined. If j = 0, then 0 ≤ U < 5/15 and
testing U < 2/15 provides the division of the ‘0’ column into the two parts belonging to ‘0’ or
the three parts belonging to ‘1’. Similarly, the range 5/15 ≤ U < 10/15 will lead to selection
of the ‘1’ column, and testing U < 9/15 will provide the division of that column into the 4
parts belonging to ‘1’ and the single part belonging to ‘2’.

But there are other ways to square the histogram. Starting with the same initial column
values, 2

15 , 7
15 , 6

15 as above, suppose for the first step we take from the second richest, ‘2’, to
bring the poorest, ‘0’, up to average, then finish the squaring process:

11111 11111
1111122222 11111
1111122222 2222211111 222221111111111
1111122222 2222211111 222221111111111
1111122222 =⇒ 222221111122222 =⇒ 222221111122222

000001111122222 000001111122222 000001111122222
000001111122222 000001111122222 000001111122222

We end with arrays K[3] = {2, 1, 1} and V [3] = { 2
15 , 10

15 , 13
15} and the same rule for generation:

j = b3Uc; if U < V [j] return j, else return K[j]. But note that this time we will do the ‘else’
part with total probability 5/15, in contrast to the first, Robin Hood, method where the ‘else’
part was required with smaller total probability, 4/15.

The frequency of requiring the ‘else‘ part of the generating procedure

j = bnUc; if U < V [j] return j; else return K[j];

is proportional to the “over-area”: that part of the final squared histogram that lies above the
division points. An optimal squaring provides the least possible over-area. The Robin Hood
method will not usually be optimal, but experience suggests that it will be close. Finding an
optimal squaring of a given histogram turns out to be NP hard. It is discussed in references
Marsaglia and Tsang (1987) and Tsang (1981). Our square histogram method was developed

Journal of Statistical Software 7

to provide a more efficient and transparent implementation of an approach suggested in Walker
(1974).

Assuming initial probabilities p0, p1, . . . , pn−1 that sum to 1 and average a = 1/n are given,
an algorithm for the Robin Hood method of squaring the histogram goes as follows:

First, initialize: For i from 0 to n−1 do: K[i] = i and V [i] = (i + 1) ∗ a.
Then do these two steps n−1 times:

1. Find the smallest probability, pi, and the largest, pj .

2. Set K[i] = j; V [i] = (i− 1) ∗ a+ pi; replace pj with pj−(a− pi); replace pi with
a;

This will provide the generating procedure:

j = bnUc; if U < V [j] return j, else return K[j].

5. Comparisons

We compare our two methods with some fast methods in the literature for generating Poisson,
binomial and hypergeometric variates.
The ratio of uniforms (Stadlober and Zechner 1999) is a rejection algorithm which has simple
calculation and reasonable rejection rate.
The patchwork rejection (Stadlober,E. 1989) applies (without mention) the ideas of the Monty
Python method from Marsaglia and Tsang (1984) and Marsaglia and Tsang (1998). It uses a
simple hat function and rearranges the area under the frequency function f(x) to fill as much
of the area under the hat function as possible. As a result, it has a very low rejection rate.
These two methods are both applicable for any distribution so they are included in all three
comparisons: binomial, Poisson and hypergeometric.

We also compare our methods with two methods designed for specific distributions:

• PD (acceptance complement) (Ahrens and Dieter 1982) which was believed to be one
of the fastest methods designed for Poisson variates, and

• BTPE (triangle-parallelogram-exponential rejection) (Kachitvichyanukul and Schmeiser
1988) which uses combined majorizing and minorizing functions to sample from binomial
distributions.

The C codes for comparisons were compiled and linked in Microsoft Visual C++ 6.0 under
Windows XP on a Pentium IV 2.26GHz as well as with gcc in a DOS window, but similar
results were obtained when the code was compiled on a Unix system. To make comparisons
fair, uniform random numbers were produced by the fast Xorshift method of Marsaglia (2003).

The execution times for generating 100 million variates from binomial, Poisson and hypergeo-
metric distribution are given in the tables below. The results show our Method I (Condensed
Table-Lookup) has the best performance and almost invariant speed under different parame-
ters. Method II (Table+Square Histogram) is often nearly as fast as Method I, but it slows
down for parameters which provide a lower success rate in phase one, requiring more frequent

8 Fast Generation of Discrete Random Variables

need for the square-histogram. The Stadlober-Zechner patchwork rejection method seems
best among the other four methods, but its fastest is only 1/5 as fast as our Method I.

Our methods run from 5 to 15 times faster than competing methods, averaging around 10.
You may wish to extract them from ‘browse files’ and try for yourself, comparing with your
own or other methods for not only speed but complexity, program size and (your view of)
elegance.

For certain values of the parameters, the setup time and memory costs for our Method I or
Method II may make simple, direct methods more suitable. See Tables 1, 2, 3.

6. Attachments

We have provided C versions of the two methods described here, for inclusion in the “Browse
files”section of the journal. We suggest that you first compile and run 5tbl.c, then TplusSQ.c.
Each will ask for your choice of parameters for Poisson, then binomial, then hypergeometric
distributions. Each will apply its method to that distribution as well as do chisquare tests on
the output. You may then want to examine the components of the two files, for illumination
or for extracting portions that might be usefully applied to your discrete distributions.

The 5tbls.c file contains void get5tbls(void) that creates the five tables for the compact-
table method, based on 30-bit probabilities expressed as five base-64 digits.

Those probabilites are created by PoissP() or BinomP() or HyperGeometricP(). Given the
parameter lambda, PoissP() creates the table P[] of Poisson probabilities as numerators of
rationals of the form j/230. Those p’s for which 231p < 1 are assumed zero.

void BinomP(int n, double p) creates the static int array P[] for the binomial distribu-
tion, as numerators of rationals j/230. Those p’s for which 231p < 1 are assumed zero, as are
the p’s created by the function HyperGeometricP() for the hypergeometric distribution.

int Dran() is the function that uses a 32-bit xorshift integer to return a discrete random
value from the appropriate one of the five tables.

void Dtest(int n) generates a sample of n values using Dran() and does a goodness-of-
fit test, grouping cell counts so expected numbers are > 20. It uses included Phi() and
Chisquare() functions.

The file TplusSQ.c also tests the output of Poisson, binomial and hypergeometric genera-
tors coming from the function Dran(), except that the Dran() function this time is based
on Method II: Table plus Square Histogram. The parameters and arrays are set up by
the function DSQset(), which relies on the the same routines, PoissP() or BinomP() or
HyperGeometicP() to create the integer array P[]. DSQset() converts each integer prob-
ability P[i] to double p[i]. Then p[i] is expressed as p[i]=ki+θi

256 in order to create the
J[256] fast table-lookup and arrays K[] and V[] for the square histogram. Then the discrete
variate generator Dran() takes the form required for Method II.

Those wishing to apply one or the other of these two methods for other kinds of discrete
distributions will have to create their own routines to replace the PoissP() or BinomP() or
HyperGeometricP() functions that create the table P[] of (integer) probabilities, the 30-
bit numerators j of the distribution’s probabilities expressed as j/230. Then the routine
get5tbls() will create the five tables that the Dran() generator requires for Method I, or
DSQset() will create the J,K and V arrays for the Table+Square Histogram version of the

Journal of Statistical Software 9

n p Method I Method II Patchwork RatioUniform BTPE
20 0.1 1.703 1.718 19.687 16.750 9.563
20 0.4 1.813 1.828 15.640 16.563 22.203
100 0.1 1.813 1.875 13.219 16.547 26.093
100 0.4 1.985 2.078 12.891 16.463 600.27
1000 0.1 2.188 2.359 12.672 16.547 73.156
1000 0.4 2.266 2.796 12.610 16.578 31.422
10000 0.1 1.625 3.593 12.485 22.875 14.578
10000 0.4 1.657 4.546 12.563 28.375 8.547
100000 0.1 1.703 5.906 12.469 28.406 7.719
100000 0.4 1.985 2.078 13.750 15.859 17.047

Table 1: Time, in seconds, to generate 108 binomial variates

lambda Method I Method II Patchwork RatioUniform PD
1 1.719 1.703 18.59 18.92 6.015
10 1.844 1.922 14.55 18.30 18.22
25 1.985 2.094 13.66 15.84 21.44
100 2.203 2.422 13.44 15.86 20.83
250 2.265 2.829 13.31 15.86 16.81
1000 1.625 3.704 13.26 18.58 16.75

Table 2: Time, in seconds, to generate 108 Poisson variates

N1 N2 K Method I Method II Patchwork RatioUniform
20 20 20 1.750 1.781 21.062 13.563
100 100 20 1.844 1.765 13.438 13.797
100 100 100 1.885 1.917 10.373 13.560
100 1000 100 1.860 1.869 8.203 15.656
1000 1000 100 1.984 2.088 9.674 13.578
1000 1000 1000 2.231 2.530 7.906 13.625
1000 10000 100 1.849 1.898 8.359 20.391
1000 10000 1000 2.219 2.375 7.765 23.094
10000 10000 1000 2.265 2.907 7.937 26.376
10000 10000 10000 1.665 4.202 7.828 37.969

Table 3: Time, in seconds, to generate 108 hypergeometric variates

10 Fast Generation of Discrete Random Variables

Dran() generator.

Then that appropriate Dran() function can be used to provide extremely fast and simple
generation of random variables from the specified discrete distribution, perhaps after first
testing for any mishaps by applying the Dtest(100000000) function for a sample of 108.

For some choices of parameters, or for certain distributions, other methods may be easier to
apply or require less memory. But the two methods advocated here may be worth considering
for a wide variety of discrete distributions.

References

Abramowitz M, Stegun IA (eds.) (1964). Handbook of Mathematical Functions. U.S. Govern-
ment Printing Office, Washington D.C.

Ahrens JH, Dieter U (1982). “Computer Generation of Poisson Deviates from Modified Normal
Distributions.” ACM Transaction on Mathematical Software(TOMS), 8.

Kachitvichyanukul V, Schmeiser BW (1988). “Binomial Random Variate Generation.” Com-
munications of the ACM, 31(2).

Marsaglia G (1963). “Generating Discrete Random Variables in a Computer.” Communica-
tions of the ACM, 6, 37–38.

Marsaglia G (2003). “Xorshift RNGs.” Journal of Statistical Software, 8(14).

Marsaglia G, Tsang WW (1984). “A Fast, Easily Implemented Method for Sampling from
Decreasing or Symmetric Unimodal Density Functions.” SIAM Journal Scientific and Sta-
tistical Computing, 5, 349–359.

Marsaglia G, Tsang WW (1987). “A Decision Tree Algorithm for Squaring the Histogram in
Random Number Generation.” Ars Combinatoria, 23A, 291–301.

Marsaglia G, Tsang WW (1998). “The Monty Python Method for Generating Random Vari-
ables.” ACM Transactions on Mathematical Software, 24(3), 341–350.

Stadlober E, Zechner H (1999). “The patchwork Rejection Technique for Sampling from
Unimodal Distributions.” ACM Transaction on Modeling and Computer Simulation
(TOMACS), 9.

Stadlober,E (1989). “Ratio of Uniforms as a Convenient Method for Sampling from Classical
Discrete Distributions.” Proceedings of the 21st ACM conference on Winter simulation.

Tsang WW (1981). Analysis of the Square-the-Histogram Method for Generating Discrete
Random Variables. Master’s thesis, Computer Science, Washington State University.

Walker AJ (1974). “Fast Generation of Uniformly Distributed Pseudorandom Numbers with
Floating Point Representation.” Electronics Letters, 10, 553–554.

Journal of Statistical Software 11

Affiliation:

George Marsaglia
Profesor Emeritus, Florida State University
Home Address: 1616 Golf Terrace Drive
Tallahassee FL 32301, United States of America
E-mail: geo@stat.fsu.edu

Wai Wan Tsang
Computer Science Department
The University of Hong Kong
Pokfulam Road, Hong Kong
E-mail: tsang@cs.hku.hk

Jingbo Wang
Computer Science Department
The University of Hong Kong
Pokfulam Road, Hong Kong
E-mail: jbwang@cs.hku.hk

Journal of Statistical Software Submitted: 2004-06-05
July 2004, Volume 11, Issue 3. Accepted: 2004-07-12
http://www.jstatsoft.org/

mailto:geo@stat.fsu.edu
mailto:tsang@cs.hku.hk
mailto:jbwang@cs.hku.hk
http://www.jstatsoft.org/

	Introduction
	Method I: Condensed table-lookup.
	Method II: Table + square histogram.
	The square histogram method.
	Comparisons
	Attachments

